Reprinted from Proceedings of the ACM SIGPLAN 2000 Conference on Programming Language Design and Implementation (PLDI 2000)

A Single Intermediate Language
That Supports Multiple Implementations of Exceptions

Norman Ramsey
Harvard University

nr@eecs.harvard.edu

ABSTRACT

We present mechanisms that enable our compiler-target lan-
guage, C--, to express four of the best known techniques
for implementing exceptions, all within a single, uniform
framework. We define the mechanisms precisely, using a
formal operational semantics. We also show that excep-
tions need not require special treatment in the optimizer;
by introducing extra dataflow edges, we make standard op-
timization techniques work even on programs that use excep-
tions. Our approach clarifies the design space of exception-
handling techniques, and it allows a single optimizer to han-
dle a variety of implementation techniques. Our ultimate
goal is to allow a source-language compiler the freedom to
choose its exception-handling policy, while encapsulating the
architecture-dependent mechanisms and their optimization
in an implementation of C-- that can be used by compilers
for many source languages.

1. INTRODUCTION

C-- is a compiler-target language intended to be indepen-
dent of both source programming language and target ar-
chitecture (Peyton Jones, Oliva, and Nordin 1997; Pey-
ton Jones, Ramsey, and Reig 1999). Its design accommo-
dates a variety of source languages and leaves room for back-
end optimization, all without upcalls from the back end to
the front end.

C-- is not a universal intermediate language (Conway 1958)
or a “write-once, run-anywhere” intermediate language
(Lindholm and Yellin 1997). Rather, C-- encapsulates com-
pilation techniques that are well understood, but difficult to
implement. Such techniques include instruction selection,
register allocation, instruction scheduling, and scalar opti-
mizations of imperative code with loops. Beyond this, C--
also encapsulates the architecture-specific run-time support
required for high-level run-time services such as garbage col-
lection, concurrency, debugging, and exception dispatch. It
is inappropriate for a back end like C-- to implement such
services, so the challenge is to identify low-level, primitive

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

PLDI 2000, Vancouver, British Columbia, Canada.

Copyright 2000 ACM 1-58113-199-2/00/0006 . . . $5.00.

285

Simon Peyton Jones
Microsoft Research Ltd

simonpj@microsoft.com

mechanisms that a back end should provide, on top of which
a C-- client can implement high-level services.

This paper explains how C-- encapsulates the techniques
compilers use to support exception dispatch. It makes the
following contributions:

e We present the two mechanisms that C-- uses to
specify interprocedural control flow: weak continua-
tions that do not outlive their procedure activations,
and call-site annotations (Section 4). These mecha-
nisms support, in a single framework, three well-known
ways of implementing exceptions. C-- also supports
continuation-passing style, a fourth implementation
technique. Every native-code compiler of which we are
aware uses one of these four techniques to implement
exceptions.

e To define these mechanisms precisely, we present the
intermediate language Abstract C-- and its formal op-
erational semantics (Section 5). Abstract C-- is easily
derived from C-- source.

e It is not immediately obvious how standard analyses
and optimizations should be implemented in the pres-
ence of exceptions. We therefore present an algorithm
for converting abstract C-- into a dataflow graph (Sec-
tion 6). This may be a novel way of documenting an
intermediate representation, and it should be directly
useful to implementors, who can then use standard
dataflow analyses to produce accurate and safe code
even in the presence of exceptions and exception han-
dlers; exceptions need not be treated as special cases.
Therefore, a single optimizer should suffice for all C--
programs, regardless of the original source language.

e Our approach is simple and can be applied to other
intermediate forms, and it illuminates the design space
of exception-dispatch mechanisms.

Not everything here is new. For example, any compiler
writer who thinks hard may decide to use extra flow edges
to express the optimization constraints of exceptions (Hsieh,
Gyllenhaal, and Hwu 1996). But the literature on optimiz-
ing in the presence of exceptions is sparse; Hennessy (1981)
and Chase (1994b) are rare exceptions. We do not know of
other work that presents language-independent techniques
for such optimization.

2. WHAT'S THE PROBLEM?

Since we intend to provide exception mechanisms that suffice
to support a variety of programming languages, we begin
by surveying the mechanisms that are widely used. We are
aware of four techniques that are used to transfer control
from the point where a source-language exception is raised
to the point at which that exception is handled.

e Stack cutting sets the stack pointer and the program
counter to point directly to the handler. In a native-
code compiler, this technique can be very fast, but
it does not restore the values of callee-saves registers;
in general, these values may be distributed throughout
the stack. This technique may be best suited to imple-
mentations that use no callee-saves registers. Objec-
tive CAML uses this technique, as do many Common
Lisps and pre-Scheme Lisps.

In C code, setjmp and longjmp cut the stack, but
they typically save and restore lots of state: the size
of a jmp_buf is 6 pointers on Pentium/Linux, 19 on
Sparc/Solaris, and 84 on Alpha/Digital-Unix. Al-
though setjmp and longjmp do not always use the en-
tire buffer, they are significantly more expensive than
a native-code stack cutter, which saves 2 pointers. On
the SPARC, longjmp pays the additional penalty of
flushing register windows. Because of the performance
penalty, setjmp and longjmp are used only by imple-
mentations that compile to C, such as SRC Modula-3.

o Run-time stack unwinding uses the run-time system to
unwind the stack one frame at a time until the handler
is reached. The run-time system restores the values
of callee-saves registers as it unwinds the stack, typi-
cally by interpreting tables deposited by the back end.
Operating systems may provide support for run-time
stack unwinding; for example, the MIPS ABI provides
a “run-time procedure table,” and Digital Unix in-
cludes a well-specified ABI for call stacks. The native-
code back ends of Polytechnic Modula-3 use this tech-
nique, as do the the Java Virtual Machine and many
C++ compilers.

e Native-code stack unwinding uses specialized code in
each procedure to unwind the stack when a “nonlo-
cal return” or “exceptional termination” is called for.
Because the compiler generates native code to do the
unwinding, no interpretive overhead is involved. The
Self compiler uses this technique.

e In continuation-passing style, the potential exception
handlers are represented by an exception continuation.
Generated code raises an exception by making a tail
call to this continuation. The continuation decides
which handler applies. Again, the compiler generates
specialized code for each handler. Standard ML of
New Jersey uses this technique.

C-- supports continuation-passing style through fully gen-
eral tail calls (Peyton Jones, Oliva, and Nordin 1997), which
require no further explanation. We therefore discuss only
the first three mechanisms. Although these mechanisms are
well understood, supporting any of them requires intimate
cooperation among the optimizer, the code generator, and
the run-time system.

286

/* Ordinary recursion */ /* Loops */
export spi; export sp3;
sp1(bits32 n) { sp3(bits32 n) {
bits32 s, p; bits32 s, p;
if n == 1 { s=1; p=1;
return(1, 1);
} else { loop:
s, p =spl(n-1); if n==1 {

return(s+n, p*n); return(s, p);

} } else {
} s = s+n;
P = p*n;
n = n-1;

/* Tail recursion */
export sp2; ¥}
sp2(bits32 n) {

jump sp2_help(n, 1, 1);

goto loop;

}

sp2_help(bits32 n, bits32 s, bits32 p) {
if n==1 {
return(s, p);
} else {
jump sp2_help(n-1, s+n, p*n);
}
}

Figure 1: Three procedures that compute the sum
>_.¢ and product [[;_, ¢, written in C--.

e Correct exception dispatch depends both on the se-
mantics of exceptions in the source language and on
the representation of the call stack on the target ma-
chine; the interactions may be subtle.

e Optimization is fundamentally affected by exceptions.
Optimizing compilers may have rather ad hoc modifi-
cations that make the optimizers “do the right thing”
for the exception semantics of one particular language.

The easy way out is for the code generator to know the
language-specific details of exception semantics, and for the
run-time system to know the code generator’s stack layouts
and register-saving protocols. But such intimate cooper-
ation is not available to a reusable code generator, which
must support multiple source languages on multiple target
architectures.

A main contribution of this paper is to show how a reusable
code generator can cooperate with front ends at arm’s
length, and yet still support a variety of exception seman-
tics in an architecture-independent way. Our key observa-
tion is that a language alone cannot provide a sufficiently
flexible interface. C-- includes not only a language, which
cooperates with the the source-language compiler, but also a
run-time system, which cooperates with the source-langage
run-time system.

3. C--: APORTABLE ASSEMBLER

Before discussing how C-- deals with exceptions, we sketch
the language and its run-time system; more details can be
found in Peyton Jones, Oliva, and Nordin (1997) and Pey-
ton Jones, Ramsey, and Reig (1999). To give a feel for C--,
Figure 1 presents three C-- procedures, each of which com-
putes the sum and product of the integers 1..n.

3.1 The C-- language

Much of C-- is unremarkable. C-- has parameterized pro-
cedures with declared local variables. A procedure body
consists of a sequence of statements, which include assign-
ments, conditionals, gotos, calls, and jumps (tail calls).

Figure 1 illustrates two features that are common in assem-
blers, but less common in programming languages. First, a
procedure may return multiple results. For example, all the
procedures in Figure 1 return two results, and sp1 contains a
call to a multi-result procedure (namely sp1 itself). Second,
a C-- procedure may explicitly tail-call another procedure.
For example, sp2 tail-calls sp2_help (using “jump”), and
the latter tail-calls itself. A tail call has the same semantics
as a regular procedure call followed by a return, but it is
guaranteed to deallocate the caller’s resources (notably its
activation record) before the call.

C-- has an extremely modest type system: the only types
are words and floating-point values of various sizes, e.g.,
bits8, bits16, bits32, bits64, float32, and float64. For
each target architecture, each implementation of C-- des-
ignates one of the bitsn types as the “native data-pointer
type” and one as the “native code-pointer type.” For exam-
ple, the name of a procedure, like sp1 in Figure 1, denotes
an immutable value of the native code-pointer type.

By intent, the C-- type system does not protect the
programmer—its sole purpose is to direct the C-- compiler’s
use of machine resources; in particular, its mapping of vari-
ables to registers. For example, C-- does not check the
number or types of arguments passed to a procedure.

Both local and global variables model machine registers, not
memory locations. Therefore, variables have no addresses—
whenever possible, the C-- back end maps them to registers.
C-- also permits the programmer to declare names that
refer to blocks of memory allocated either globally or in a
procedure’s activation record, but these names do not stand
for variables; they stand for addresses of memory blocks, and
as such they denote immutable values of the native data-
pointer type.

All memory access is explicit. For example, the statement
bits32[x] = bits32[y] + 1;

loads a 32-bit word from the memory location whose ad-
dress is in the variable y, increments it, and stores it in the
memory location whose address is in the variable x.

3.2 Programs as graphs

We regard a C-- program as the textual description of a
control-flow graph, or rather, of a set of named control-flow
graphs, one for each procedure. C-- syntax is designed to
make all intraprocedural control-flow edges explicit.

287

For example, a label, like 1loop in sp3, names a node in the
graph, and a goto creates an edge to the specified label.
The target of a goto must be a label in the same procedure.
A label is a value, so the target of a goto can be computed at
run time, but such a goto must statically identify all possible
targets, so the C-- compiler can include those edges in its
control-flow graph.

3.3 The run-time systems

We assume that an executable program is built by linking
together three parts, each of which may be found in object
files, libraries, or a combination.

e The front end translates the high-level source program
into one or more C-- modules, which the C-- compiler
translates to generated object code.

e The front end comes with a (probably large) front-end
run-time system. This run-time system implements all
policy, as well as any mechanisms that depend on the
source language. These may include a garbage collec-
tor, exception dispatcher, thread scheduler, etc. The
front-end run-time system is written in a programming
language designed for humans, not in C--; here we as-
sume it is written in C.

e Every C-- implementation comes with a (hopefully
small) C-- run-time system. This run-time system
encapsulates architecture-specific mechanisms, and
it provides services to the front end run-time sys-
tem through a C-language run-time interface (Pey-
ton Jones and Ramsey 1998). Different front ends may
interoperate with the same C-- run-time system.

The main service provided by the C-- run-time interface
is to present the state of a suspended C-- computation
(“thread”) as a stack of abstract activations. Operations
are provided to walk down the stack; to get information
from an activation; to make a particular activation become
the topmost one; and to change the resumption point of
the topmost activation. These operations are summarized
in Table 1; the latter three operations are discussed in Sec-
tion 4. Given knowledge of stack layout, implementing these
operations is straightforward; the representation of an acti-
vation is likely to include copies of callee-saves registers and
a pointer to an activation record on the real call stack.

C-- syntax enables a front end to associate with each call
site one or more arbitrary static data blocks, or descriptors,
each of which is allocated and initialized by the front end.
The syntax is not important in this paper. At run-time,
the C-- run-time interface provides GetDescriptor, which
returns the n’th descriptor associated with a particular ac-
tivation.

How is control transferred between a running C-- compu-
tation and a run-time system? A front-end runtime may
create many C-- threads, each of which makes a coroutine
call to the front-end runtime to request services like thread
switching or exception dispatch. Or a runtime may create
a single C-- thread, which runs on the system stack and
requests services by making ordinary calls to the front-end
runtime. In either case, the C-- thread initiates the inter-
action by calling the special C-- procedure yield.

Resume (t) Resumes C-- thread t.
FirstActivation(t, &a)
NextActivation(&a)
SetActivation(t, a)

SetUnwindCont (t, n)
which it is set to resume.

SetCutToCont (t, k)

FindContParam(t, n)
returned to thread t.

GetDescriptor(a, n)

Sets a to “currently executing” activation of thread t.

Mutates a to point to the activation to which a will return (normally a’s caller).

Arranges for thread t to resume execution with activation a.

Arranges for thread t to resume execution by unwinding to the n’th continuation of the activation with

Arranges for thread t to resume execution by cutting the stack to continuation k.
Returns a pointer to the location in which the n’th parameter of the currently-set continuation will be

Returns a pointer to the n’th descriptor associated with activation a.

Table 1: The C-- run-time interface.

4. IMPLEMENTING HIGH-LEVEL EX-

CEPTIONS IN C--

We now turn our attention to exceptions. Whatever the
details, exceptions change the flow of control. The desti-
nation of an exceptional control transfer is usually called a
handler; finding a handler and transferring to it is called
exception dispatch. C-- models handlers as continuations,
and it provides several control-transfer mechanisms. C--
uses annotations on call sites to tell the optimizer what ex-
ceptional control transfers can take place. These annota-
tions also help implement the control-transfer mechanisms.
This section describes the mechanisms; Appendix A shows
examples of their use.

4.1 C-- Continuations

We model an exception handler as a C-- continuation, which
is a bit like a label with parameters.

f(bits32 x, bits32 y) {
float64 w;

g(x, k) also cuts to k ;
/* k may be "cut to" by g, or
by something g calls */
return;
continuation k(x):
code for k, mentioning x, y, w ...
}

Here, k is a continuation, which is passed to g. A con-
tinuation can be declared only inside a procedure. The x
in continuation k(x) is not a binding instance; the “for-
mal parameters” of a continuation must be variables of the
enclosing procedure, and therefore they need no type dec-
larations. Like every C-- continuation, k denotes a value,
which can be used to transfer control to it, as shown in Sec-
tion 4.2. The value k encapsulates a stack pointer and a
program counter.

A continuation value may be passed to procedures or stored
in data structures; its type is the native data-pointer type.
Once an activation dies, however, its continuations die too.
Invoking a dead continuation is an unchecked run-time er-
ror, which it is up to the high-level front end to avoid. C--
continuations are therefore less powerful than (say) Scheme
continuations, but they can be implemented very efficiently,
without stack copying. To avoid unchecked errors, a front
end might protect invocations with a run-time check, or it
might impose invariants that guarantee no dead continua-
tion can ever be invoked.

288

Stack walk required?

Execute in “ No Yes |
Generated cut to return <m/n>
code
-ti SetActivation and
Run-time SetCutToCont .
system SetUnwindCont

Figure 2: Alternatives for control transfer.

The annotation “also cuts to k” at g’s call site indicates
that control might flow from the call directly to k. We dis-
cuss call-site annotations in Section 4.4.

4.2 Transferring control to a C-- continuation

A C-- procedure can transfer control to a continuation in
any of four ways, each of which has a different cost model.
The four mechanisms that C-- provides offer compiler writ-
ers alternatives for each of two trade-offs.

e Does raising an exception involve walking the stack?
Walking the stack makes raising an exception expen-
sive, but can make it cheaper to enter the scope of a
handler.

e Should the bulk of the work be done in generated code
or in the run-time system? Using generated code re-
sults in larger executables, but they may be faster.

Figure 2 shows the four mechanisms that support these al-
ternatives. In the first row are C-- primitives, which result
in generated code. In the second row are entry points in the
C-- run-time interface (Table 1). We describe of the four
design choices in Figure 2 in turn, starting with the top left
corner and working counterclockwise.

Stack cutting (first column of Figure 2)

Given a continuation value, the C-- primitive “cut to” in-
vokes the continuation, transfering control directly to the
continuation without walking the stack.

cut to k(arguments) ;

Here, k is a continuation value, such as that passed to g in
the example of Section 4.1. The cut to primitive transfers
arguments to conventional locations®, truncates the stack to
k’s activation, and sets the program counter to k’s program

IThese locations, which are typically registers, are determined by
a calling convention that is private to C--.

counter. All of this takes constant time; there is no stack
walk.

Instead of using cut to, the C-- program may yield to the
front-end run-time system. Once the latter finds a continu-
ation value, it can duplicate the effect of cut to by

1. calling SetCutToCont (Table 1), which cuts the stack,

2. calling FindContParam, which identifies the locations
in which the continuation expects parameters,

3. storing the actual parameters in those locations, and

4. calling Resume to pass control back to generated code.

Stack cutting takes constant time, but it imposes the cost of
recording the continuation value to be cut to. Because C--
places few constraints on the identification of target continu-
ations, different front ends can use different implementation
techniques. Here are two common choices:

e Have the program keep track of a single “exception
continuation,” perhaps in a register. Commonly, when
control is transferred to this continuation, it updates
the register to point to a new exception continuation.

e Keep a global stack of continuations; choose the top-
most one. Alternatively, keep information about which
exceptions were handled by the continuation, and
choose the first one that applies to the given excep-
tion.

Both choices impose a small cost whenever execution enters
or leaves the scope of an exception handler, regardless of
whether the exception is raised.

The stack-cutting technique also reduces the utility of callee-
saves registers. Normally, we could keep y and w in callee-
saves registers across the call to g. But the stack-cutting
technique cannot restore the values of y and w before enter-
ing k. Why not? Because the values of y and w might have
been spilled into any activation in the stack between k’s own
activation and the place where the exception is raised. Stack
cutting therefore imposes a small performance penalty on
any call that can cut to a continuation; the callee-saves
registers must be considered killed by flow edges from the
call to any cut to continuations. This penalty, too, is paid
regardless of whether the continuation is used.

Stack unwinding (second column of Figure 2)

A well-known alternative to stack cutting is to walk the
stack, one activation at a time, to discover the topmost ac-
tivation that can handle a given exception. The idea is that
it should cost nothing to enter or leave the scope of a han-
dler; in exchange, we are willing to pay more to raise an
exception. C-- supports this approach as well.

To use the unwinding technique, the C-- program may
yield to the front-end run-time system, indicating (in some
manner that C-- neither knows nor cares about) which
exception to raise. The front-end runtime then initialises
an activation handle with FirstActivation, and walks the
stack using NextActivation (Table 1). For each activation
it calls GetDescriptor to find the static descriptor deposited
for the activation by the front-end compiler. If this descrip-
tor indicates that this activation can handle the exception,

289

the front-end runtime uses SetActivation to arrange that
execution will resume at the activation thus identified.

The suspended call site in this activation should look some-
thing like this:

g(x) also unwinds to kO, ki;

Here, k0 and k1 are continuations, defined in the same pro-
cedure as the call to g. The also unwinds to annotations
indicate control flow, just like the also cuts to annotation
discussed in Section 4.1. In addition, also unwinds to sup-
ports the SetUnwindCont run-time interface call (Table 1).
The front-end runtime uses SetUnwindCont(t, n) to ar-
range that when execution is resumed, it will resume at the
n’th continuation in the “unwinds to” list of the call site.
Finally, it can use FindContParam as before to find where to
store parameters to the continuation, and Resume to resume
execution. Figure 9 in Appendix A shows the details.

The unwinding technique described so far is somewhat in-
terpretive: the front-end runtime walks the stack, looking
at descriptor information until it finds a handler. C-- also
makes it possible to compile this stack walk, by allowing a
procedure to return abnormally to its caller, thus:

return <0/2> (return values);

This tells C-- that the caller has two abnormal return con-
tinuations (in addition to the normal return point), and
causes a return to the first (index 0) of these two. A normal
return to such a call site would be written

return <2/2> (return values);

The call site to which such a call returns must specify pre-
cisely the correct number of returns to continuations as
are specified in the return statement:

g(x) also returns to kO, ki;

where kO and k1 are, as before, continuations declared
in the same procedure as the call site. The statement
return <0/2> (p,q) would return to continuation k0, pass-
ing p and q from the return site to the parameters of k0. The
normal return continuation is always the last, so a normal
return in this case would be return <2/2>. An unannotated
return is equivalent to return <0/0>.

Because return transfers control only from a procedure to
its caller, all procedures must cooperate to get the effect
of compiled unwinding. In a language that specifies stat-
ically what exceptions a procedure may raise, one might
compile each call site with an abnormal-return continuation
for each possible exception. Alternatively, one might use
a single abnormal-return continuation to dispatch all excep-
tions. C-- supports both styles efficiently, leaving the choice
to the implementor of the front end.

How are these abnormal returns implemented? It would
be possible simply to return an additional value from each
procedure, which the caller could test to see whether the
callee had requested stack unwinding or a normal return.
Such a test, however, would add an overhead at every call.
The overhead can be eliminated by means of a clever code-
generation trick. At the call site, the call instruction is fol-
lowed not by the code to be executed after a normal re-

Instructions leading
up to the call

HhiT: call g

(Instruction in delay slot)

Instructions for normal
continuation

Figure 3: Standard SPARC instruc-
tion sequence at call site.

Normal return is jmp %i7+8.

turn, but by a table of branches to continuations (Atkinson,
Liskov, and Scheifler 1978). Figures 3 and 4 show an ex-
ample, using the SPARC instruction set. Figure 3 shows
the instruction sequence at an ordinary call site. The call
instruction leaves its address in register %i7, and the in-
struction in the delay slot is executed immediately after the
call, before control is transferred to g. The standard return
instruction is jmp %i7+8, which skips past the instruction in
the delay slot and resumes executing the normal continua-
tion.

Figure 4 shows the instruction sequence at the annotated
call site g(x) also returns to kO, k1. The callee uses
jmp %i7+16 for a normal return; it uses jmp %i7+8 or
jmp %i7+12 to return to continuation kO or ki. This tech-
nique has no dynamic overhead in the normal case.? Even
in the abnormal case, the only dynamic overhead is a branch
to a branch, which is much cheaper than branch followed by
test and conditional branch. Atkinson, Liskov, and Schei-
fler (1978) calls this technique the “branch-table method,”
noting that because it adds words to every call site, the
space overhead may be “considerable.” On other proces-
sor architectures, the run-time overhead may also be con-
siderable; the unusual return address used in the normal
case may require extra instructions, and it may also confuse
branch-prediction hardware. Still, the branch-table method
is used in the Self compiler to implement nonlocal returns.®
It can also support an efficient implementation of the “vec-
tored returns” used in the Glasgow Haskell Compiler (Pey-
ton Jones 1992, §9.4).

Whether a stack walk is implemented interpretively, in the
run-time system, or in native code, using nonlocal return,
it can easily restore the values of the callee-saves registers.

2Even the branch-prediction hardware may work without over-
head, because under the standard SPARC calling convention,
some C procedures return to %i7+8 and some to %i7+12.
3Private communication from Craig Chambers, January 1999.

290

Instructions leading
up to the call

HiT: call g

(Instruction in delay slot)

ba,a k0
(Unconditional branch to k0)

ba,a ki
(Unconditional branch to k1)

Instructions for normal
continuation

Figure 4: SPARC instruction
sequence using the branch-table
method.

Normal return is jmp %i7+16; return to
continuation k0 is jmp %i7+8.

Indeed, NextActivation does so automatically”. So the un-
winding technique allows callee-saves registers to be used
at every call site, even if those values might be used in a
continuation.

4.3 Primitive operations that can fail

C-- expressions represent pure computations on values; they
are evaluated without side effects, which occur only as the
result of assignments or calls. What, then, are we to do
when such computations fail because of a fault detected by
the hardware or the operating system? For example, what
about a divide instruction that traps when the divisor is
zero? For each such operation we provide two variants:

e The fast-but-dangerous variant (%divu, say) generates
the shortest possible code sequence (usually one in-
struction), but its behavior is unspecified if it fails.
%divu(x,0) might cause an interrupt, kill the process,
or silently give the wrong answer. The exact behavior
will vary between architectures. (An alternative would
be to guarantee process abortion, but for certain pro-
cessors this alternative would impose run-time costs
that might be annoying in cases where the divisor was
provably non-zero.)

e The slow-but-solid variant (%%divu) maps failure into a
yield. For example, %%divu is indistinguishable from
a procedure defined as follows:

%hdivu(bits32 p, bits32 q) {
if q == 0 then { yield(DIVZERO) }
return(%divu(p, q))

}

4Since x and y may be in different callee-saves registers at different
call sites, the same continuation may need different prologues
at different call sites. These prologues roughly correspond to ¢-
nodes in SSA form. The dispatcher must choose the prologue that
is appropriate for the call site at which f is suspended. Luckily,
this choice can be hidden behind the C-- run-time interface.

Note that if the run-time system fails to unwind or cut
the stack, the behavior of the subsequent call to %divu
is unspecified.

A use of %/%divu takes the form of a procedure call,
together with its also annotations. As well as making
the control flow explicit, writing faulting operations
as calls also ensures that the operations are evaluated
in a well-defined order. The C-- implementation can
choose whether to perform the test for zero explicitly
(slow, but easy), or instead catch the interrupt and
map it into a yield (fast, but tricky).

4.4 Informing the optimizer

Exception dispatch changes the flow of control. If the op-
timizer knows only that control might be transferred unex-
pectedly to a continuation, it has to make pessimistic as-
sumptions; for example, some Ada compilers require that if
any exception handler uses a variable, that variable must
always be kept in memory. As another example, C com-
pilers make pessimistic assumptions about local variables in
the presence of setjmp and longjmp. The only portable way
to guarantee that local variables will have the right values
after a longjmp is to declare them volatile, which many
C compilers interpret to mean “always keep the values of
these variables on the stack.”

C-- supports aggressive optimization by requiring that the
front end tell the optimizer explicitly how an exception dis-
patch might change the flow of control. This information
is conveyed through the annotations attached to call sites,
some of which we have mentioned already. The following
example shows the complete set:

cuts to ki
unwinds to k2, k3
returns to k4
aborts;

r = g(x) also
also
also
also

In the normal case, the call to g(x) returns a value, which
is placed in r. However, if the call to g raises an exception,
the exception dispatcher may cut the stack by invoking con-
tinuation k1 (with a loss of callee-saves registers), unwind
the stack to continuations k2 or k3, return to alternate con-
tinuation k4, or abort the execution of the procedure acti-
vation containing the call (e.g., by unwinding or cutting the
stack past that activation). The names appearing in these
annotations, like k1, k2, k3, and k4, are always names of con-
tinuations declared in the same procedure as the call site;
the annotations may not name variables or expressions.

The “also” annotations add extra flow edges, from the call
site to the specified continuations or to the exit node of the
procedure (in the case of also aborts). These edges ex-
press precisely the constraints that exception handling im-
poses, but no more. The annotations cannot reasonably be
inferred by the C-- compiler on its own; only the front-end
compiler knows which calls can flow to which continuations
and which calls can abort. If the control flow cannot be de-
termined accurately, the front end, not C--, decides what
approximation is useful.

The also cuts to annotation may also be attached to a
cut to statement. An unannotated cut to is considered
simply to exit the current procedure, but if the cut to could

291

transfer control to a continuation in the same procedure, it
must have an also cuts to annotation naming that con-
tinuation.

5. OPERATIONAL SEMANTICS OF C--

So far, our treatment of C-- has been informal, as is com-
mon in in descriptions of exception handling.® But without
a precise specification it is impossible to say for sure whether
a particular optimization changes the behavior of the pro-
gram. There is also the risk that a front-end compiler and
a C-- compiler might disagree about what happens in some
obscure circumstance. Accordingly, in this section we de-
scribe C-- formally and precisely.

We define Abstract C--, a language that resembles the flow-
graph representations used in optimizing compilers, and we
give it a formal operational semantics. The operational se-
mantics uses transition rules to specify the permissible be-
haviors of both the generated code and the run-time system.
We also sketch the translation of C-- to Abstract C-- and
the implementation of Abstract C-- on hardware.

A program in Abstract C-- is a partial map x from names
to procedures. A procedure is a control-flow graph formed
using the nodes defined in Table 2. The range of x includes
only nodes of the form FEntry k p or Yield.

The mutable state of the C-- abstract machine has 7 com-
ponents:

1. the control p, which represents the current node,
2. the local environment p, which maps names to values,

3. a set cs containing the variables of p that are stored
in callee-saves registers,

4. a unique integer uid, which is used to enforce the re-
striction against using dead continuations,

5. a memory M, mapping addresses to values,®

6. an argument-passing area A, which is a list of values,
and

7. a stack s, which is either empty or is a tuple consist-
ing of a continuation bundle, a local environment, a
callee-saves variable set, a unique id, and a stack. A
continuation bundle encodes the possible outcomes of
a procedure call.

We write a state as follows:

cs wid M A s

p p

5.1 Environments, values, and expressions

An environment is a partial function from names to values.
We write the empty environment as L. To define an envi-
ronment that is like p except that it maps v to e, we write
plv — e]. We generalize this notation to p[t +— €] when we
have a list of variables ¥ and a list of expressions €, both the
same length. To define an environment that is like p except
that it is undefined on the variables in set s, we write p \ s.

5The ML community, which has a long-standing tradition of for-
mal definitions and analyses, is an honorable exception.

61t is straightforward to generalize to a machine with separate
address spaces for instructions and data.

Entry k P
Ezxit j n

The unique entry node of a procedure with continuations k and first node P.
Normal exit from a procedure, representing a return to continuation j (the call site must have exactly n

alternate return continuations tagged with also returns to).

Copyln ¥ p
with p.
CopyOut € p
continue with p.
CalleeSaves cs p
Assign l e p Assign e to [, and continue with p.

Branch c pt py

Branch to p; or py when c is true or false.
Call procedure ey, returning to one of the nodes in the continuation bundle k. A continuation bundle is a

Put results from a call, or parameters to a procedure or continuation, into variables ¥, and continue
Make the values of expressions € results of a call, or the parameters to a procedure or continuation, and

Make cs the set of variables in callee-saves registers (by spilling or reloading), and continue with p.

are the nodes for continuations listed in also returns to, plus the node for normal returns,

Call e K
quadruple (pr, Pu, Pe, abort), where

Dr

Pu are the nodes for continuations listed in also unwinds to,

Pe are the nodes for continuations listed in also cuts to, and

abort is either True (when a call site is annotated with also aborts) or False (otherwise).
Jump ey Tail call procedure ey. Exits the current procedure.
CutTo e. Cut the stack to continuation e.. Exits the current procedure.
Yield Execute a procedure in the run-time system.

Table 2: Kinds of nodes in control-flow graph.

To enable variables to denote procedures and continuations
as well as basic C-- values, we define a value as one of the
following forms:

Bits,, k The n-bit value k
Code p (A pointer to) the node p
Cont(p,u) A continuation to the node p in the

stack frame with unique id u.

Because C-- expressions have no side effects, we can give the
semantics of an expression e simply by giving an evaluation
function E[e]pM. The exact definition of £ is not relevant
to this paper, so we present an abbreviated definition that
gives the idea. For simplicity, we assume that the names of
local variables are different from the names of procedures,
so for any p, dom p Ndom x = @. Under this assumption,
Ele]pM might be defined as follows:

E]pM = p(v) if v € dom p
Ev]pM = Code (x(v)) if v € dom x
Eltype L)]pM = loaduype(M, E[c]pM)

Ele1 + e2]pM = Bits;m (n1 +n2) if E]e;]pM = Bitsm n;

Rules like the + rule would apply to the other built-in op-
erators. The loadyp. and storeyp. operations use the native
byte order of the target machine.

5.2 Transitions of the abstract machine

The C-- abstract machine executes a program by entering

the initial state
X(main) L @ 0 L ni empty

The machine makes transitions until it reaches a state in

which no transitions are possible. If, in that state, the con-

trol is Ezit 0 0 and the stack is empty, we say the program

has terminated normally; otherwise it has gone wrong.

292

A set of transition rules describes the allowable transitions.
Each transition rule has the form:

(State 1)
=
(State 2)

If the machine is in a state matching (State 1) then it can
move in one step to (State 2) (suitably instantiated). The
rest of this section gives the transition rules.

A procedure’s entry node binds the procedure’s continua-
tions into an empty environment. The incoming environ-
ment, p, is discarded. (The values of parameters are bound
later by a Copyln node.)

cs wid M A s

Entry k p p
N
P addConts(L, k, wid) 0§ wid M A s
where each k in k is a pair (v,p) and addConts creates
bindings as follows:
addConts(p, k, uid)
=p, where k is empty
= addConts(plv — Cont(p, uid)], k', uid),
where k is (v, p) followed by k.

The sequence k lists the continuations declared in the pro-
cedure body. Each k € k is a (v, p) pair, where v is the name
of the continuation and p is the graph node representing it.

Ezit pops an activation, returning to the return continuation
named in a return. The value-passing area A may hold
return values, placed there by a preceding CopyOut node.

Exitjn p ¢ wid M A ((kp',cs',uid,s")
=

P [4] pcs’ wid M A §

where k = (P, P, Pe , abort), and |py/| = n + 1.

The value-passing area A holds arguments and results
that are passed among procedures and continuations. The
Copyln and CopyOut nodes transfer values from and to that
area. To enable an implementation to reuse registers in A,
we specify that Copyln replace A by the empty list, nil.
CopyOut may overwrite A whatever its state.

Copyln ¥ p p cs wid M A s
BN

D plt— Al ¢s wid M nil s

CopyOut €p p ecs uwid M A s
BN

D p cs uid M E[€]pM s

The optimizer may move values into and out of callee-saves
registers.

CalleeSaves cs’' p p wid M A s

=
p 4

CS

cs' wuid M A s

CalleeSaves nodes are introduced only by optimizers; they
are not part of the direct translation of any C-- program
into Abstract C--. A CalleeSaves node corresponds to a
mix of spills and reloads.

Assignment to a variable changes the local environment; as-
signment to memory changes memory.

When the machine tries to cut to a continuation belonging
to an activation different from the current one (uid” # uid’),
it removes a frame from the stack and tries again. A real
implementation cuts the stack in constant time, but the
abstract machine removes the activations one at a time,
so it can go wrong if a suspended call does not have an
also aborts annotation.

CutToe. p ecs wid M A (k,p,cs’,uid,s)
_—
CutToe. p cs wid M A &
where E[ec]pM = Cont(p”, uid")
wid” # wid’
k= (p/, P, pe, True)

When the machine finds the right activation (uid” = uid’),
it checks that the call site has an also cuts to annotation,
and it transfers control to the appropriate continuation. The
uid check ensures that the machine never invokes a dead con-
tinuation; a program that tries to do so goes wrong. As dis-
cussed in Section 4.2, cut to does not restore values stored
in callee-saves registers; we model this behavior by removing
them from the saved environment p’.

CutTo e. p es wid M A (k,p',cs’,uid’,s")
_—
p” p’\es’ 0 wid M A §
where Elec]pM = Cont(p”, uid")
wid” = uid’
Kk = (pr, P, De , abort)
p// e ﬁcf

Assignvep p cs uid M A s
.

D plv— Ele]pM] e¢s wid M A s
Assign typelal ep p cs wid M A s

.

D p cs uid M A s

where M’ = storeyype(M, E[a]pM, E[e]pM).

Conditional branch is straightforward:

Branch c p: py p cs wid M A s
=
if £[c]pM thenp;elsepy p cs wid M A s

A call pushes a new activation. (Parameters will have al-
ready been placed in A by a CopyOut node.) The continu-
ation bundle is saved on the stack, because the callee, not
the caller, determines what is executed after the call. Each
activation record must have a unique wid.

Calley i p cs wid M A s
=
pf L 0 wu M A (k,p,cs,uid,s)

where Efef]pM = Code py, and u is a fresh, unique
identifier.

Tail calls are simpler; the appropriate continuation bundle
is already on the stack.

Jumper p cs wid M A s
=
pf L 0 uw M A s

where Efef]pM = Code py, and u is a fresh, unique
identifier.

293

The Yield node models execution in the run-time system.
Unlike the other rules, the rules for Yield do not fully spec-
ify which transitions take place; that is, there are states
in which more than one transition is permitted. This un-
derspecification allows the run-time system to implement a
variety of different high-level exception semantics while still
respecting the single C-- semantics.

The run-time system may unwind the stack if the suspended
procedure has an also aborts annotation:

Yield p cs wid M A (k,p,cs’,uid’,s")
=

Yield p c¢s wid M A §

where k& = (P, P, Pe , True).

The run-time system may change memory, then transfer
control to the normal return continuation, or to a contin-
uation listed in an also returns to or also unwinds to
annotation. This transition restores callee-saves registers.

Yield p
_—

o’ o cs’ wid M A §

where k = (P, P, pe , abort), p’ € P/ Up., and A’ is the

right length.

es uwid M A (k,p,cs uid’,s)

The run-time system passes parameters A’ to the continua-
tion p’; the values of these parameters are unspecified, but
there must be exactly as many parameters as p’ expects.

Entry k P

Exit jn

Copyln U p

CopyOut € p
CalleeSaves cs p

Assign v e p

Assign typelal e p
Branch c pt py

Call ey (Pr, Pu, Pe, abort)

def M. For each v € k, def v. def Ali],1 <i < N, where N is the number of parameters of
the procedure.

use M. use Ali],1 <4 < N, where N is the number of results of the procedure.
For each i € 1..|7], U [¢] :=

For each i € 1..|é], A[{] :=
No effect on dataflow.
For each v’ € fv(e), use v'. Then def v.

For each v’ € fu(a) U fu(e), use v'. Then def M.
For each v € fv(c), use v.

For each v € fv(eys), use v. use M. def M. use Ali],1 <4 < N, where N is the number of
parameters to the call. Along the edge to

prlj] def A[i],1 <i< N, where N is the number of parameters to the continuation g, [4].
pulj] def A[i],1 <i < N, where N is the number of parameters to the continuation p%[j].
pelj] def A[i],1 < i< N, where N is the number of parameters to the continuation p.[j].

For each v that could be in ¢s when the code is executed, kill v.

If abort is True, place use Afi],1 <4 < N, where N is the number of results of the procedure,
along the edge to the exit node.

For each v € ey, use v. use M. use Ali],1 <i < N, where N is the number of parameters to

For each v € e., use v. use M. use Ali],1 <41 < N, where N is the number of parameters to

Jump ey
the jump.
CutTo e.
the cut to.
Yield Not in any optimized procedure.

fu(e) is the free variables of e, possibly including the variable M , which represents memory.

Table 3: Dataflow rules for Abstract C--.

The run-time system may also transfer control to a continua-
tion listed in an also cuts to annotation, without restoring
callee-saves registers.

Yield p
_

p” p'\es’ O wid M A ¢

where k = (p,’, P, De , abort), p”" € P, and A’ is the right

length.

cs wid M A (k,p,cs',uid,s)

Finally, the run-time system, in the form of the garbage
collector, may read and write not only the values in memory,
but also the live values stored in any p anywhere on the stack
of the abstract machine. This possibility is not expressed by
our formal semantics; to do so would require an even more
complicated abstract machine, which would record the set
of live variables at each call site.

5.3 Translating C-- to Abstract C--

Translation of everything except continuations, calls, jumps,
and cuts should be obvious. To translate a continuation,
create a Copyln node naming the parameters of the con-
tinuation, and whose successor is the statement following
the continuation. Associate this node with the continua-
tion. To translate a call, create a CopyOut node that puts
the values of the parameters in the value-passing area, and
the successor of which is a Call node containing an expres-
sion designating the procedure to be called. The Call node’s
continuation bundle is computed from the also annotations
as described above. If the call returns values, the normal
continuation should be a CopylIn node binding the return
values to the variables on the left-hand side of a call. Jumps

294

and cuts are translated similarly, with the simplification that
they never return.

5.4 Implementing the abstract machine

The C-- abstract machine is designed to be very like a real
machine, hiding only the details of the registers, the calling
convention, and the instruction set. The control p corre-
sponds to the program counter. A local environment p cor-
responds to parameters and local variables that are stored
in registers or in the activation record; the set cs identi-
fies the variables that are stored in callee-saves registers.
The CalleeSaves node, which changes cs, is implemented
by instructions that move values into or out of callee-saves
registers. Such instructions include spills, reloads, and reg-
ister shuffles. The translation of C-- to Abstract C-- does
not use callee-saves registers or the CalleeSaves node, but
by including CalleeSaves node in Abstract C--, we enable
Abstract C-- to represent the results of a code improve-
ment that puts values in callee-saves registers. Of course,
such code improvements much take into account control flow
along also cuts to edges; such flow destroys values stored
in callee-saves registers.

The value-passing area A is an abstraction representing
those registers that are set aside for passing values and re-
sults, as well as overflow areas that may be reserved on the
stack. This abstraction may have different concrete rep-
resentations at different call sites. C-- supports multiple
named calling conventions, and each calling convention may
dictate a different representation of A. We also intend that
C-- optimizers be free to choose customized value-passing
mechanisms when possible, e.g., for passing parameters to
procedures all of whose call sites are known.

Finally, the abstract stack corresponds to the machine’s
stack of activation records.” On the stack, a continuation
bundle can be represented just by its program counter PC,
which in general points to a branch table (Section 4.2). If
the run-time system needs to find p,, it can use PC to look
them up in a table.

The wid exists only to ensure that a program which tries to
use a dead continuation goes wrong. Because using a dead
continuation is an unchecked run-time error, the wid need
not be represented an implementation. It may nevertheless
be useful to represent it explicitly in order to debug front-
end compilers that generate code which goes wrong.

Values of the form Bitsi n are, of course, the basic values
of machines. A value of the form Code p is represented by
a pointer to the instructions for p. There are several ways
to implement a continuation value Cont(p,u). One possible
implementation is to allocate two words in the current ac-
tivation record, and to represent Cont(p,u) as a pointer to
this pair. With a bit more cleverness, it may be possible to
allocate only the program counter in the current activation
record, and use the pointer to that location as the initial
stack pointer for the continuation. In either case, some con-
tinuation values will need to encapsulate locations in which
to store parameters that cannot fit in registers. This infor-
mation, too, can be made implicit.

6. OPTIMIZING C-- PROGRAMS

Table 3 gives rules for adding dataflow information to a C--
procedure, in terms of definitions, uses, copies, and kills.
This information is enough to enable standard optimizations
like common-subexpression elimination, partial-redundancy
elimination, constant propagation, copy propagation, dead-
code elimination, code motion, etc. The optimizer can per-
form all the usual rearrangements, provided it respects the
dataflow and it doesn’t insert code after Exit, Jump, CutTo,
or the abort part of a continuation bundle.

Figure 5 shows an example C-- procedure, and Figure 6
shows its translation into Abstract C-- and the dataflow in-
formation attached to the Abstract C--. The dataflow infor-
mation is expressed as a static single-assignment (SSA) num-
bering of the variables (Alpern, Wegman, and Zadeck 1988;
Rosen, Wegman, and Zadeck 1988; Appel 1998). The ele-
ments of the A array may be mapped onto different hardware
registers depending on which nodes define and use them and
what the conventions for passing parameters and return val-
ues are. For example, in Figure 6, variables A[1]; and A[1];
should be mapped to the register holding the first parame-
ter to a call, but variables A[l]s, A[l]s, and A[1]7 should be
mapped to the register holding the first result from a call.

"We do not intend that C-- itself be compiled using continuation-
passing style, although of course C-- can easily represent high-
level programs that are compiled using continuation-passing style.
A front end would perform a CPS transformation and build ex-
plicit closures to represent continuations. The code in these clo-
sures would be represented by C-- procedures, to which control
would be transferred using jump. The weak C-- continuations
are useful only for nonlocal exits, not for representing first-class
continuations.

8The operation kill v may be defined as assigning a bogus value,
e.g., v := Lurong, and any computation that depends on Lurong
may be defined to have gone wrong.

295

£(bits32 a) {
bits32 b, c, d;

b = a;
c = a;
b, c =glc)

also unwinds to k;
c=b+c + a;
return(c);

continuation k(4):
return(b + d);

}

Figure 5: Example procedure.

def M
def k:1
def A[lh

ignba

&
@nca

CopyOut ¢
Callg
def A[l]3
def Al2]; / def All]s
b 1= A[l]g
c2 = A[2]1

At]7 = $(A[1]a, A[1]6)
use M use A[l]7

Figure 6: The example procedure’s translation in
Abstract C--, and its dataflow graph in SSA form.

7. RELATED WORK

This paper discusses the low-level implementation of excep-
tions; Drew and Gough (1994) complements this paper by
presenting a taxonomy of high-level designs of exception-
handling models.

Chase (1994a) and (1994b) provide helpful, clear explana-
tions of the techniques required to implement both syn-
chronous and asynchronous exceptions. Liskov and Sny-
der (1979) discusses both the programming methodology in
which exceptions should be used and the efficiency of their
implementation.

Drew, Gough, and Ledermann (1995) discusses implementa-
tion of the stack-unwinding technique, in which there is zero
dynamic overhead to enter the scope of an exception han-
dler. Their register allocator is unaware of the control-flow
edges from call sites to exception handlers, so any variable
that is mentioned in a body and a handler must be allocated
on the stack. C--’s also unwinds to annotation should en-
able optimizers to avoid this performance penalty.

Hennessy (1981) discusses errors that can occur if the opti-
mizer does not know about the additional control-flow edges
introduced by exceptional termination. It presents dataflow
equations that a front-end compiler can use to compute the
annotations it must place at each C-- call site. It also dis-
cusses interprocedural analyses that compute potential ef-
fects on global variables. Su/c\h analyses could be accommo-
dated in C-- by splitting M. This scheme would require
additional annotations for stores, fetches, calls, jumps, and
invocations.

The intermediate form used in the Vortex compiler (Dean
et al. 1996) includes explicit control flow edges that repre-
sent the effects of exceptions. These edges enable the rest
of the Vortex optimizer to work correctly without having
to treat exceptions as a special case. It is hard to find out
how other real optimizing compilers deal with exceptions,
but we believe that most either make pessimistic assump-
tions or implement ad hoc rules that are tightly bound to
the particular exception model of the language being com-
piled. In either case, all the standard optimizations must be
reconsidered in light of the particular semantics chosen for
exceptions. The approach we advocate, which is used in Vor-
tex, allows well-developed optimization technology to be ap-
plied to a program that uses exceptions. Appel (1992) does
something similar in a functional setting—by identifying ex-
ception handlers with continuations, Appel’s compiler can
simply use the existing body of optimizations known to be
supported by continuation-passing style. (This style could
be expressed in C-- in a manner much like that of the Ap-
pendix, except that jump would be used instead of cut to.)

Bruggeman, Waddell, and Dybvig (1996) introduces “one-
shot continuations,” which are like general Scheme continu-
ations except that they can be invoked at most once. One-
shot continuations would certainly suffice to implement C--
continuations, but the implementation is part of the Chez
Scheme system, and it is not immediately obvious whether
the tradeoffs that are good for Scheme would also be good
for C--. The results on segmented stacks, at least, appear
highly relevant to a concurrent version of C--.

296

Acknowledgments

Richard Black, Kent Dybvig, Michael Ernst, Lal George,
Thomas Johnsson, Xavier Leroy, Greg Morrisett, Nikhil,
John Reppy, Olin Shivers, David Watt, and the referees for
PLDI'99 and PLDI 2000 have all given valuable feedback.

This work has been supported in part by NSF grants CCR-
9733974 and ASC-9612756, by DARPA Contract MDA904-
97-C-0247, and by a generous gift from Microsoft.

References

Alpern, Bowen, Mark N. Wegman, and F. Kenneth Zadeck.
1988 (January). Detecting equalities of variables in pro-
grams. In Conference Record of the 15th Annual ACM
Symposium on Principles of Programming Languages,
pages 1-11, San Diego, California.

Appel, Andrew W. 1992. Compiling with Continuations.
Cambridge: Cambridge University Press.

. 1998 (April). SSA is functional programming. SIG-
PLAN Notices, 33(4):17-20.

Atkinson, Russell R., Barbara H. Liskov, and Robert W.
Scheifler. 1978 (December). Aspects of implementing
CLU. In Proceedings of the ACM 1978 Annual Confer-
ence, pages 123-129. ACM.

Bruggeman, Carl, Oscar Waddell, and R. Kent Dybvig.
1996 (May). Representing control in the presence of
one-shot continuations. ACM SIGPLAN ’96 Confer-
ence on Programming Language Design and Implemen-
tation, in SIGPLAN Notices, 31(5):99-107.

Chase, David. 1994a (June). Implementation of exception
handling, Part I. The Journal of C' Language Transla-
tion, 5(4):229-240.

. 1994b (September). Implementation of exception
handling, Part II: Calling conventions, asynchrony, op-
timizers, and debuggers. The Journal of C Language
Translation, 6(1):20-32.

Conway, ME. 1958 (October). Proposal for an UNCOL.
Communications of the ACM, 1(10):5-8.

Dean, Jeffrey, Greg DeFouw, David Grove, Vassily Litvinov,
and Craig Chambers. 1996 (October). Vortex: An op-
timizing compiler for object-oriented languages. OOP-
SLA 96 Conference Proceedings, in SIGPLAN Notices,
31(10):83-100.

Drew, Steven J. and K. John Gough. 1994 (May). Excep-
tion handling: expecting the unexpected. Computer
Languages, 20(2):69-87.

Drew, Steven J., K. John Gough, and J. Ledermann. 1995.
Implementing zero overhead exception handling. Tech-
nical Report 95-12, Faculty of Information Technology,
Queensland U. of Technology, Brisbane, Australia. See
http://www.dstc.qut.edu.au/ gough/zeroex.ps.

Hennessy, John. 1981 (January). Program optimization and
exception handling. In Conference Record of the 8th An-
nual ACM Symposium on Principles of Programming
Languages, pages 200-206, Williamsburg, Virginia.

Hsieh, Cheng-Hsueh A., John C. Gyllenhaal, and Wen-
mei W. Hwu. 1996 (December). Java bytecode to native
code translation: the Caffeine prototype and prelimi-
nary results. In Proceedings of the 29th annual IEEE/
ACM International Symposium on Microarchitecture.

Lindholm, Tim and Frank Yellin. 1997 (January). The Java
Virtual Machine Specification. The Java Series. Read-
ing, MA, USA: Addison-Wesley.

Liskov, Barbara H. and Alan Snyder. 1979 (November). Ex-
ception handling in CLU. IEEE Transactions on Soft-
ware Engineering, SE-5(6):546-558.

Peyton Jones, Simon L. 1992 (April). Implementing lazy
functional languages on stock hardware: The spine-
less tagless G-machine. Journal of Functional Program-
ming, 2(2):127-202.

Peyton Jones, Simon L., Dino Oliva, and T. Nordin. 1997.
C--: A portable assembly language. In Proceedings of
the 1997 Workshop on Implementing Functional Lan-
guages, Vol. 1467 of LNCS, pages 1-19. Springer Ver-
lag.

Peyton Jones, Simon L. and Norman Ramsey. 1998 (Au-
gust). Machine-independent support for garbage col-
lection, debugging, exception handling, and con-
currency (draft). Technical Report CS-98-19, De-
partment of Computer Science, University of Vir-
ginia. See http://www.eecs.harvard.edu/ nr/pubs/
c--rti-abstract.html.

Peyton Jones, Simon L., Norman Ramsey, and Fermin Reig.
1999 (September). C--: a portable assembly language
that supports garbage collection. In Nadathur, G, ed-
itor, International Conference on Principles and Prac-
tice of Declarative Programming, number 1702 in Lec-
ture Notes in Computer Science, pages 1-28, Berlin.

Rosen, Barry K., Mark N. Wegman, and F. Kenneth Zadeck.
1988 (January). Global value numbers and redundant
computations. In Conference Record of the 15th An-
nual ACM Symposium on Principles of Programming
Languages, pages 12-27, San Diego, California.

APPENDIX
A. IMPLEMENTING EXCEPTIONS

We believe that C-- can support a rich variety of source-
language exception semantics. Demonstrations would pro-
vide supporting evidence, but unfortunately any demonstra-
tion necessarily fixes both the semantics of the source lan-
guage and the cost model used in the implementation. To
save space, we sketch only two potential exception dispatch-
ers. Both dispatchers implement Modula-3 exceptions, but
they use two different cost models.

A.1 Modula-3 exceptions with zero normal-
case overhead

Figure 7 shows a fragment from a game-playing program
written in Modula-3. Modula-3 uses TRY-EXCEPT-END to
show handlers and their scopes. The statement sequences to
the right of the arrows (=>) are handlers for the exceptions
BadMove and NoMoreTiles. If either of these exceptions is
raised anywhere between TRY and EXCEPT, control transfers
to the appropriate handler. Otherwise, after the assignment
to next, control skips directly from EXCEPT to END. After
execution of a handler, control also transfers to END.

Using an implementation based on run-time stack unwind-
ing, this code might be translated into the C-- procedure
shown in Figure 8.

297

PROCEDURE TryAMove() =
BEGIN
TRY
makeMove (getMove (player)) ;
next := (nmext + 1) MOD NUMBER(players);
EXCEPT
| BadMove(why) => player.badmove (why) ;
| NoMoreTiles => player.badmove("too few tiles");
END;
INC(movesTried) ;
END TryAMove;

Figure 7: Example Modula-3 procedure.

TryAMove () {
bits32 s, t;

t = getMove(player) also
also
also
also
t = bits32[players];

unwinds to k1, k2
aborts;
unwinds to k1, k2
aborts;
/* load size of array
from its descriptor */

makeMove (t)

next = (next + 1) mod t;
finish:

movesTried = movesTried + 1;

return;

continuation k1(s):
t = bits32[bits32[player]+12]; /* load address of
badmove method */
t(s);
goto finish;

continuation k2:
t = bits32[bits32[player]+12]; /* load address of
badmove method */
t("Not enough tiles");
goto finish;

Figure 8: C-- implementation of Modula-3 TryAMove,
using run-time stack unwinding.

To see how exception dispatch works, let us suppose that
getMove terminates normally, but makeMove discovers that
the move cannot be made because it goes off the board.
makeMove would contain the Modula-3 statement

RAISE BadMove("off board");

which might be translated into a yield to awaken the front
end runtime and request exception-dispatching service. The
details of the particular exception would be pushed onto a
global “exception stack.”

push_exn_info(Exn_BadMove, "off board");
yield(EXCEPTION);

The front-end runtime would invoke the exception dis-
patcher, a simplified version of which appears in Figure 9.
The dispatcher would get the exception information, then
call FirstActivation(tcb, &a) to get the activation han-
dle for the topmost activation on the stack. Next it would
map the activation handle to a statically allocated exception
descriptor for TryAMove; mechanisms for implementing this
mapping are discussed in Peyton Jones and Ramsey (1998).

struct exn_descriptor {
int handler_count;
struct
{ void *exn_tag; int cont_num; int takes_arg; }
handlers[1];
}

void dispatcher() {
activation a;
void *exn_tag, *arg;

pop_exn_info(&exn_tag, &arg);
FirstActivation(tcb, &a);
for (5;5) {
struct exn_descriptor *d;
d = ...a... ; /* Map activation to exn
descriptor, somehow */
if (@) {
int i;
for (i = 0; i < d->handler_count; i++)
if (d->handlers[i].exn_tag == exn_tag) {
SetActivation(tcb, &a);
/* unwind stack */
SetUnwindCont (tcb,
d->handlers[i] .cont_num);
/* choose handler */
if (d->handlers[i].takes_arg) {
/* exn expects value */
void **result = FindContParam(tcb, 0);
result = arg; / Assign result */
}
return;
}
}
if (!NextActivation(&a))
abort(); /* unhandled exception: dump core */

Figure 9: A simplified exception dispatcher for
Modula-3, written in C.

If the exception raised were not handled by any of the
handlers in the descriptor, the dispatcher would then call
NextActivation(&a) to get the next frame. Eventually it
would find the activation for TryAMove, whose exception de-
scriptor states that continuation 0 handles the Modula-3 ex-
ception BadMove. (For purposes of SetUnwindCont, we num-
ber continuations, starting at zero, in the order in which they
appear in the also unwinds to annotation for the call site
at which the activation is suspended.) The dispatcher would
then use SetActivation to establish the activation to re-
sume and SetUnwindCont to cause resumption at the proper
continuation. Finally it would use FindContParam(tcb, 0)
to find the location in which to put the argument to the han-
dler. (Continuation parameters are also numbered starting
at zero.)

As recommended in the Modula-3 manual, this implementa-
tion requires zero dynamic overhead for entering the scope of
an exception handler, but the cost of dispatching an excep-
tion may be considerable. A real dispatcher for Modula-3
would be more complicated, because it would have to pro-
vide for finalization (TRY-FINALLY-END), for handlers that
receive multiple exceptions, and for better recovery from
unhandled exceptions. The dispatcher included with DEC
SRC Modula-3 even includes performance optimizations,
such as efficient finalization of locks.

298

register bits32 exn_top;
/* top of exn stack */

TryAMove () {
bits32 t, exn_tag, arg, ki;
exn_top += sizeof (k) ;
/* put k on the dynamic exception stack */
bits32[exn_top] = k;
t = getMove(player) also cuts to k;
makeMove (t) also cuts to k;
t = bits32[players];
/* load size of array from its descriptor */
next = (next + 1) mod t;
exn_top -= sizeof (k)
/* leave TRY-EXCEPT-END */

finish:
movesTried = movesTried + 1;
return;

continuation k (exn_tag, arg):
if (exn_tag == BadMove) {
t = bits32[bits32[player]+12];
/* load address of badmove method */
t(arg);
goto finish;
} else if (exn_tag == NoMoreTiles) {
t = bits32[bits32[player]+12];
/* load address of badmove method */
t("Not enough tiles");
goto finish;

} else {
k1 = bits32[exn_top];
exn_top -= sizeof(kl);
cut to ki(exn_tag, arg);
}
}
Figure 10: C-- implementation of Modula-3

TryAMove, using stack cutting.

A.2 Modula-3 exceptions in constant time
Some compilers use a different implementation trade-off. A
small overhead is added to every TRY-EXCEPT-END, but in ex-
change, exception dispatch is very efficient—typically a few
instructions. The high-level language maintains a stack of
handlers, perhaps pointed to by a register. Every exception
is dispatched to the handler on top of the stack, and that
handler contains code to identify the exception and pass it
on to the next handler if necessary.

Using this style of implementation, the procedure TryAMove
from Figure 7 could be compiled into the C-- code shown
in Figure 10. (This example assumes that the machine’s
native data-pointer type is bits32.) The code to raise an
exception:

RAISE exn (val);
would be compiled into this C--:

/* fetch current handler
from stack */

/* pop stack */

/* invoke the handler */

k = bits32[exn_top];

exn_top -= sizeof (k);
invoke k(exn, val);

There is no equivalent to the exception dispatcher in Fig-
ure 9; instead, the propagation of exceptions is implemented
in the handler itself.

