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Summary. The term "referential t ransparency" is frequently used to indicate 
that a programming language has certain useful substitution properties. We 
observe, however, that the formal and informal definitions given in the litera- 
ture are not equivalent and we investigate their relationships. To this end, 
we study the definitions in the context of a simple expression language and 
show that in the presence of non-determinism, the differences between the 
definitions are manifest. We propose a definition of "referential transpar- 
ency", based on Quine's, as well as of the related notions: definiteness and 
unfoldability. We demonstrate that these notions are useful to characterize 
programming languages. 

1. Introduction 

The notions of referential transparency and referential opacity are common 
in discussions of properties of programming languages. They were originally 
suggested by Quine and brought into computer science by Landin and Strachey. 
The notions however have changed during time and the formal or informal 
definitions found in the literature are not equivalent. 

The present paper discusses referential transparency, referential opacity, and 
similar notions. Precise definitions are suggested in the context of a non-deter- 
ministic expression language, but the perspective is broader since some of the 
definitions extend to programming languages more generally. The purpose is 
to clarify the relations between a number of properties of a formal language. 
These are very fundamental properties concerning identity and substitutivity, 
and so should be treated with great care. 

The observation that in everyday language one may not always substitute 
a term by an equivalent term is exemplified by Quine. The statements 

Cicero = Tully (1.1) 

' Cicero' contains six letters (1.2) 

Offprint requests to: H. Sondergaard 



506 H. Sondergaard and P. Sestoft 

are bo th  true, but  the replacement  of  the first name by the second will turn 
(1.2) false [13]. The point  is that, owing to the quotes, ' C i c e r o '  in (1.2) does 
not  refer to the person Cicero, but  to the word  Cicero. In  this way the quotes  
change or  destroy reference, that  is, the relation between a term and the object(s) 
it denotes. 

The fact that  words  are sometimes used in this manner  is noted by the 
medieval Will iam of  Sherwood,  and Leibniz repeatedly ment ions  it (see Notes  
1 and 2). Frege, in his discussion of  sense and reference, gives the following 
formula t ion:  

"It can also happen, however, that one wishes to talk about the words themselves or 
their sense. This happens, for instance, when the words of another are quoted. One's 
own words then first designate words of the other speaker, and only the latter have their 
usual reference. We then have signs of signs. In writing, the words are in this case enclosed 
in quotation marks. Accordingly, a word standing between quotation marks must not 
be taken to have its ordinary reference" (see Note 3). 

A thorough investigation of the phenomenon has been undertaken by Quine. He 
calls a context referentially opaque if it destroys reference. Otherwise it is referentially 
transparent [14]. 

We just saw how quoting is referentially opaque, and the example 

Tegucigalpa = the capital of Honduras  

Philip believes that Tegucigalpa is in Nicaragua 

(1.3) 
(1.4) 

shows that "_bel ieves  t h a t _ "  is referentially opaque in place 2, since (1.3) and 
(1.4) may well hold, whereas replacing Tegucigalpa in (1.4) by the right-hand side 
of (1.3) presumably yields a falsehood [13]. In general modal contexts fail to preserve 
reference, and so are referentially opaque. 

The usefulness of Quine's notions to the science of programming languages was 
realized by Landin and Strachey. Strachey refers to Quine and the notion of referen- 
tial transparency which 

"means that if we wish to find the value of an expression which contains a sub-expression, 
the only thing we need to know about the sub-expression it its value" [-18, page 16]. 

We shall henceforth refer to this principle as extensionality of the enclosing expres- 
sion. Strachey also notes that 

"We tend to assume automatically that the symbol x in an expression such as 3 x2+ 2 x + 17 
stands for the same thing (or has the same value) on each occasion it occurs. This is 
the most important consequence of referential transparency" [18, page 22]. 

We shall refer to this principle as definiteness (of variables, which we thus call definite 
or indefinite depending on whether the principle applies or not). 

Strachey's statement may be valid in the case of  deterministic programming 
languages, but in a non-deterministic language it becomes a crucial question what 
is meant by "stands for the same thing". In a very natural interpretation it turns 
out that definiteness is not a consequence of extensionality. We demonstrate this 
by giving a language Q1 which is referentially transparent in Quine's sense, but 
in which distinct occurrences of a variable (even within the same scope) may have 
different values. 
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Based on Strachey's observations, Stoy gives an informal definition of referential 
transparency in this textbook on denotational semantics. Definiteness, which Stra- 
chey regards a consequence of referential transparency, becomes part of Stoy's defini- 
tion: 

"We use [referential transparency] to refer to the fact of mathematics which says: The 
only thing that matters about an expression is its value, and any subexpression can be 
replaced by any other equal in value. Moreover, the value of an expression is, within 
certain limits, the same whenever it occurs". [17, page 5] 

This definition has three components. The first states the extensionality principle. 
The second is the principle that "any  subexpression can be replaced by any other 
equal in value" which we refer to as Leibniz's law, or substitutivity of identity. The 
third expresses the principle of definiteness, and perhaps even some kind of determin- 
acy. The qualification "within certain limits" is presumably to allow for the notion 
of scope of variables. Thus, in arguing that the lambda calculus is referentially trans- 
parent in his sense, Stoy notes that 

"for ~-2 I.E -~ all free occurrences of I in E denote the same value". [17, page 190, italics 
ours] 

Stoy's book does not discuss mathematical semantics for non-deterministic lan- 
guages, a topic that was just about to find its proper treatment at the time the 
book was written. So the above definition is perfectly adequate for Stoy's purpose. 
In general, however, it is advantageous to separate the component  notions, because 
each provides a useful dimension in the characterization of a formal language, and 
because they are fundamentally distinct, as will be shown. 

Languages with assignment lack many useful substitutivity properties. Consider 

x :=x - 1 ; y.'=x. (1.5) 

All occurrences of x in (1.5) are in the same scope. A discussion of reference is 
complicated by the fact that an occurrence of x on the left-hand side of .'= is inter- 
preted rather differently to an occurrence of x on the right-hand side. This is the 
well-known distinction between L-values and R-values of variables [17, 18]. In (1.5), 
the first occurrence of x is taken to denote a "locat ion" which in turn "holds"  
a value, whereas the other occurrences denote values. Whether such ambiguity should 
count as destruction of reference may be a matter of taste. In any case variables 
are not definite, since even the two right-hand side occurrences of x have different 
values. 

In functional programming languages, the use of substitutivity of identity as 
a criterion for referential transparency has an added twist. Namely, one kind of 
substitution that may or may not apply is unfolding of a function application (corre- 
sponding to fl-reduction in the lambda calculus). If unfolding is equivalence preserv- 
ing, we say that unfoldability applies, or that fl-reduction is admissible. The problem 
is that it is common to use the equality symbol " = "  when writing function defini- 
tions, as in 

f x . . . .  x... (1.6) 

This may be misleading, since it may well be the case that substitutivity of identity 
holds and yet unfoldability does not apply, so that it is not  admissible to replace 
the function application f e  by the instantiated right-hand side ...e... of (1.6). This 
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will be exemplified when we investigate unfoldability and its relation to the notions 
of referential transparency and definiteness. 

Textbooks on programming languages offer a variety of suggestions as to what 
referential transparency means. The following is a selection: definiteness (Note 4), 
absence of side-effects (Note 5), determinacy (Note 6), unfoldability (Note 7), exten- 
sionality (Note 8), and applicability of Leibniz's law (Note 9). This variety is justified 
to some extent because textbooks often teach more efficiently by simplifying issues 
slightly. It must however confuse a student seeking precise knowledge: certainly 
not all of the above notions are equivalent. The intention with this paper is to 
clarify some of their relations. 

After some preliminary remarks on notation in Sect. 2, we present in Sect. 3 
a simple expression language called Qo. This language will serve as a basis for 
the discussion of concepts. In Sect. 4 we define the notions of referential transparency, 
referential opacity, definiteness, and unfoldability, and we use these to characterize 
the language Qo. In Sect. 5 we apply some distortions to the semantics of the lan- 
guage, thus obtaining a series of slightly different languages Q~-Q4 that exhibit 
varying combinations of the properties introduced in Sect. 4. We summarize in 
Sect. 6 and draw conclusions as to the relations between the notions discussed 
in the paper. 

2. Preliminaries 

The present note is concerned with issues of reference. We should therefore state 
exactly which devices the paper itself employs to indicate referential use. We use 
italics to indicate identifiers such as x or exp. We use the pair of brackets [...~ 
for quasi-quotation of expressions: meta-language variables that appear between 
the brackets denote whatever they are bound to, whereas all other symbols denote 
themselves. This is the usual convention of denotational semantics. Thus the brackets 
are nothing but "Quine corners" [12]. 

To distinguish various kinds of equivalence, we use two equivalence signs: a 
"syntactic" and a "semantic" one. The symbol = is used between expressions to 
denote syntactic identity, that is, the relation in which an expression stands to itself 
and to no other expression. Trivial as it may seem, there is good use for = ,  because 
we use variables and expressions that range over syntactic objects (expressions); 
thus it makes sense to write, for instance, e~ = e2, where et and e 2 are meta-language 
variables. 

The equality symbol, = ,  is used for a number of purposes: (1) between elements 
of a set, (2) between sets, with the usual meaning: each is a subset of the other, 
(3) between functions to denote strong pointwise equality, and (4) between expressions 
to denote codenotation: both sides denote the same object. 

In the following, some knowledge of denotational semantics will be beneficial 
[17]. A note concerning the modeling of non-determinism and the interpretation 
of equality is in order. Consider the non-deterministic expressions el and e2. We 
follow the standard approach and let the denotation of an expression be the set 
of values it may evaluate to (including possible error values). So et = e2 means that 
whatever et may evaluate to, e2 may evaluate to, and vice versa. This, however, 
does not mean that el and e2 will necessarily evaluate to the same thing. In this 
way the introduction of non-determinism highlights a difference between denotation 
and intended meaning: expression e may denote a set, but the intended meaning 
is that e stands for some member of the set, we just cannot know which. 
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3. A Simple Expression Language 

This section introduces the language Qo which we shall use for defining and illustrat- 
ing various substitution properties. Qo is a very restricted expression language and 
certainly useless as a programming language. Even so, we feel justified in basing 
our analysis on it, because it incorporates constructs known from existing program- 
ming languages, albeit only those considered relevant for our discussion: Occam's  
razor has been applied whenever possible, to bring the issues under investigation 
into focus. The syntax of Qo is given in Table 1. In Sect. 5 we discuss a series 
of languages Q 1 - Q 4 ,  all having the same syntax as Qo but with differing semantics. 
Each of these semantics is defined by changing the definition of the preceding lan- 
guage very slightly. Nevertheless they will be shown to lead to rather different substi- 
tution properties. 

The "full fo rm"  displayed will help certain definitions, but for readability we 
normally use the "shor t  fo rm" of expressions, using parentheses to remove ambiguity. 
However,  we use 2xe e' simply, for (2x e) e', in the understanding that  variables 
in e' are not bound by the occurrence of 2~. Since x is the only available variable, 
the standard notat ion " 2 x . e "  for a lambda abstraction would be pleonastic, and 
the use of "2  e" would disturb intuition, hence the notat ion "2~ e ' .  

Table 2 gives a denotational  definition of Qo- The set of values of expressions is 

v = { o ,  a, # } ,  

Table 1. Syntax for the Q family of languages 

Full form Short form 

exp --* 

furl  

0 0 
1 1 
X X 

(minus exp exp) e x p -  exp 
(numeral? exp) @ exp 
(choose exp exp) expnexp 
(apply fun exp) fun exp 

(lambda exp) 2 x exp 

Table 2. Semantics of Qo 

Below, e, el, e2 E exp; f ~ fun; v l, 1) 2 e V'~ U e P V. 

D ~ e ~  =E[e~{#} 
E = {0} 
E~l~u ={l} 
E[x  u =u  

E~el-e2~u={i f  v l = #  or 
Ivl~E[el~ u 

E~@e~u =if e=0  or e = l  
E~el ne2~ u=E[el~ u u  E[e2~ u 

E~fe~ u =V[f~(E[e~ u) 
F ~2 x e~ u =if u = { # } then 

v 2 = #  or vx<v2 then 
and v2~E~e2~u} 

then {1} else {0} 

e l se  D 1 --I)2 

{#} else (E[e~u)u ( {*}nu)  

(El) 
(E2) 
(E3) 
(Ft) 
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where # signifies failure of evaluation. The non-determinism of expressions is 
modeled by having the semantic equations define sets of possible results. We therefore 
use a semantic domain 

P V = ( ~  V ) \ { ~ } ,  

that is, the set of non-empty subsets of V. The empty set is excluded because an 
expression must have a value (if evaluation fails, then its "value" is #).  The valuation 
function for expressions is 

D: exp -o PV, 

which in turn is defined in terms of the functions 

E: exp-o P V ~  PV 

F: f u n ~ P V ~ P V . .  

An expression is evaluated given an element from PV (namely the set of possible 
values of x), to yield an element from PV (namely the set of possible result values). 

Let us informally describe evaluation of compound expressions. If el and e2 may 
evaluate to vt and/)2, respectively, then e l - e 2  may evaluate to v~-/)2 (which fails 
in case vl < v2). If e is a numeral (0 or 1), then @ e must evaluate to 1, otherwise 
it must evaluate to 0. The choice expression e l n e 2  may evaluate to v if either 
el may or e2 may, and it may fail if either e~ may or e2 may. This amounts to 
erratic non-determinism [4]. Finally, let u be the set of values to which e' may 
evaluate. The expression 2x e e' may evaluate to whatever e may evaluate to, given 
that an occurrence of x in e must evaluate to some veu. There are, however, two 
provisos, given by (F1): (1) if evaluation of e' must fail, then so must evaluation 
of 2x e e', and (2) if evaluation of e' may fail, then so may evaluation of 2x e e'. 
This yields the natural counterpart  to applicative order evaluation in a deterministic 
language. 

We can now define semantic equivalence of expressions as codenotation. Expres- 
sions are semantically equivalent iff they have the same denotation. By definition, 

e l = e 2  iff D[el~=D~e2~ 

for all el, e2~exp. Note that D is a parameter in this definition, in the sense that 
the definition applies throughout  the paper, even when D (or E and F, on which 
D depends) is changed. 

It is a crucial feature of Q0 that x becomes bound to a (non-empty) set of values. 
As a consequence, the denotation of, say, 2 x ( x - x ) ( 0 n l )  is {0, 1, ~}  rather than 
{0}. In other words, even within the same scope, distinct occurrences of a variable 
need not evaluate to the same result, witness the subexpression ( x - x )  in 2 x ( x - x )  
(0 r~ 1). This type of semantics is known as plural [5] or run time choice I-8] semantics. 
The last term hints at the operational view that a value for x is chosen anew every 
time x is met during evaluation. 

The language Qo lacks a number of substitutivity properties which are introduced 
in the next section. In Sect. 5 we investigate the consequences of various changes 
in the semantic definition with respect to such properties, and in Sect. 6 we summarize 
and compare the properties. Elsewhere we have discussed further (algebraic) proper- 
ties of languages akin to Q o - Q 4 ,  but with recursion 1-15, 16J. 
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4. Referential Transparency and Substitution Properties 

Quine defines referential transparency using the concept of a purely referential posi- 
tion in a sentence: "the position must be subject to the substitutivity of identity" 
[14, page 142]. He then defines referential transparency: 

"I call a mode of containment ~b referentially transparent if, whenever an occurrence of 
a singular term t is purely referential in a term or sentence ~(t), it is purely referential 
also in the containing term or sentence ~(~,(t))" 1-14, page 144]. 

So ~b is referentially transparent if it preserves pure referentiality, that is, preserves 
substitutivity of identity. This amounts to Leibniz's law, and to extensionality. How- 
ever, it is independent of the other important  substitutivity properties we have met. 
We now define the various substitutivity concepts more precisely and check whether 
they apply to Qo. 

A position p is a (possibly empty) sequence of natural numbers, peN*. The 
empty sequence is denoted by e. The sequence constructor is denoted by ".".  Let 
t2 be an operator. Expression e with e' inserted at position p, e[e'/p], is defined by 

e [e'/~] - e' 

e [e'/i. p] =-- (f2 el. . .  el [e'/p]... e,> if e------ (Q e l . . .  el... e,>, else undefined. 

Position p is purely referential in expression e iff el = e2=~e[el/p] = e [e2/p] for all 
el, e2eexp. That is, a position is purely referential in expression e iff it is subject 
to the substitutivity of identity. Note that for every expression e, position e is purely 
referential in e. An operator I2 is referentially transparent in place i iff for every 
expression e--  (f2el ... el... e,>, whenever position p is purely referential in ei, position 
i .p  is purely referential in e. Otherwise t2 is referentially opaque in place i. We 
shall also say that f2 is referentially transparent, simply, iff it is referentially transpar- 
ent in all places. Similarly, O is referentially opaque iff it is referentially opaque 
in some place. Finally, we call a formal language referentially transparent if all 
its operators are referentially transparent; otherwise we call it referentially opaque. 

Examples of referentially opaque operators are @ as introduced in Sect. 3, Pas- 
cars quotation marks used for character strings, and Lisp's quote (a few other opera- 
tors from the Lisp category of "fexpr" are referentially opaque, though not all: 
cond, for example, is referentially transparent). Common  to these operators is that 
they depend on the form of their argument rather than its value. Note that a position 
may well be purely referential globally and yet not locally: if (as in Lisp) we had 
had an eval and a quote operator such that eval (quote e ) = e ,  then the position 
of e in eval (quote e) would be purely referential, in spite of the fact that quote 
is referentially opaque. 

A language has the definiteness property iff the denotation of a variable necessari- 
ly is a single value. For  a language in our family, the implication of this is that 
x - x  will always evaluate to 0 (or possibly :t#), even though x may be bound (by 
a function application) to an expression such as 0r~ 1. To see that this is to give 
x a special treatment, consider replacing x by what it is bound to. This yields 
(On 1 ) - ( 0 n  1), which may evaluate to either 0 or 1, or fail. If definiteness applies, 
we say that the variables are definite, otherwise we call them indefinite. 

Let e [e'] denote the expression e with all free occurrences of x replaced by 
e' (even when enclosed by semantic brackets as in [e [e'] ~). We say that unfoldability 
applies (for a language in our family) iff 2 x e e' = e [e'] for all e, e'~exp. 
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Let us analyse Qo in terms of the introduced notions. First, Qo is not referentially 
transparent, because the operator @ destroys reference. As an example, 1 - 0 =  1 
since both sides denote { 1 }. However, @ (1 -0)4= @ 1 since the left-hand side denotes 
{0}, whereas the right-hand side denotes {1}. All other operators are referentially 
transparent, as will be shown in Sect. 5.1. Second, variables in Qo are indefinite. 
Thus the Qo expression 

2x(X-x)(Om 1) (4.1) 

denotes {0, 1, # } rather than {0}. Finally, unfoldability does not apply in the case 
of Qo- To see this, consider the expression 

2x 0(0-1) .  (4.2) 

Unfolding this application yields 0, but D ~2x 0(0-1)~ = { ~ }, while D W0~ = {0}. 

5. Variat ions  on a T h e m e  

In this section various changes are made to the semantics of Qo. We thereby obtain 
a series of languages Q1-Q4 that exhibit quite different substitutivity properties. 
In this way the languages illustrate how the properties interrelate. 

5.1. Obtaining Referential Transparency 

We have seen that @ is referentially opaque. The definition of the semantic function 
E is now changed slightly to make @ void of effect. We replace (E 1) by 

E ~@ e~ u = E ~e~ u. (E 1') 

The resulting language is called Q1. 

Example. The Q1 expression @(@ 1) denotes {1}, whereas qua Qo expression it 
denotes {0}. [] 

Clearly, by (E 1'), @ is no longer referentially opaque. In fact the following proposi- 
tion holds. 

Proposition. Q1 is referentially transparent. 

Proof. Consider the semantic definition in Table 2. The result of applying E to 
expressions of the form (2xe0 e2, el rne2, or e l - e 2  only depends on the meaning 
E[e,~ u of the subexpressions e, for ie{1,2}. We demonstrate this in the case of 
el in expression e~ne2. If e~=e'~, then E[el~ u=E[e'~ u, by definition of " = "  
on expressions. So for uePV,, E~elne2~ u=EWe:~ uwE~e2~ u=E~e'l~ uwE[e2~ u 
= E~e'l r~e2~ u, and so el n e2 = e~ n e2. This proves that (_  r-n _ )  is purely referential 
in place 1, and since e~ and e2 were arbitrary, it follows that it is referentially 
transparent in place 1. Similar arguments hold for all other cases. [] 

Although no operator thus destroys reference, variables are still not definite. Namely, 
example (4.1) qua Q~ expression evaluates exactly like before, since it does not contain 
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the @ operator. Furthermore, as example (4.2) qua Q1 expression shows, unfoldability 
still does not apply. 

This proves that a non-deterministic programming language may well be referen- 
tially transparent in the sense of Sect. 4 (and of Quine) and yet violate the principle 
that "a variable stands for the same thing on each occasion it occurs". It also 
shows that referential transparency does not imply unfoldability. 

5.2. Obtaining Unfoldability 

We now modify Qt to make unfolding equivalence preserving. This is done by 
replacing (F 1) in the definition of Qi by 

F [2x e~ u = E [e~ u. (F 1') 

The resulting language is called Q2. Evaluation in Q2 resembles normal order evalua- 
tion in deterministic languages. 

Example. The Q2 expression 2x 0(0-1)  denotes {0}, whereas qua Qo or Q~ expression 
it denotes { ~ }, that is, evaluation must fail. [] 

Like Q1, Q2 is referentially transparent, and variables in Q2 are still indefinite, as 
witnessed by (4.1) qua Q2 expression. However, Q2 allows for unfolding as the follow- 
ing proposition shows. 

Proposition. Let e and e' be Q2 expressions. Then 2~ e e' = e [e']. 

Proof. Let uePV and let u '= E ~e'~ u. Since by (E 3) and (F 1'), 

E[2~ ee'~ u =f~2~ e~(E[e'~ u)=E[e~ u', 

it suffices to show that E[e~ u' =E[e[e']~ u for all e, e'cexp. We show this by induc- 
tion on the structure of e. The cases e -  0 and e -  1 are trivial. For e -  x we have: 
E ~x~ u'= E [e'~ u = E Ix [e'] ~ u. The case e -  el - e2 is similar to el n e2 below. 

Case e=@el: 

E~@ el~ u'=E[el~ u' 
=E~ei[e']~u 
=E[@(el  [e'])~ u 
=E[(@ei)[e']~u 

Case e=e i  r-q e21 

E[etr-ne2~ u'=E[el~ u' w E~e2~ u' 
= E~el [e']~ uw E[e2[e'] ~ u 
= E [el [e'] n e2 [e'] ~ u 
= E~ (el rne2)[e'] ~ u 

Case e=2xel e2: 

E~2:,el e2~ u'=F[2xel~(E~e2~ u') 
= F [2x e ~  (E [e2 [e'] ~ u) 
=E~2x el (e2 [e'])~ u 
=E[(2~ el e2)[e']~ u 

by (E 1') 
by the induction hypothesis 
by (E 1') 
q.e.d. 

by (E 2) 
by the induction hypothesis 
by(E2) 
q.e.d. 

By structural induction, E Eel u' = E [e [e'] ~ u, and the proposition follows. 

by(E3) 
by the induction hypothesis 
by(E3) 
q.e.d. 

[] 
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5.3. Obtaining Definiteness at the Expense of Unfoldability 

All of the languages so far had indefinite variables: different occurrences of a variable 
might evaluate differently, so for instance x - x  might evaluate to 1. We now want 
to make variables definite. This can be done by making the semantics singular [5], 
that is, by guaranteeing that at any instant, a variable denotes exactly one value 
(rather, a singleton set of values). This type of semantics is found also under the 
label call time choice semantics, reflecting the operational view that the value for 
a (lambda) variable is determined once: at the time of application [8]. More precisely 
we replace line (E3) in the definition of Q2 by 

E I f  e~ u = U {F [f~ {v}lv~ E [e~ u}. (E 3') 

Here U is the distributed union operator. The resulting language is called Q3. 

Example. The Q3 expression 

,L(x- x)(0~ 1) (5.1) 

denotes {0}, whereas qua Qo, Q1, or Q2 expression it denotes {0, 1, #}. [] 

It should be clear that x is now definite. However, as compared to Q2, Q3 has 
lost unfoldability. Unfolding the call in (5.1) yields ( 0 n l ) - ( 0 n l )  which denotes 
(0,1, =~}. 

In the presence of non-determinism, we cannot obtain both definiteness and 
unfoldability. If we retain (F 1) rather than (F 1'), the resulting language (let us call 
it Q~) will still have definite variables and lack unfoldability, since the above example 
still applies. Usually designers of non-deterministic languages choose to renounce 
unfoldability in order to keep variables definite. This is the case, for example, in 
the wide-spectrum language CIP-L whose transformation system explicitly requires 
a function to be determinate for any of its applications to be unfolded [3, page 
99]. 

5.4. Giving Up Non-Determinism 

The only way to achieve both definiteness and unfoldability is to give up non- 
determinism. This can be done for instance by replacing (E2) in the definition of 
Q3 by 

E[e,r-le2~u=E~el~u. (E2') 

The resulting language is called Q4. 

Example. The Q4 expression 0 n l  denotes {0}, whereas qua Qo, Q1, Q2, or Q3 
expression it denotes {0, 1}. [] 

Thus n is now almost void of effect. All sets that are returned by E are singleton 
sets, and it should be clear that both definiteness and unfoldability apply. Note 
that Q4 is still referentially transparent, as is Q1, Q2, and Q3. The operator n 
does not destroy reference by ignoring e 2. It is still true that "all that matters 
about e 2 is its value", although this value is not being used for anything. 
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6. Conclusion 

We have suggested a definition of referential transparency in programming languages 
which is in accordance with Quine's notion [14]. By this, an operator is referentially 
transparent if it preserves applicability of Leibniz's law, or substitutivity of identity: 
the principle that any subexpression can be replaced by any other equal in value. 

Even though definiteness (the principle that within the same scope, distinct occur- 
rences of a variable evaluate to the same) is sometimes taken as the definition of 
referential transparency, a language may well lack definiteness and yet be referentially 
transparent. The same goes for unfoldability, or admissibility of fl-reduction. Neither 
of these properties are implied by referential transparency. This has been exemplified 
by a series of languages Qo-Q4-  It was also argued that in the presence of non- 
determinism it is impossible to obtain both definiteness and unfoldability at the 
same time. However, a non-deterministic language may well be referentially transpar- 
ent. 

Table 3 summarizes these findings. The table does not present an exhaustive 
list of the possible combinations of "yes" and "no". Many more (and indeed more 
contrived) languages are possible. So one should not deduce from the table that 
definiteness implies referential transparency or that determinacy implies unfoldabi- 
lity, for example. Such implications fail to hold in general. We conclude that it 
is useful to separate the issues: determinacy, definiteness, unfoldability, and referential 
transparency, because they cover different aspects of languages, and they all provide 
useful dimensions along which to characterize programming languages. 

We have avoided such classical terms for evaluation strategies as "call by value" 
and "call by name", simply because they were not defined for non-deterministic 
languages. Table 4 suggests a natural way to generalize the notions (we find the 
nomenclature more natural than Clinger's [5], as well as in better agreement with 
current use for deterministic languages). In the absence of non-determinism, the 
two rows of Table 4 collapse into one: at least in a language without side-effects, 
there is no difference in the results obtained using call by name and call by need. 

Table 3. Properties of the languages 

Qo Q1 Q2 Q3 Q, 

Determinacy no no no no yes 
Definiteness no no no yes yes 
Unfoldability no no yes no yes 
Referential transparency no yes yes yes yes 

Table 4. Relations to operational notions 

"Applicative" order "Normal" order 

Plural semantics Qo and Q1 Q2 
(run time choice) Call by name 

Singular semantics (Q~) Q3 and Q4 
(call time choice) Call by value Call by need 
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We have not discussed side-effects in the present paper, since this phenomenon 
does not come up in purely applicative languages. In a language like Algol 60, 
whose semantics can only be explained in terms of a notion of "state" [17], the 
expression x - x  (where x is an integer variable) may well evaluate to 6, say, owing 
to side-effects of the evaluation of x. Clearly non-determinism is not the only obstacle 
for definiteness. 
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Notes 

1. " A ~  B significat Aet  B esse idem, seu ubique sibi posse substitui. (Nisi prohibeatur, 
quod fit in iis, ubi terminus aliquis certo respectu considerari declaratur ver. g. 
licet trilaterum et triangulum sint idem, tamen si dicas triangulum, quatenus tale, 
habet 180 gradus; non potest substitui trilaterum. Est in eo aliquid materiale)." 
I-6, page 261]. 

2. "Au reste il arrive quelques fois que nos id6es et pens6es sont la matiere de 
nos discours et font la chose m~me qu'on veut signifier, et les notions reflexives 
entrent plus qu'on ne croit dans celles des choses. On parle mSmes quelque fois 
des mots materiellement sans que dans cet endroit lh precisement, on puisse substi- 
tuer ~ la place du mot la signification, ou le rapport aux id6es ou aux choses" 
1-11, page 287]. 

3. ,,Es kann aber auch vorkommen, dab man von den Worten selbst oder von ihrem 
Sinne reden will. Jenes geschieht, z.B., wenn man die Worte eines Andern in 
gerader Rede anfiihrt. Die eigenen Worte bedeuten dann zun/ichst die Worte 
des Andern und erst diese haben die gew6hnliche Bedeutung. Wir haben dann 
Zeichen von Zeichen. In der Schrift schliel3t man in diesem Falle die Wortbilder 
in Anfiihrungszeichen ein. Es darf also ein in Anfiihrungszeichen stehendes Wort- 
bild nicht in der gewShnlichen Bedeutung genommen werden" [7, page 28]. 

4. "Program variables necessarily violate Quine's (1960) request for "referential trans- 
parency": that a "variable"(= a designation) has the same value at every position 
in the text" [2, page 353]. 

5. "The purpose of an expression is to compute a value. Expressions are composed 
of operands such as constants and variables, operators and possibly function 
calls. The process of evaluation is to substitute values for the operands and perform 
the operations. The values which are associated with the variables of a program 
form the state space or environment of the program. Evaluation of an expression 
should only produce a value and not change the environment. This idea is called 
by the grandiose name referential transparency" 1-10, page 93]. 

6. "One essential ingredient of functional programming is that the value of a function 
is determined solely by the values of its arguments. Thus, calls of the function 
using the same arguments will always produce the same value. This property 
is called referential transparency" 1-10, page 357]. 

7. "... consider a logic program containing two statements 

S 1: parent (x, z) if mother (x, z) 
S 2: grandparent (x, y) if parent (x, z), parent (z, y) 
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We may ... substitute for parent(x, z) in $2 its referent mother(x, z)... to obtain 

$3: grandparent(x,y)ifmother(x,z),  parent(z,y) 

... Logic and other pure declarative languages therefore enjoy what is called referen- 
tial transparency; what any of their constituents refer to in a program can be 
ascertained by exploiting the soundness of substitutivity, taking no account of 
the irrelevant run-time context" [9, page 240-241]. 

8. " . . .  a principle known as referential transparency [Quine 1960] that holds in math- 
ematics: The value of an expression can be determined solely from the values 
of its subexpressions, and if any subexpression is replaced by an arbitrary expres- 
sion with the same value then the value of the entire expression remains 
unchanged" 1,19, page 29]. 

9. "A  language that supports the concept that "equals can be substituted for equals" 
without changing the values of expressions is said to be referentially transparent" 
1-1, page 178]. 
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