
When Do Match-Compilation Heuristics Matter?

Kevin Scott and Norman Ramsey

Department of Computer Science

University of Virginia

jks6b@cs.virginia.edu nr@cs.virginia.edu

May 2000

Abstract

Modern, statically typed, functional languages define functions by pat-

tern matching. Although pattern matching is defined in terms of sequen-

tial checking of a value against one pattern after another, real implementa-

tions translate patterns into automata that can test a value against many

patterns at once. Decision trees are popular automata.

The cost of using a decision tree is related to its size and shape. The

only method guaranteed to produce decision trees of minimum cost re-

quires exponential match-compilation time, so a number of heuristics have

been proposed in the literature or used in actual compilers. This paper

presents an experimental evaluation of such heuristics, using the Standard

ML of New Jersey compiler. The principal finding is that for most bench-

mark programs, all heuristics produce trees with identical sizes. For a few

programs, choosing one heuristic over another may change the size of a

decision tree, but seldom by more than a few percent. There are, however,

machine-generated programs for which the right or wrong heuristic can

make enormous differences: factors of 2–20.

1 Introduction

Starting with HOPE (Burstall, MacQueen, and Sannella 1980), functional lan-
guages have enabled programmers to define functions by pattern matching, i.e.,
by a sequence of (pattern, expression) pairs. When a function defined by pat-
tern matching is applied to an argument, the implementation finds the first
pattern that matches the argument, and the value of the corresponding expres-
sion becomes the result of applying the function. Pattern matching is espe-
cially well suited to defining functions over algebraic datatypes, and it is widely
used in statically typed functional languages, including Standard ML (Milner
et al. 1997), Objective CAML (Leroy et al. 1998), Haskell (Hudak et al. 1992;
Peyton Jones et al. 1999), and Miranda (Turner 1985).

Although the semantics of pattern matching is given by a sequence of com-
parisons of argument values against patterns, no implementation takes such a

1



simple, inefficient approach. A sequence of patterns can be compiled into an
automaton that identifies the matching pattern efficiently. The decision tree is
popular because it is easy to ensure that it examines each word of the argument
at most once. An internal node designates a word to be tested, and each of its
multiple outgoing edges is labeled with a possible value of the word. Internal
nodes may also have “default” edges, which are used when the value found does
not label any outgoing edge.1 A leaf node represents a successful match, and it
identifies the pattern matched. The backtracking automaton is also popular; it
is like a decision tree, except that leaf nodes may point back to internal nodes.

The run-time cost of pattern matching is proportional to the number of tests
made by the matching automaton, which in a decision tree is the number of
nodes on the path from the root to the leaf matched. The static cost of pattern
matching, i.e., the code size, is roughly proportional to the total number of
states in the automaton. These costs are determined by the order in which
parts of the argument(s) are examined.

In implementations of strict languages, pattern-matching automata may ex-
amine parts of a value in any order. In implementations of lazy languages,
the situation is more complicated; an automaton must not evaluate parts of
the argument unnecessarily, lest a function that should terminate fail to do so.
Augustsson (1985) argues that automata should examine parts of values from
left to right, on the grounds that using a fixed order makes the automaton’s
behavior predictable. Laville (1991) argues that using a fixed order may result
in unnecessary work or unnecessary nontermination, and that an automaton
should use any order that evaluates only those parts of a value that are needed
to know which pattern matches—but there are lists of patterns for which no
such order exists. This paper dodges the question; we consider match compila-
tion only for strict languages, which, because they do not constraint the order
of examination, offer the most opportunities for optimization anyway.

Optimizing the number of nodes in a decision tree may be NP-hard, and so
several sources have suggested optimization heuristics (Cardelli 1984; Baudinet
and MacQueen 1985; Maranget 1992; Ramsey 1999). The primary contribution
of this paper is an experimental evaluation of these heuristics.

We consider three measures of the cost of a tree: the number of nodes, the
length of the longest path from the root to a leaf, and the average length of
all paths from the root to a leaf. We also consider running times of programs
compiled using Standard ML of New Jersey. For most benchmarks, heuris-
tics don’t matter: these costs don’t change. For a few benchmarks, choice of
heuristics may change the costs by up to 10–12%. Finally, for a handful of
machine-generated instruction recognizers, the choice of heuristics may have an
enormous influence, changing costs by factors of 2–20.

1One match-compilation algorithm produces trees in which the internal nodes contain
both a word designation and a value, with two outgoing edges labeled “equal” and “unequal”
(Sestoft 1996). These trees are then post-processed into the decision trees described here.

2



Constructors C
Patterns p ::= x | C(p1, . . . , pn), n ≥ 0
Subject trees t ::= C(t1, . . . , tn), n ≥ 0
Paths π ::= Λ | k.π
Substitutions σ
Match judgements t = σp

Table 1: Elements used in match compilation

Patterns Subject trees
p1 = C1(C2, C3) t1 = C1(C2, C3)
p2 = C1(x,C4) t2 = C1(C3, C4)
p3 = C1(x,C5) t3 = C1(C3, C3)
p4 = x t4 = C6(C2, C3)

Figure 1: Example patterns and subject trees

2 The problem of pattern matching

In functional languages, a pattern matcher takes a value and identifies the first of
a list of patterns that matches the value. We call the value a subject tree or term.
Patterns and subject trees are defined recursively. A subject tree is a constructor
applied to a (possibly empty) list of subject trees. A pattern is either a variable
or a constructor applied to a (possibly empty) list of patterns. A linear pattern
is one in which no variable appears more than once. ML requires that patterns
be linear, and our match compiler works only with linear patterns. Table 1
shows schemata for patterns and subject trees, and Figure 1 shows examples.

Constructors are drawn from sets determined by the types of values being
matched. For example, constructors of an algebraic data type are declared as
part of the data type’s definition, and constructors of integers are integer literals.
Constructors in Figure 1 are labeled C1, C2, etc. We assume that the arity
of each constructor is fixed, and we write applications of nullary constructors
without parentheses.

For ease of presentation, our definitions take a simplified view of subject trees
and patterns. Unlike a real functional language, our language does not distin-
guish integer and real literals or tuple and record constructors from datatype
constructors. Subject trees in a real language may contain “atomic” values, like
functions, which are not the result of applying any constructor. Patterns in real
languages may include “wildcards,” which can be represented in our language as
fresh variables occuring nowhere else in an expression. We omit these features
only for clarity in presentation; our experiments use full Standard ML patterns.

Matching is determined by substitution of values for variables. By definition,
a pattern p matches a subject tree t if and only if there exists a substitution σ
such that t = σp. This definition differs from classic tree pattern matching
(Hoffmann and O’Donnell 1982) in that the pattern must match at the root
of the subject tree. Figure 2 gives an axiom and an inference rule for pattern

3



Var t = {x 7→ t}x

Con
t1 = σ1p1, . . . , tn = σnpn dom(σi) disjoint σ = σ1 ◦ · · · ◦ σn ◦ I

C(t1, . . . , tn) = σC(p1, . . . , pn)

Figure 2: Rules for matching linear patterns

case e
of {C1(C2, C3) => 1,

C1(x,C4) => 2,
C1(x,C5) => 3,
x => 4
}

Figure 3: Example pattern match

matching; together they specify a recursive algorithm that accepts p and t and
either returns σ or fails. The linearity requirement is expressed by the condition
“dom(σi) disjoint.”

We write a pattern match as follows:

case e of {pi => ei}, where 1 ≤ i ≤ n.

The braces should be taken as EBNF repetition, not as set notation; the order
of cases is significant. Figure 3 shows an example match.

A match is evaluated as follows. First e is evaluated, and its value t be-
comes the subject tree. Then the implementation finds the least j such that pj
matches t with substitution σj . Finally it evaluates ej in the current environ-
ment, extended by σj , and the result is the value of the case expression. If no
pi matches t, the value of the case expression is undefined. Real functional lan-
guages typically work around this problem by appending a pn+1 => en+1 such
that pn+1 always matches and evaluating en+1 raises an exception or causes a
run-time error. Figure 4 shows the match-evaluation rule formally; it can be
taken as the specification of a näıve pattern matcher that starts with j = 1 and
attempts to match for increasing j until the matching pattern is identified.

The problem of match compilation is this: given a list of patterns {pi},
construct an automaton that maps each term t to the least i and σi such that
t = σipi. We call an automaton efficient if it examines each constructor of t
at most once. Automata constructed by algorithms presented in Baudinet and
MacQueen (1985), Laville (1991), Puel and Suárez (1993), Maranget (1992), and

Γ ` e = t t = σpj ¬∃i < j.∃σ′.t = σ′pi Γ, σ ` ej = t′

Γ ` case e of {pi => ei} = t′

Figure 4: Evaluation rule for a pattern match

4



t|Λ = t
tk|π = t

C(t1, . . . , tn)|k.π = t
, 1 ≤ k ≤ n

Figure 5: Rules for extracting a subtree at a path

Sestoft (1996) are efficient in this sense; automata constructed by algorithms
presented in Augustsson (1985), Wadler (1987), and Maranget (1994) are not.

Ideally, we would like to generate matching automata that are not only
efficient, but also inexpensive by some other measure. For example, we might
prefer an automaton that minimizes the number of states, or the length of the
longest path from the initial state to an accepting state, or the average length
of all paths from the intial state to accepting states. We have been unable to
identify match compilers that produce automata that minimize any of these
costs. Indeed, Baudinet and MacQueen (1985) suggests that minimizing the
number of nodes in a decision tree is NP-complete, by reduction from one of
the trie-index construction problems in Comer and Sethi (1977). We have been
unable to duplicate the reduction or to locate a proof of this hypothesis.

3 Pattern-matching automata and decision trees

In this paper, we consider algorithms for building efficient decision trees, and
we compare heuristics that determine the sizes and shapes of these trees. A
decision tree is a pattern-matching automaton in which every state except the
initial state has a unique predecessor. The automaton uses paths π to refer to
subtrees of the subject tree. Paths are sequences of integers, or more precisely, a
path π is either empty (written Λ) or is an integer followed by a path, as shown
in Table 1. Figure 5 gives the rules by which a path can be used to designate a
subtree of a tree t.

Each non-accepting state in a decision tree is a TEST node, which is labeled
with a path π and has one or more outgoing edges labeled with constructors.
TEST nodes may also have a “default” outgoing edge. Each accepting state is
a MATCH node, which is labeled with a rule and a substitution. Substitutions
are represented as lists of (π, v) pairs, where π is a path and v is a variable, and
(π, v) stands for the substitution mapping v to t|π, where t is the subject tree.
The following ML datatype can be used to represent decision trees.

datatype α tree = TEST of path × α edge list × α tree option
| MATCH of α× (path × string) list

withtype α edge = constructor × α tree

Constructors labeling outgoing edges of the same TEST node must be distinct.
Figures 6 and 7 show example decision trees for the match of Figure 3. To illus-
trate the use of the default tree, we have assumed that each type has additional
constructors beyond C1, . . . , C5.

5



case e
of {C1(C2, C3) => 1,

C1(x,C4) => 2,
C1(x,C5) => 3,
x => 4
}

TEST Λ

TEST 1.Λ

C1

TEST 2.Λ

C2

MATCH 1

{}

C3

MATCH 2

{x 7→ t|1.Λ}

C4

MATCH 3

{x 7→ t|1.Λ}

C5

MATCH 4

{x 7→ t|Λ}

default

TEST 2.Λ

default

MATCH 2

{x 7→ t|1.Λ}

C4

MATCH 3

{x 7→ t|1.Λ}

C5

MATCH 4

{x 7→ t|Λ}

default

MATCH 4

{Λ 7→ x}

default

Figure 6: Example match and its decision tree (Left to Right heuristic)

TEST Λ

TEST 2.Λ

C1

TEST 1.Λ

C3

MATCH 1

{}

C2

MATCH 4

{x 7→ t|Λ}

default

MATCH 2

{x 7→ t|1.Λ}

C4

MATCH 3

{x 7→ t|1.Λ}

C5

MATCH 4

{x 7→ t|Λ}

default

MATCH 4

{x 7→ t|Λ}

default

Figure 7: Alternate decision tree (Large Branching Factor heuristic)

Using a decision tree to match is straightforward; the matching automaton
walks the tree until it reaches aMATCH node, which tells it which rule matches
and with what substitution.

match(MATCH (i, {(πj , xj)})) t = (i, {xj 7→ t|πj
})

match(TEST (π, {(Cj ,nodej)},nodedefault )) t =
case t|π of C(t1, . . . , tk) =>
if ∃j : C = Cj then
match nodej t

else

match nodedefault t

Because constructor labels are distinct, if there is a j with C = Cj , that j is
unique.

3.1 Match compilation

Published algorithms for strict match compilation have two flavors. Sestoft (1996)
derives an indirect-style match compiler by partially evaluating a näıve matcher;
the automaton has a sequence of equality tests for each path. Such an automa-
ton can be post-processed into a decision tree. Direct-style match compilers

6



build a decision tree directly. Since many heuristics for match compilation are
defined in terms of properties of tree nodes (e.g., outdegree), we discuss only
direct-style compilers.

Figure 8 presents our recursive algorithm for match compilation. The algo-
rithm is nondeterministic in the choice of π made in “let π be a path. . .”; differ-
ent heuristics result in different choices of π. With each decision-tree node, our
algorithm keeps a list of unmatched frontiers, which identify which rules might
match when control reaches that node. This frontier is a pair (i, f), where
i identifies the rule, and f is a set of (π, p) pairs in which each π occurs at most
once. The TEST nodes along the path from the root to the current node record
the parts of the original pattern that are known to match; the set f records the
remaining, unmatched parts. We write dom(f) for the set {π | ∃p : (π, p) ∈ f},
and when π ∈ dom(f), we write f@π for the unique p such that (π, p) ∈ f .

Match compilation maintains the invariant that rule i can match tree t at a
node if and only if rule i is listed at that node in some frontier (i, f) and there is
a σ such that (p, π) ∈ f ⇒ t|π = σp. We establish this invariant by letting the
initial frontier for rule i be the pair (i, {(Λ, pi)}). The invariant holds because
by definition, rule i can match if and only if there is a σ with t = σpi.

The match compiler terminates, by inserting a MATCH node, when the
unmatched frontier of the first rule listed is all variables, in which case the
invariant guarantees that the rule matches, and the matching substitution can
be obtained directly from the variables and paths in the unmatched frontier
for the rule.2 Termination is guaranteed because each recursive call to compile
passes a list of frontiers in which the number of constructors is strictly smaller,
so eventually the compiler reaches a state in which the first unmatched frontier
is all variables.

When the match compiler cannot create a MATCH node, it selects a path π
to a node to be tested in the subject tree. This path must be associated with
a pattern of the form C(p1, . . . , pn) in at least one unmatched frontier. Such a
path is guaranteed to exist whenever the compiler failed to create a MATCH
node. The match compiler may choose any such path; in practice, the path is
chosen by one or more of the heuristics described in the next section.

Once a path π is chosen, the match compiler creates a TEST node with an
outgoing edge for each constructor C used in a pattern at π in any unmatched
frontier. The outgoing edge leads to a new decision tree created by a recursive
call to compile. The recursive call uses a list of frontiers with fewer construc-
tors than frontiers, as required for termination. This list is computed by the
project function. For an outgoing edge labeled with C, this function assumes
that t|π = C(t1, . . . , tn), and it updates the frontiers accordingly. The function
mapPartial(project(C, π)) eliminates frontiers for rules that cannot match be-
cause they call for a different constructor C ′ in the position π. The functions
map, filter , and mapPartial , and the constructors SOME and NONE are part

2The linearity of the patterns guarantees that each variable maps to exactly one subtree
of the subject tree, and so the substitution is well defined.

7



compile frontiers =
if ¬∃(π, p) ∈ snd(hd(frontiers)) : p has the form C(p1, . . . , pn) then
MATCH (hd(frontiers))

else

let π be a path such that ∃(i, f) ∈ frontiers : π ∈ dom(f) ∧ f@π has the form C(p1, . . . , pn)
CS = {C | ∃(i, f) ∈ frontiers : π ∈ dom(f) ∧ f@π = C(. . .)}
edges = map(λC.(C, compile(mapPartial(project(C, π))frontiers)))CS
defaults = filter(λ(i, f).π /∈ dom(f) ∨ f@π is a variable)frontiers

in TEST (π, edges , SOME (compile defaults))
end

where

snd(i, f) = f
project(C, π)(i, f) =
if π ∈ dom(f) then
case f@π
of x => SOME (i, f)
| C ′(p1, . . . , pn) =>

if C = C ′ then SOME (i, f − {(π, f@π)} ∪
⋃n

j=1{(π.j, pj)})
else NONE

else

SOME (i, f)

The compiler is called initially with frontiers equal to a list of (i, {(Λ, pi)}) pairs.

Figure 8: Match compiler

The algorithm shown is slightly simpler than what we use in prac-
tice. If defaults is empty, or if a type analysis shows that the set
CS includes all the constructors that could be used, we omit the
default tree, by using NONE instead of SOME (compile defaults).
Furthermore, if there is no default tree, and if there is only a single
outgoing edge in edges (i.e., if the type has but a single constructor),
then the TEST node is not necessary; compile can return the node
pointed to by the single outgoing edge.

8



of the standard basis for SML’97 (Gansner and Reppy 1999); their signatures
are given in Appendix A.

3.2 Match-compilation heuristics

In Figure 8, the choice of π—which node to examine next—is nondeterministic.
The algorithm used to choose π determines the size and shape of the resulting
decision tree, but the only method known for finding the “best” decision tree is
exhaustive search, which is impractical. In a real compiler, heuristics are used
to choose π. These heuristics are usually expressible in terms of properties of
the TEST node that would be created for each particular choice of π. Here, we
describe various heuristics that have been proposed in the literature or are used
in actual match compilers. We state each heuristic as a function from a path π
to an integer score; paths with higher scores are preferred.

Relevance A path π is deemed relevant to rule i if there is an outedge from
π’s TEST node on which rule i does not appear. (Our algorithm permits
only choices of π that are relevant to some rule, except when the type
system permits only one possible constructor C, in which case no TEST
node is created.) Formally, π is relevant to rule i iff (i, f) ∈ frontiers∧π ∈
dom(f) ∧ f@π = C(. . .). The relevance heuristic prefers paths that are
relevant to early rules. For each path π, the heuristic finds the least i
such that π is relevant to rule i, and it assigns a score of −i to π. If π is
not relevant to any rule, it is assigned a score of −N − 1, where N is the
number of rules.

Baudinet and MacQueen (1985) recommends this heuristic.

Small Defaults This heuristic assigns to path π a score −N , where N is the
number of rules such that (i, f) ∈ frontiers ∧ (π /∈ dom(f) ∨ f@π is a
variable). These are the rules that are used to build the default tree.

Baudinet and MacQueen (1985) recommends an unspecified combination
of this heuristic with the branching-factor heuristic presented below. Ac-
cording to Aitken (1992) and our inspection of the source code, SML/NJ
uses this heuristic as its primary heuristic.

Fewer Child Rules This heuristic assigns to path π a score −N , where N is
computed by adding the number of rules that appear in the frontiers sets
of each child.

The GAML compiler (Maranget 1992) uses this heuristic as its primary
heuristic, and the New Jersey Machine-Code Toolkit (Ramsey and Fer-
nández 1995) uses this heuristic.

Small Branching Factor This heuristic assigns to path π a score −N , where
N is the number of outgoing edges from the TEST node that would be
created, plus 1 for the default tree if applicable.

9



SML/NJ uses this heuristic to break ties when two paths have the same
score on the Small Defaults heuristic. The GAML compiler uses this
heuristic to break ties when to paths have the same score on the Fewer
Child Rules heuristic, except it does not count 1 for the default tree.

Large Branching Factor This heuristic, the opposite of Small Branching Fac-
tor, assigns to path π a score N , where N is the number of outgoing edges
from the TEST node that would be created, plus 1 for the default tree if
applicable.

Cardelli (1984) recommends this heuristic on the grounds that it is likely
to produce a shallower tree.

Arity Factor This heuristic assigns to path π a score −N , where N is com-
puted by adding the arities of the constructors in set CS , as computed in
Figure 8.

Baudinet and MacQueen (1985) recommends this heuristic.

Leaf Edges This heuristic assigns to path π a score N , where N is the number
of children of the TEST node that are MATCH nodes.

The New Jersey Machine-Code Toolkit uses this heuristic.

Artificial rule This heuristic assigns to path π a score of −1 if there exists a
child of the TEST node whose frontiers set contains only the artificial rule
added for the case in which no patterns match, and a score of 0 otherwise.

The New Jersey Machine-Code Toolkit uses this heuristic.

Left to right This heuristic assigns scores that are higher for short paths than
for longer and higher for paths further to the left. In particular, the score
for path π is guaranteed to be higher than the score for path π.j, and
the score for path π.j is higher than the score for path π.k if and only if
j < k. The details of the score computation depend on the set of paths
that appear in frontiers, but the heuristic guarantees to examine paths in
top-down, left-to-right order.

This heuristic, as implemented by Sestoft (1996), is used in Moscow ML,
Objective CAML, and the ML Kit, and it is used to break ties in Stan-
dard ML of New Jersey.

Right to left Top-down, right-to-left order.

4 Related work

Much work on match compilation has been done in the context of lazy lan-
guages, in which the semantics taken for pattern matching affects the termi-
nation properties of functions. In lazy languages, different matching semantics
require different match compilers, only some of which can make use of heuris-
tics. Less attention has been paid to match compilation for strict languages,

10



in which there is a single semantics for matching. This semantics places fewer
constraints on match compilers, leaving room for more experimentation with
heuristics.

4.1 Match compilation for lazy languages

Augustsson (1985), which describes a match compiler for the lazy language
LML, appears to be the first published explanation of a match compiler for a
programming language. Augustsson notes that the order of selection of paths
affects the termination properties of the program, and in order to have pre-
dictable termination properties, he defines the semantics of pattern matching
as checking each pattern in Left to Right order. Augustsson’s match compiler
differs from ours in its treatment of variable patterns. If f@π is a variable,
Augustsson’s compiler does not replicate f out all outgoing edges of the TEST
node for π. Instead, it creates links to the “default” tree from “don’t match”
leaves in the subtrees reached by Ci edges. The resulting backtracking automa-
ton is a dag, not a tree, and it may test the same paths more than once, so
it is not efficient in the sense used in this paper, but it is more compact than
a decision tree. Augustsson represents this automaton using “simple case ex-
pressions,” augmented with a default construct, which provides a link to the
default case of the nearest ancestor case expression. Augusstson discusses the
translation of this representation into virtual-machine code. Wadler (1987) re-
capitulates Augustsson (1985) with some refinements and extensions, as part of
a textbook treatment of the implementation of lazy functional languages (Pey-
ton Jones 1987).

Laville (1991) proposes an alternate semantics for lazy pattern matching.
This semantics is based on partial terms, which model incompletely evaluated
values in lazy languages. The rules for deciding t = σp permit unevaluated
terms in the range of σ. Rather than require partial terms to be evaluated left
to right, this semantics permits parts of terms to remain unevaluated as along
as they are not needed to prove t = σpi ∧ ¬∃j < i : t = σpj . Laville calls a
matching automaton lazy if it evaluates no part of a term unnecessarily. A lazy
automaton is guaranteed to terminate whenever a decision is possible, whereas
a non-lazy automaton might fail to terminate if it unnecessarily evaluates a
divergent computation. Given a list of patterns, Laville’s match compiler either
builds a lazy matching automaton or shows no such automaton exists. The
essence of the technique is that if two patterns overlap, it may be possible to
replace each by a list of patterns such that no two patterns chosen from the
lists overlap. This technique can accomodate different priorities for deciding
between overlapping patterns, not just textual ordering. Unfortunately, it does
not work for types with infinite constructor sets, like integers.

Puel and Suárez (1993) takes a similar approach, translating overlapping
patterns into equivalent “constrained patterns,” which partition the universe
of partial terms into sets that do or do not match a given pattern, or that do
or do not terminate. The match compiler adapts the techniques of Huet and
Lévy (1979) to work on these constrained patterns.

11



Augustsson (1985) Maranget (1992) This paper

Matrix of pij Clause matrix Unmatched frontiers

Matrix column i Column i Path πi in dom(f)

Matrix row j Row j f where (j, f) ∈ frontiers

ei Vi t|πi

pji pji f@πi, where (j, f) ∈ frontiers

Column i all

variables

¬∃(j, f) ∈ frontiers : πi ∈
dom(f) ∧ f@π has the form
C(p1, . . . , pn)

Σ CS

Row deletion project returns NONE and
mapPartial removes the frontier

Table 2: Two formulations of match compilation, compared

Maranget (1992) presents an algorithm for building efficient decision trees
for pattern matches using the Laville semantics. The algorithm produces lazy
decision trees when possible. The primary contribution is that the algorithm
constructs a decision tree directly, without requiring intermediate data struc-
tures that may be exponentially large. This paper also recognizes that there
may be more than one efficient, lazy decision tree, and it recommends the Fewer
Child Rules and Small Branching Factor heuristics.

Maranget (1994) adapts the methods of Maranget (1992) to create a “de-
cision dag” in the style of Augustsson (1985). This dag may be lazy without
being efficient, but its size is bounded by the size of the list of patterns. Methods
that produce pure decision trees, including the algorithm used in this paper, are
subject to potential exponential blowups in code size. Maranget (1994) reports
experience with such blowups when implementing the technique of Puel and
Suárez (1993), and it presents results from one benchmark, in which decision
dags are 5-10% smaller than related decision trees.

Maranget’s match compiler is nearly an instance of the compiler specified
in Figure 8. The primary difference is that in Maranget’s compiler, every un-
matched frontier has the same domain. This invariant could be maintained in
our compiler by changing the definition of project , replacing SOME (i, f) by
SOME (i, f −{(π, f@π)} ∪

⋃n

j=1{(π.j, xj)}) where n is the arity of C and each
xj is a fresh variable (wildcard).

For interested readers, Table 2 shows the parallels between Augustsson (1985),
Maranget (1992), and our compiler.

4.2 Match compilation for strict languages

Cardelli (1984) discusses match compilation briefly, using a “rows and columns”
approach like that of Maranget (1992), but less formal. This match compiler

12



prefers π’s that yield TEST nodes with many outgoing edges, i.e., it uses the
Large Branching Factor heuristic.

Baudinet and MacQueen (1985) discusses match compilation and notes that
a strict evaluation model means that paths can be tested in any order. The
paper states without proof that compiling to a decision tree with a minimum
number of nodes is NP-complete, and it presents the Relevance, Low Branching
Factor, and Arity Factor as heuristics that produce good trees in practice.

Sestoft (1996) derives a match compiler by partially evaluating a näıve pat-
tern matcher. The compiler produces an efficient “if-then-else tree,” which is
post-processed into an efficient decision tree. This simple, elegant method is
used in Moscow ML, Objective CAML, and the ML Kit. It is unclear whether
it could be adapted to use heuristics other than Left to Right or Right to Left.

5 Experiments

We have implemented the heuristics of Section 3.2 in the Standard ML of New
Jersey compiler, version 110.0.3. We have done so by replacing the functions
metric and metricBetter in the file matchcomp.sml in directory translate.
The modifications and new code total less thatn 100 lines. The modified com-
piler uses a list of heuristics stored in a ref cell, so we can test different heuristics
without rebuilding the compiler. We compare the resulting lists of scores using
lexicographic ordering; as in standard SML/NJ, ties are broken using Left to
Right.

We have implemented 9 of the 10 heuristics in Section 3.2; the implementa-
tion of Leaf Edges presented some late-breaking difficulties. With 9 heuristics,
there are over 9! possible lists; even if we could evaluate one every 10 seconds, it
would take more than six weeks to check them all. We have therefore measured
the effects of single heuristics and of lists of two heuristics, as well as selected
longer lists of especial interest.
We hope to be able to report results with Objective CAML in the full paper.
We have measured both static and dynamic properties of the automata pro-

duced by different heuristics. The static properties include

• the number of nodes in the decision tree

• the maximum path length (height) of the decision tree

• the average path length of the decision tree

Because the values of these properties depend on the patterns that are compiled,
we report not the values themselves but the ratios of the values to a baseline.
We have chosen the Left to Right heuristic as the baseline; this choice is ap-
propriate both because it supports the elegant match-compilation algorithm of
Sestoft (1996) and because it is used in several compilers for ML and CAML.

The only dynamic property we have measured is running time. To assist in
understanding the effects of different heuristics, we hope in the full paper to be
able to report measurements of the number of TEST nodes traversed.

13



Benchmark Lines Source Description

barnes-hut 1226 NJB Barnes-Hut N -body code

boyer 910 NJB tautology checker

fft 194 NJB fast Fourier transform

knuth-bendix 584 NJB Knuth-Bendix completion

lexgen 1305 NJB lexical analyzer generator

life 141 NJB game of life

logic 345 NJB simple Prolog-like interpreter

mandelbrot 60 NJB computes Mandelbrot set

mlyacc 7272 NJB parser generator

ray 447 NJB ray tracer

simple 913 NJB spherical fluid-dynamics simulation

tsp 536 NJB travelling salesperson

vliw 3680 NJB VLIW translator

smlnj 125121 SMLNJ SML/NJ compiler, version 110.0.3

alpha 385 MD instruction decoder for Alpha

sparc 603 MD instruction decoder for SPARC

mips 178 MD instruction decoder for MIPS

pentium 6520 MD instruction decoder for Pentium

NJB = SML/NJ benchmark suite

SMLNJ= SML/NJ compiler sources

MD = derived from descriptions for NJ Machine-Code Toolkit

Table 3: Benchmarks

5.1 Benchmarks

We have measured behavior of programs from the SML/NJ benchmark suite
(located at ftp://ftp.research.bell-labs.com/dist/smlnj/benchmarks),
and of SML/NJ compiling itself. We have also devised some especially chal-
lenging benchmarks based on the problem of recognizing binary representations
of machine instructions. Table 3 identifies all the benchmarks.

The binary recognizers are derived from formal specifications of binary rep-
resentations of instructions (Ramsey and Fernández 1997). From each machine
specification, we have derived ML functions that recognize each combination
of instruction and addressing mode. The argument to the recognizer is a large
tuple holding values of fields of the instruction being recognized. Table 4 shows
the number of fields in the tuple, the number of patterns in the recognizer’s
definition, and the average number of constructors appearing in each pattern.
(In this context, constructors are integer field values.) The ML recognizers are

14



Machine Fields Patterns Constructors/Pattern
MIPS 16 172 4.1
Alpha 13 371 4.4
SPARC 12 581 4.6
Pentium 25 6475 9.0

Table 4: Properties of recognizers for machine instructions

not completely equivalent to the original recognizers; side conditions have been
discarded during the translation.

The numbers in Table 4 show why these functions are especially challenging
for match compilation. The number of π’s at early choice points is quite large,
so there is potential for exponential blowup. For any given π, for the number of
f ’s with π ∈ dom(f) is small, so the number of rules eliminated by project(C, π)
is small. The Pentium recognizer is especially challenging; there are only two
heuristics (Small Defaults and Few Child Rules) for which the compiler termi-
nates in reasonable time with reasonable memory consumption. Without results
for Left to Right, we have no basis for comparison, so we do not report results
for the Pentium benchmark.

5.2 Results

For all normal benchmarks except lexgen, mlyacc, ray, vliw, and smlnj, the
heuristics made no difference at all. On the static measurements for ray, it was
possible to do up to 1% worse then Left to Right, but not better. For lexgen,
it was possible to do up to 2–5% worse then Left to Right, but not better. For
mlyacc, it was possible to do up to 40% worse, but not better.

For vliw, improvements of up to 19% in tree size were possible, along with
improvements of up to 5% in path length; it was also possible to do worse.

For smlnj, Fewer Child Rules coupled with Small Defaults was 5–10% better
than Left to Right in number of nodes and up to 1% better in average path
length. Many other heuristic combinations were 2–5% better in number of
nodes, including the small defaults, small branching factor combination used in
production SML/NJ. Compilers using Small Branching Factor failed to compile
the file parse/ml.grm.sml, even when ties were broken using other heuristics.
For vliw, things are more interesting. Fewer Child Rules is 10% or more better
than Left to Right on nodes, but 2–5% worse on paths. The best overall in
terms of paths and nodes is Small Defaults, with ties broken by Right to Left;
this combination does 10% better on nodes and 2–5% better on paths. Small
Defaults does nearly as well when ties are broken by Small Branching Factor or
Fewer Child Rules.

Figure 9 shows the tree sizes and average path lengths of the interesting
benchmarks under selected heuristics. The tree-height (maximum path length)
costs were uninteresting and have been omitted. Costs are normalized with
respect to the cost for Left to Right; longer bars are better. We have used

15



lexgen

mlyacc

ray

vliw

smlnj

lexgen

mlyacc

ray

vliw

smlnj

lexgen

mlyacc

ray

vliw

smlnj

lexgen

mlyacc

ray

vliw

smlnj

lexgen

mlyacc

ray

vliw

smlnj

lexgen

mlyacc

ray

vliw

smlnj

lexgen

mlyacc

ray

vliw

smlnj

0.5 1.0

Ratio of total nodes for L-to-R to total nodes for heuristic

within 1%

1-2%

2-5%

5-10%

10% to a factor of 2

more than a factor of 2

lexgen

mlyacc

ray

vliw

smlnj

lexgen

mlyacc

ray

vliw

smlnj

lexgen

mlyacc

ray

vliw

smlnj

lexgen

mlyacc

ray

vliw

smlnj

lexgen

mlyacc

ray

vliw

smlnj

lexgen

mlyacc

ray

vliw

smlnj

lexgen

mlyacc

ray

vliw

smlnj

0.5 1.0

Ratio of average path length for L-to-R to average path length for heuristic

Few Ch Rules; Sm BF
(GAML)

Lg BF
(Cardelli)

Sm Def; Sm BF
(SML/NJ)

Sm BF; Few Ch Rules

Relv; Arity; Sm BF
(Baudinet/MacQueen 2)

Sm Def; R-L

Relv; Sm BF; Arity
(Baudinet/MacQueen 1)

Number of nodes Heuristics Average Path Length

Figure 9: Static costs of selected benchmarks and heuristics

shading to highlight how the costs differ from Left to Right; darker shading
indicates larger differences. The preponderance of white bars show results that
differ from Left to Right by at most 1%.

The best results for vliw are obtained by Small Defaults, with ties broken by
Right to Left. We have included Small Branching Factor, with ties broken by
Fewer Child Rules, as an example of a heuristic that shows small improvements
on some benchmarks, but can do disastrously badly, e.g., on mlyacc and smlnj.
(We could not even compile smlnj using Small Branching Factor, because the
compiler consumed too much time and memory.) The remaining combinations
of heuristics are those recommended in the literature or used in the SML/NJ or
GAML compilers. The standard SML/NJ heuristics do very well on vliw and
are the best for other benchmarks.

As expected, Cardelli’s Large Branching Factor heuristic produces larger
trees than those recommended by Baudinet and MacQueen, which include Small

16



mips

alpha

sparc

mips

alpha

sparc

mips

alpha

sparc

mips

alpha

sparc

mips

alpha

sparc

Heuristic and Benchmark

0.8 1.0 1.2 1.4

Ratio of total nodes for L-to-R to total nodes for heuristic

 5.7

 11.9

 26.6

 1.8

 10.5

 7.8

 12.0

 26.6

 14.7

 21.3

 2.7

Sm BF; Few Ch Rules

Sm Def; R-L

Sm Def; Sm BF

Lg BF

Few Ch Rules; Sm BF

10% to a factor of 2

more than a factor of 2

mips

alpha

sparc

mips

alpha

sparc

mips

alpha

sparc

mips

alpha

sparc

mips

alpha

sparc

Heuristic and Benchmark

0.8 1.0 1.2 1.4

Ratio of average path length for L-to-R to average path length for heuristic

 1.6

 1.6

Sm BF; Few Ch Rules

Sm Def; R-L

Sm Def; Sm BF

Lg BF

Few Ch Rules; Sm BF

2-5%

5-10%

10% to a factor of 2

Number of nodes Heuristics Average Path Length

Figure 10: Static costs of machine recognizers (selected heuristics)

17



Benchmark Number of nodes Average path length
ray r = 0.02 r = 0.02
vliw r = 0.23 r = 0.06
lexgen r = 0.30 r = 0.29
mlyacc r = 0.04 r = 0.05

Table 5: Correlations of running times with static cost measures

Branching Factor. Perhaps surprisingly, however, Large Branching Factor does
not produce trees with shorter average path lengths.

We are aware that putting the entire SML/NJ sources in a single benchmark
is likely to hide interesting behavior, and we plan to correct this defect in the
full paper.

Figure 10 shows the results for the instruction-recognizer benchmarks. Ra-
tios greater than 1.5 are pinned at 1.5; otherwise most bars would be too short to
see. Values for these ratios are given to the right of the bars. Space limitations
prevent further discussion of these benchmarks.

We measured running times on a 200 MHz Pentium with 128MB of RAM
running Linux kernel 2.0.30. The effect of heuristics on running time is not ob-
vious on casual inspection, but there is a statistical correlation between running
times and some static measures of cost. We have computed the linear correla-
tion (Bevington and Robinson 1992, §11.2) between running times, number of
nodes, and average path length. Table 5 shows these correlations. The results
show that the static measures may help predict the running times of the vliw
and lexgen benchmarks. For the final paper, we plan a more thorough analysis
that will show how much of the variation in running time is predicted by the
tree size or the average path length.

Our experiments show that most programs compiled with a simple left-to-
right heuristic are not changed by the use of other heuristics. Still, there are a
few programs for which heuristics can make a big difference in static measures
that correlate with code size. We don’t observe big differences in running times,
but a statistical analysis (to be completed for the final paper) should reveal
how much of the variation in running times is predicted by static measures like
number of nodes or average path length.

Acknowledgements

We thank Dave MacQueen for providing internal documentation of the match
compiler used in Standard ML of New Jersey. This work has been supported
in part by NSF grant ASC-9612756, NSF CAREER award CCR-9733974, and
DARPA contract MDA904-97-C-0247.

18



References

Aitken, William. 1992 (Summer).
The SML/NJ match compiler.
Internal documentation obtained from Dave MacQueen
<dbm@research.bell-labs.com>.

Augustsson, Lennart. 1985 (September).
Compiling pattern matching.
In Jouannaud, Jean-Pierre, editor, Functional Programming Languages
and Computer Architecture, LNCS.

Baudinet, Marianne and David MacQueen. 1985 (December).
Tree pattern matching for ML (extended abstract).
Unpublished manuscript, AT&T Bell Laboratories.

Bevington, Philip R. and D. Keith Robinson. 1992.
Data Reduction and Error Analysis for the Physical Sciences. second
edition.
New York: McGraw-Hill.

Burstall, Rod M., David B. MacQueen, and Donald T. Sannella.
1980 (August).
Hope: An experimental applicative language.
In Conference Record of the 1980 LISP Conference, pages 136–143. ACM,
ACM.

Cardelli, Luca. 1984 (August).
Compiling a functional language.
In Conference Record of the 1984 ACM Symposium on Lisp and
Functional Programming, pages 208–217. ACM, ACM.

Comer, Douglas and Ravi Sethi. 1977 (July).
The complexity of trie index construction.
Journal of the ACM, 23(3):428–440.

Gansner, Emden and John Reppy, editors. 1999.
The Standard ML basis library.
Book in preparation. Preliminary version available at
http://cm.bell-labs.com/cm/cs/what/smlnj/doc/basis/index.html.

Hoffmann, Christoph M. and Michael J. O’Donnell. 1982.
Pattern matching in trees.
Journal of the ACM, 29(1).

Hudak, Paul, Simon L. Peyton Jones, Philip Wadler, Brian Boutel, Jon
Fairbairn, Joseph H. Fasel, Maŕia M. Guzmán, Kevin Hammond, John
Hughes, Thomas Johnsson, Richard Kieburtz, Rishiyur Nikhil, Will
Partain, and John Peterson. 1992 (May).
Report on the programming language Haskell, a non-strict, purely
functional language, version 1.2.
SIGPLAN Notices, 27(5):R1–R164.

19



Huet, Gérard and Jean-Jacques Lévy. 1979 (August).
Call by Need Computations in Non-Ambiguous Linear Term Rewriting
Systems.
Technical Report 359, IRIA.

Laville, Alain. 1991 (April).
Comparison of priority rules in pattern matching and term rewriting.
Journal of Symbolic Computation, 11(4):321–348 (or 321–347??).

Leroy, Xavier, Didier Rémy, Jérôme Vouillon, and Damien Doligez. 1998.
The Objective Caml system, documentation and user’s guide.
INRIA.
Available at http://pauillac.inria.fr/ocaml/htmlman/.

Maranget, Luc. 1992 (June).
Compiling lazy pattern matching.
In White, Jon L., editor, Proceedings of the ACM Conference on LISP
and Functional Programming, pages 21–31, San Francisco, CA.

. 1994 (October).
Two techniques for compiling lazy pattern matching.
Technical Report RR-2385, INRIA.

Milner, Robin, Mads Tofte, Robert Harper, and David MacQueen. 1997.
The Definition of Standard ML (Revised).
Cambridge, Massachusetts: MIT Press.

Peyton Jones, Simon L., John Hughes, Lennart Augustsson, Dave Barton,
Brian Boutel, Warren Burton, Joseph Fasel, Kevin Hammond, Ralf Hinze,
Paul Hudak, Thomas Johnsson, Mark Jones, John Launchbury, Erik
Meijer, John Peterson, Alastair Reid, Colin Runciman, and Philip
Wadler. 1999 (February).
Haskell 98: A non-strict, purely functional language.
Available from www.haskell.org.

Peyton Jones, Simon L. 1987.
The Implementation of Functional Programming Languages. International
Series in Computer Science.
Englewood Cliffs, NJ: Prentice Hall.

Puel, Laurence and Ascánder Suárez. 1993 (January).
Compiling pattern matching by term decomposition.
Journal of Symbolic Computation, 15(1):1–26.

Ramsey, Norman and Mary F. Fernández. 1995 (January).
The New Jersey Machine-Code Toolkit.
In Proceedings of the 1995 USENIX Technical Conference, pages 289–302,
New Orleans, LA.

. 1997 (May).
Specifying representations of machine instructions.
ACM Transactions on Programming Languages and Systems,
19(3):492–524.

20



Ramsey, Norman. 1999.
Match compiler for New Jersey Machine-Code Toolkit (ML version).
This source code can be downloaded from
http://www.cs.virginia.edu/nr/toolkit, or it can be browsed at
http://www.cs.virginia.edu/nr/toolkit/working/sml/WWW/match.html.

Sestoft, Peter. 1996 (February).
ML pattern match compilation and partial evaluation.
In Danvy, O., R. Glück, and P. Thiemann, editors, Dagstuhl Seminar on
Partial Evaluation, Vol. 1110 of Lecture Notes in Computer Science, pages
446–464, Berlin.

Turner, David A. 1985 (September).
Miranda: A non-strict functional language with polymorphic types.
In Jouannaud, Jean-Pierre, editor, Proceedings IFIP Conference on
Functional Programming Languages and Computer Architecture, Vol. 201
of Lecture Notes in Computer Science, pages 1–16, New York, N.Y.

Wadler, Philip. 1987.
Efficient compilation of pattern-matching.
In The Implementation of Functional Programming Languages
(Peyton Jones 1987), Chapter 5, pages 78–103.

A ML basis

These are the functions used in the paper.

datatype ’a option = SOME of ’a | NONE

val map : (’a -> ’b) -> ’a list -> ’b list

val mapPartial : (’a -> ’b option) -> ’a list -> ’b list

val filter : (’a -> bool) -> ’a list -> ’a list

mapfl applies f to every element of l and returns a list of the results. mapPartialfl
does the same, except it includes only results of the form SOME x, and it strips
off the SOME . filterpl applies predicate p to the elements of l and returns a list
of those elements satisfying p.

21


