COMP 105 Homework: Lambda calculus
COMP105 Assignment: Lambda Calculus
Due Sunday, April 10, at 11:59PM.

Setup and Instructions

You will need
git clone /comp/105/git/lambda

which chould give you a directory Lambda with files 1interp.sml, Lhelp.ui, Lhelp.uo, Makefile, and
basis.lam.

Do all six problems below. There are three problems on implementing the lambda calculus, which you'll do with a partner,
and three problems on programming with Church numerals, which you'll do on your own. For problems 1-3, modify the
linterp.sml file. Put your answers for the Church numerals problems, 4-6, in a file called church. lam.

Introduction to the Lambda interpreter

You will be working with a small, interactive interpreter for the lambda calculus. This section explains what syntax to use
and how to interact with the interpreter.

Concrete syntax

Every definition must be terminated with a semicolon. Comments are C++ style line comments, starting with the string //
and ending at the next newline. A definition can be a term, a binding, or a use statement.

A use statement loads a file into the interpreter as if it had been typed in directly. A use statement is of the form

-> use filename;

When a term is entered at the toplevel, any free variables in the term which appear in the environment are substituted with
their bindings in the environment, then the term is reduced to normal form (if possible) and the result is printed.

—> term;

A binding first evaluates the term on the right hand side as above, and then binds the name on the left hand side to the
resulting term in the environment. It is an error for the term on the right hand side to contain any free variables which are not
bound in the environment. Bindings are of the form:

—> name = term;
or
—-> noreduce name = term;

If the noreduce keyword appears, the term on the right-hand side is not normalized. This tactic can be useful for terms that
have no normal form, such as

noreduce bot = (\x.x x) (\x.x x);
noreduce Y = \f. (\x.f(x x)) (\x.f(x x));

A lambda term can be either a variable, a lambda abstraction, an application, or a parenthesized lambda term. Precedence is
as in ML. A lambda abstraction is written as follows. Note that each lambda abstraction can abstract over only one variable.
\name.term

Application of one term to another is written:

tl t2

The lambda interpreter is very liberal about names of variables. A name is any string of characters that contains neither
whitespace, nor control characters, nor any of the following characters: \ () . = /. Also, the string use is reserved and is
therefore not a name. So for example, the following are all legal:

1 = \f.\x.f x;
True = \x.\y.x;
one = True 1;
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A short example transcript

A healthy lambda interpreter should be capable of something like the following:

<transcript>=

-> true = \x.\y.x;

-> false = \x.\y.y;

-> pair = \x.\y.\f.f x y;

-> fst = \p. p (\x.\y.x);
-> snd = \p.p(\x.\y.Vy);
-> true;

\x.\y.x

-> fst (pair true false);
\x.\y.x

-> snd (pair true false);
\x.\y.vy

-> if = \x.\y.\z.x y z;

-> (if true fst snd) (pair false true);
\x.\y.y
-> (if false fst snd) (pair true false);
\x.\y.vy

For more example definitions, see the basis. 1lam file distributed with the assignment.

Modifying the Lambda Interpreter: Exercises for pairs

The purpose of these problems is to help you learn about substitution and reduction, the fundamental notions of the lambda
calculus. We also give you a little more practice in continuation passing, which is an essential technique in lambda-land. You
may do these exercises by yourself or with a partner.

For these problems, define appropriate types and functions in 1interp.sml. When you are done, you will have a working
lambda interpreter. Some of the code we give you (Lhelp.ui and Lhelp.uo) is object code only, so you will have to
build the interpreter using Moscow ML. Just typing make should do it.

1. Evaluation—Basics (difficulty *). This problem has two parts:

a. Using ML, create a type definition for a type t erm, which should represent a term in the untyped lambda calculus.
Using your representation, define the following functions with the given types:

lam : string -> term -> term (* lambda abstraction *)
app : term —> term -> term (* application *)
var : string -> term (* variable *)
cpsLambda : (* observer ¥*)

term —>

(string -> term -> 'a) ->

(term -> term -> 'a) -—>

(string -> 'a) ->
'a

These functions must obey the following algebraic laws:

cpsLambda (lam x e) f g h = f x e
cpsLambda (app e e') £ g h =g e e’
cpsLambda (var x) f gh=hx

b. Using cpsLambda, define a function toString of type term —-> string that converts a term to a string in
uScheme syntax. Your toString function should be independent of your representation. That is, it should work
using the functions above.

My solution to this problem is under 30 lines of ML code.
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2. Evaluation—Substitution (difficulty **). Implement substitution on your t e rm representation. Use a function subst of
type string * term -> term —-> term. To compute the substitution M[x|->N], you should call subst (x, N)
M.

Also define a function freevVars of type term -> string list which returns a list of all the free variables in a term.

My solution to this problem is under 40 lines of ML code.

3. Evaluation—Reductions (difficulty ***). In this problem, you use your substitution function to implement two different
evaluation strategies.

a. Implement normal-order reduction on terms. That is, write a function reduceN : term -> term thattakes a
term, performs a single reduction step (either beta or eta) in normal order, and returns a new term. If the term you
are given is already in normal form, your code should raise the exception NormalForm, which you should define.

b. Implement applicative-order reduction on terms. That is, write a function reduceA : term -> term that takes
a term, performs a single reduction step (either beta or eta) in applicative order, and returns a new term. If the term
you are given is already in normal form, your code should raise the exception NormalForm, which you should
reuse from the previous part.

My solution to this problem is under 20 lines of ML code.

Work with Church Numerals: Exercises to do on your own

The purpose of the problems below is to give you a little practice programming in the lambda calculus. My solutions to all
three problems total less than fifteen lines of code. You must do these exercises by yourself.

4. Church Numerals—predecessor (difficulty **). Implement the predecessor function for the Church numerals. That is, a
function pred such that pred (succ n) =n, and pred (0) =0. Ultimately, you will write your function in lambda notation
acceptable to the lambda interpreter, but you may find it useful to try to write your initial version in Typed uScheme (or ML
or uScheme) to make it easier to debug. To get full credit, you must explain the reasoning behind your answer.

Remember,

<church numerals>=

0 = \f.\x.x;

succ = \n.\f.\x.f (n f x);
+ = \n.\m.n succ m;

* = \n.\m.n (+ m) O;

You can load the initial basis with these definitions already created by typing: use basis.lam; in your interpreter.
Hint: Define a function 1ag, so that lag (n,m) = (n+1,n).Now, whatis lag (lag(lag(lag(0,0))))?.

5. Church Numerals—equality (difficulty *). Assume you have a predecessor function. Use it to implement an equality
function on Church numerals. Again, turn in your answer using (untyped) lambda notation, but feel free to start off in
uScheme or Typed uScheme if that makes it easier to debug. (Don't expect to be able to use ML here; the Hindley-Milner
type system is not powerful enough to express the types of all of the functions you need to write.) Do not use recursion or
the Y-combinator in your solution.

Remember the definitions of the Booleans:
<>=
true = \x.\y.x;

false = \x.\y.y;

Hints: Write a function to test if a Church numeral is zero. Consider that n = m if and only if n <= m and m <= n. Remember
to use the predecessor function.
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6. Church Numerals—division and modulus (difficulty ***). Write a function divmod such that given two Church
numerals m and n, divmod m n returns a lambda-term representing the pair (m div n, m mod n). Again, use pure untyped
lambda notation. You may use pair, fst, and snd as defined in class, and you will use the functions from the previous
problems. You may not use explicit recursion; if you want a recursive solution, use the Y combinator.

Common mistakes, alarums, and excursions
One common mistake is to forget the eta rule:
\x.Mx --> M provided x is not free in M
Here is an reduction in two eta steps:
\x.\y.cons x y ——> \x.cons x ——> cons
Your interpreters should be capable of this reduction.

If you test an interpreter before implementing reduction, you may see some alarming-looking terms that have extra lambdas
and applications. This is because the interpreter uses lambda to implement the substitution that is needed for the free
variables in your terms. Here's a sample:

<transcript of interpreter without reductions>=
-> thing = \x.\y.y x;

thing

-> thing;

(\thing.thing) \x.\y.y x

Everything is correct here except that the code claims something is in normal form when it isn't. If you reduce the term by
hand, you should see that it has the normal form you would expect. A~term that refers to even more defined variables could
start to look very exciting indeed.

Extra Credit

Solutions to any extra-credit problems should be placed in your README file.

Extra Credit—Normalization. Write a higher-order function that takes as argument a reducing strategy (e.g., reduceA or
reduceN) and returns a function that normalizes a term. Your function should also count the number of reductions it takes
to reach a normal form. As a tiny experiment, report the cost of computing using Church numerals in both reduction
strategies. For example, you could report the number of reductions it takes to reduce "“three times four" to normal form.

This function should be doable in about 10 lines of ML.
Extra Credit—Normal forms galore. Discover what Head Normal Form and Weak Head Normal Form are and implement
reduction strategies for them. Explain, in an organized way, the differences between the four reduction strategies you have

implemented.

Extra Credit—Recursive functions. Although the Y combinator cannot be typed in Hindley-Milner, it is actually fairly easy
to write an explicit fixed-point operator in ML. Do so. Your operator should be called fix and should have the following

type:

fix : forall 'a, 'b . (('a -> 'b) -> ('a -> 'b)) -> ('a -> 'b)
Use your explicit fixed-point operator to define a recursive factorial function and see if it works.

For a larger bonus, define £1ix without using fun or val rec (hard).
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Extra Credit—Typed Equality. For extra credit, write down equality on Church numerals using Typed uScheme, give the
type of the term in algebraic notation, and explain why this function can't be written in ML. (By using the ““erasure" theorem
in reverse, you can take your untyped version and just add type abstractions and type applications.)

What to submit

For this assignment,
® Please use submitl05-1lambda—pair to submit your modified 1interp.sml for the parts on evaluation.

® Please use submitl105-1lambda-solo to submit a README file and file church. lam for the parts on Church
Numerals.
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