
COMP 105 Homework: Standard ML Modules

Due Tuesday, May 3 at 11:59 PM

The purpose of this assignment is threefold:

To get some practice with Standard ML modules•
To use Standard ML modules to put together a nontrivial program.•
To see how to reuse code that depends not just on other values, but also on other types.•

You will complete problems 1–2 and problems A and C. (There was a problem B, but I took it out.)

The code in this handout, together with a compile script, can be had by

 git clone linux.cs.tufts.edu:/comp/105/git/ttt

ML Modules finger exercises

A simple functor (Difficulty *, Time *). On March 7, Greg Morrisett gave a guest lecure on Haskell type classes.
He talked about QuickCheck and how it generates random data. This capability can be duplicated using
ML modules.

Define a signature ARBITRARY with a type t and an operation arbitrary that generates random data
of type t.

The arbitrary operation should be similar to the arby operation in the lecture notes under the title
"What is Testable?" But there are a couple of differences:

The arbitrary operation should not be polymorphic: it should always return a value of type t.•
Because ML permits side effects, it is not necessary or desirable to supply a source of random
numbers. Instead, the arbitrary operation can take an empty tuple as argument.

•

a.

Write a functor ArbitraryList that takes one argument A with signature ARBITRARY and produces a
new structure that also has signature ARBITRARY, but in which the arbitrary operation produces an
arbitrary list of type A.t list. You will need to come up with appropriate definitions of both t and
arbitrary.

Hints:

Don't overlook http://www.standardml.org/Basis, especially List.tabulate.
(You can see an example in the same lecture notes.)

Also try help "lib"; in Moscow ML; you may find Random.range useful.

◊

If you want to test your functor, define a structure ArbitraryInt : ARBITRARY where
type t = int.

◊

b.

Put your signature and functor in file arbitrary.sml.

1.

Data structures (Difficulty *, Time **). A heap is a collection of elements with an operation that quickly finds and
removes a minimal element. The elements of a heap are therefore totally ordered.

Design an abstraction for representing heaps in ML. Your abstraction may be mutable or immutable.

Formalize your abstraction by giving an ML signature HEAP describing the abstraction. Be sure to

Define two abstract types: one to represent a heap and one to represent an element.◊
Identify each operation as a creator, producer, mutator, or observer◊
Specify what each operation does, either using informal English, algebraic laws, or both◊

The elements of a heap are totally ordered; be sure to expose that total order in the interface.

a.

2.

COMP 105 Homework: Standard ML Modules

COMP 105 Homework: Standard ML Modules 1

http://www.standardml.org/Basis/

Put your signature into a file called heap-sig.sml. You will need to compile it with the -toplevel
option, e.g.,

mosmlc -toplevel -c heap-sig.sml

Notice that for this part of the problem you write no code. All you write is the interface.
Use your abstraction to implement heap sort. That is, write a functor that takes a structure matching
signature HEAP and produces a structure that contains a function that sorts a list of elements by inserting all
the elements into a heap, then removing them one by one until the heap is empty.

Give your functor an explicit result signature, paying careful attention to type revelation.◊
You need not implement HEAP. This is the whole point!◊

Put your functor into a file called heapsort.sml. You will need to compile it with the -toplevel
option, e.g.,

mosmlc -toplevel -c heap-sig.ui heapsort.sml

Because the heapsort.sml refers to signature HEAP, you must pass it the heap-sig.ui file where
signature HEAP is defined. You will have produced heap-sig.ui by compiling heap-sig.sml.

b.

Playing Adversary Games: Overview

In problems A-C below, you will implement and use a system for playing simple adversary games. The program will show
game configurations, accept moves from the user and choose the best move.

The system is based on an abstract game solver (AGS) which, given a description of the rules of the game, will be able to
select the best move in a particular configuration. An AGS is obtained by abstracting (separating) the details of a particular
game from the details of the solving procedure. The solving procedure uses exhaustive search: it tries all possible moves and
picks the best. Such a search can solve games of complete information, provided the configuration space is small enough.
And the search is general enough that we can abstract away details of many games, separating the implementation of the
solver from the implementation of the game itself.

To separate game from solver, in such a way that a single solver can be used with many games, requires a carefully designed
interface. In this problem, we give you such an interface, which is specified using the SML signature GAME. (The signature
was designed by George Necula and modified by Norman Ramsey.)

The GAME signature declares all the types and functions that an Abstract Game Solve must know about a game. The signature
is general enough to cover a variety of games. Even details like ``the players take turns'' are considered to be part of the rules
of the game—such rules are hidden behind the GAME interface, and the AGS operates correctly no matter what order players
move in. (You could even implement a solitaire as a ``two-player'' game in which the second player never gets a turn!)

You will use two-player games in the last two parts of this assignment: implement a particular game and implement an AGS
of your own.

The idea behind the Abstract Game Solver (AGS)

As players move, the state of a game moves from one configuration to another. In any given configuration, our solver
considers all possible moves. After each move, it examines the resulting configuration and tries all possible moves from that
configuration, and so on. In~each configuration, the solver assumes that the player plays perfectly, that is, whenever possible
the player will choose a move that forces a win.

This method (``exhaustive search'') is suitable only for very small games. Nobody would use it for a game like chess, for
example. Nevertheless, variations of this idea are used successfully even for chess; the idea is to stop or ``prune'' the search
before it goes too far.

COMP 105 Homework: Standard ML Modules

ML Modules finger exercises 2

Basic data in the problem: Players and outcomes

Representation is the essence or pgoramming. We~start by describing basic representations for the essential facts we assume
about each game:

There are two players.3.
A game ends in an outcome: either one of the players has won, or the outcome is a tie.4.

The representations of these central concepts are exposed, not abstract. They are given by the signature PLAYER.

<player-sig.sml>=
signature PLAYER = sig
 datatype player = X | O (* 2 players called X and O *)
 datatype outcome = WINS of player | TIE

 (* Returns the other player *)
 val otherplayer : player -> player

 val toString : player -> string

 val outcomeToString : outcome -> string
end

Defines otherplayer, outcome, outcomeToString, PLAYER, player, toString (links are to
index).

The signature player also includes some functions that compute with players and outcomes. Here's the implementation of
signature PLAYER in a structure called Player.

<player.sml>=
structure Player :> PLAYER = struct
 datatype player = X | O
 datatype outcome = WINS of player | TIE

 fun otherplayer X = O
 | otherplayer O = X

 fun toString X = "X"
 | toString O = "O"

 fun outcomeToString TIE = "Tie"
 | outcomeToString (WINS p) = toString p ^ " wins"
end

Defines otherplayer, outcome, outcomeToString, Player, player, toString (links are to
index).

Although it might seem overly pedantic, we prefer to isolate details like the player names and how to convert them to a
printable representation. To refer to Player types, constructors, and functions, you will use the ``fully qualified''
ML module syntax, as in the examples Player.otherplayer p, Player.X, Player.O, and Player.WINS p. The
last three expressions can also be used as patterns.

Specification of a Game

The AGS can play any game that meets the specification given in signature GAME. This signature gives a contract for an
entire module, which subsumes the contracts for all its exported functions.

<game-sig.sml>=
signature GAME = sig
 structure Move : sig (* information related to moves *)

COMP 105 Homework: Standard ML Modules

Basic data in the problem: Players and outcomes 3

 eqtype move (* A move (perhaps a set of coordinates) *)
 exception Move (* Raised (by makemove & fromString) for invalid moves *)
 val fromString : string -> move
 (* converts a string to a move; If the string does not
 correspond to a valid move, fromString raises Move *)
 val prompt : Player.player -> string
 (* Given a player, return a request for a move
 for that player *)
 val toString : Player.player -> move -> string
 (* Returns a short message describing a
 move. Example: "Player X moves to ...".
 The message may not contain a newline. *)
 end

 type config (* A representation for a game configuration. It
 must include a full description of the state
 of a game at a particular moment, including
 keeping track of whose turn it is to move.
 Either configurations must be immutable,
 or if they are mutable, it must be impossible
 for a client to tell that a mutation has
 taken place. *)

 val toString : config -> string
 (* Returns an ASCII representation of the
 configuration. The string must show whose turn it is. *)

 val initial : Player.player -> config
 (* Initial configuration for a game when
 "player" is the one to start. We need the
 parameter because the configuration includes
 the player to move. *)

 val whoseturn : config -> Player.player
 (* Extracts the player whose turn is to move
 from a configuration. We need this function because
 the solver may need to know whose
 turn it is, and the solver does not have
 access to the representation of a configuration.
 *)

 val makemove: config -> Move.move -> config
 (* Changes the configuration by making a move.
 The player making the move is encoded in the
 configuration. Be sure that the new
 configuration knows who is to move. *)

 val outcome : config -> Player.outcome option
 (* If the configuration represents a finished game,
 return SOME applied to the outcome.
 If the game isn't over, return NONE. *)

 val finished : config -> bool
 (* True if the configuration is final. This
 might be because everybody is stuck (Tie) or
 because one has won *)

 val possmoves : config -> Move.move list
 (* A list of possible moves in a given
 configuration. ONLY final configurations
 might return nil. This means that a
 configuration which is not final MUST have
 some possible moves. In other words,
 part of the contract is that if 'finished cfg'
 is false, 'possmoves cfg' must return non-nil. *)

end

COMP 105 Homework: Standard ML Modules

Specification of a Game 4

Defines config, finished, GAME, initial, makemove, Move, outcome, possmoves,
toString, whoseturn (links are to index).

This is a broad interface. For example, there are three different ways to tell if a game is over!

Compiling Standard ML modules using Moscow ML

To compile an individual module using Moscow ML, you type

mosmlc -c -toplevel filename.sml

This puts compiler-interface information into filename.ui and implementation information into filename.uo.
Perhaps surprisingly, either a signature or a structure will produce both .ui and .uo files. This behavior is an artifact of the
way Moscow ML works; it should not alarm you.

Once you have compiled a bunch of modules, you can make an executable binary using mosmlc. Here is an example of a
command line I use on my system to build an interactive game player:

 mosmlc -toplevel -o games player-sig.uo player.uo game-sig.uo \
 ags-sig.uo play-sig.uo slickttt.uo ttt.uo \
 ags.uo aggress.uo nim.uo four.uo peg.uo mrun.uo

Order does matter here; for example, I have to put player.uo after player-sig.uo because the Player structure
defined in player.sml uses the PLAYER signature defined in player-sig.sml.

The git repository for this assignment includes a compile script that may help with compiling Moscow ML modules.

When you are debugging, it is tremendously useful to get compiled modules into the interactive system. You do this with the
Moscow ML load function. I have an example use of load in Part B. If you recompile, you must exit Moscow ML and
start over. Once a module is loaded, loading it again has no effect, even if the code has changed.

Implement Tic-Tac-Toe

A.Implement the description for ``Tic-Tac-Toe.'' (Difficulty **, Time ***) More precisely, implement a module TTT
matching signature GAME that describes Tic-Tac-Toe. If you are unfamiliar with Tic-Tac-Toe (elsewhere called ``Noughts
and Crosses'', you can find an explanation at the end of this assignment. Call your structure TTT, put it in the file ttt.sml,
and use the following pattern :

<template for ttt.sml>=
structure TTT :> GAME =
 struct
 structure Move = struct
 type move = ... (* or use a datatype *)
 exception Move
 ...
 end

 type config = ... (* or use a datatype config = *)

 fun initial p = ...
 fun whoseturn c = ...

 ... and so on for all the values in GAME ...
 end

Defines TTT (links are to index).

COMP 105 Homework: Standard ML Modules

Compiling Standard ML modules using Moscow ML 5

Note the use of :>, which means that the only access to the types is through the functions in the GAME signature.

When writing TTT, you must define all types and values mentioned in the signature GAME, and all values must have the types
specified. You might want to define additional values, which you will be able to use as helper functions. These functions
cannot be called from anyone else's code: because TTT is forced to have signature GAME, the functions are not visible outside
the TTT module, and therefore no other code can depend on them.

So we can test your code, we insist that you use the following names of squares in Move.toString and
Move.fromString:

 upper left | upper middle | upper right
-------------+---------------+---------------
middle left | middle | middle right
-------------+---------------+---------------
 lower left | lower middle | lower right

You should always print and recognize these full names. If you wish, you may also recognize the abbreviations ul, um, ur,
ml, m, mr, ll, lm, and lr in the function Move.fromString.

Here are some hints about how to get started.

Choose how you will represent the state of the game (i.e., define config). This step is crucial because it
determines how complex your implementation will be. There are many possible representations; any one is OK
provided you are able to implement the functions required by the signature. Choose a representation that will make it
easy to implement makemove, possmoves, and outcome.

The AGS cannot possibly depend on your choice of representation (the ML module system guarantees it), so you are
free to choose whatever representation you like. Even more important, you can change your reprsesentation at
any time, and no code outside your own module will be affected. If you have any difficulty implementing the
functions in the GAME interface, you should change your representation—or at least think about it.

You might be tempted to use mutable data to represent game state. Don't! The contract of the GAME interface
requires that any value of type config be available to the AGS indefinitely. Mutating a configuration is not safe.

If you think you might want immutable arrays, check out the Vector structure (see the ML supplement). (You can
find out what's in any ML structure by typing, e.g., open Vector at the interactive prompt, or you can consult the
 Standard Basis documentation. You can also use Moscow ML's help system, e.g,

- help "Vector";

If you get interested in vectors, don't overlook the function Vector.tabulate.)

One more thing. You may be tempted to start out by representing the contents of a square on the board using 0 and 1
or other arbitrary values. If you go this route, why not use Player.player option? It will make your program
more elegant and easier to understand.

a.

Choose a representation for moves. That is, write move. Everything said for configurations applies here also, but
this choice seems less critical.

b.

Declare the exception Move.c.
Write the function initial.d.
Write the function whoseturn.e.
Write makemove. The contract requires it to be Curried.f.
Write outcome. If the configuration is not final and nobody has won, return NONE.
Hints for Tic-Tac-Toe:

You could write a function which checks lines, another that checks columns and finally one that checks
diagonals. Then outcome could call these functions with the right parameters.

c.

You could try pattern matching. Standard ML supports pattern matches on vectors by, e.g., case a of
#[x, y, z] =>

d.

g.

COMP 105 Homework: Standard ML Modules

Implement Tic-Tac-Toe 6

http://www.standardml.org/Basis/index.html

Write finished. This function should return true if somebody has won or if no move is possible (everybody is
stuck). Be smart and use another function to do most of the work.

h.

Write possmoves. This function must return a list of the possible moves (in no particular order). It is in
everybody's interest that the list have no duplicates. If the game is over, no further moves are possible, and
possmoves must return nil. (In this case, according to contract, finished must return true.)

If you want to be clever, you can exploit rotation and reflection symmetries to prune the list returned by
possmoves. You may be surprised how much difference this makes to performance. For extra credit,

submit a version of possmoves that exploits symmetry to minimize the number of possible moves1.
give a ``back of the envelope'' estimate of the time to be saved when the AGS plays against itself2.
measure the actual time savings using the Timer and Time structures thusly:

fun time f arg =
 let val start = Timer.startRealTimer()
 val answer = f arg
 val endit = Timer.checkRealTimer start
 in print ("Time is " ^ Time.toString endit ^ "\n");
 answer
 end

You can also try startCPUTimer and checkCPUTimer, but the answers you get are a bit more
complicated.

3.

i.

Write Move.toString. This function must return a string of the form ``Player... moves to ...'' which does not end
in a newline. You can build your strings using concatenation (^) and exported functions from other modules (e.g.
Player.toString). To convert integer values to strings you can use the function Int.toString.

Try to write Move.toString in such a way that Move.fromString and Move.toString cannot possibly
be inconsistent, even if you make a mistake. (Hint: how should you represent a bidirectional map between our
names for locations and your internal representation of locations?)

j.

Write toString. You must return a simple ASCII representation of the state of the game configuration. The value
should end in a newline. Don't forget to include the player whose turn it is to move. Give us more than a simple list
of numbers. You can print a nice little ``ASCII graphics'' layout using only a few characters. To get you started, here
is some untested sample code to print a row; it has type player option list -> string:

<sample function rowString>=
local
 fun boxString (SOME p) = Player.toString p
 | boxString (NONE) = " "
in
 fun rowString [] = "|\n"
 | rowString (box :: boxes) = "| " ^ boxString box ^ " " ^ rowString boxes
end

Defines boxString, rowString (links are to index).

Move.toString and toString are not involved in the correctness of the AGS; they are used by the interactive
player to show you what's happening. The better your output, the more fun it will be to play. You can see a simple
sample by running /comp/105/bin/ttt.

k.

Write Move.prompt. It takes the player whose turn it is to move, and it returns a prompt message (without
newline) asking the specified player to give a move in the format we specified (naming the square).

l.

Write Move.fromString. This function should take a string (which is probably the reply given after a call to
Move.prompt, and it should return the move corresponding to that string. If there is no such move, it should raise
an exception.

You should try to write Move.fromString in such a way that Move.fromString and Move.toString
cannot possibly be inconsistent, even if you make a mistake.

m.

COMP 105 Homework: Standard ML Modules

Implement Tic-Tac-Toe 7

Be sure to try your functions on simple configurations.

Hints: You may find it useful to define a structure Grid that you can use to represent a square or rectangular array of
values of type 'a. Defining suitable analogs of map and fold on the grid will help, as will functions to extract sub-grids
(rows and columns). If you then define reflection and rotation on grids, you can easily do the extra credit.

The most common mistake on this problem is to permit players to continue to move even when the game is over.

Bob Harper's code for Tic-Tac-Toe is 146 lines of Standard ML. I have a slicker version at only 87 lines&emdash;and it is
four times faster. It works by exploiting bit-level parallelism using the Word structure and by flagrantly disregarding most of
the hints given above.

Testing your code: useing the AGS with Tic-Tac-Toe

Exercise Abstract Game Solver (Difficulty *). --> To build a version of the AGS for ``Tic-Tac-Toe'' you must use the
following command:

<example of creating a game-specific AGS>=
structure TTTAgs = AgsFun(structure Game = TTT)

Defines TTTAgs (links are to index).

Of course, I can't do any of this until I use the Moscow ML load function to get access to AgsFun and TTT. Here is an
example:

<transcript from an actual session>= [D->]
: nr@labrador 7147 ; mosml
Moscow ML version 2.10-2 (Tufts University, February 2011)
Enter `quit();' to quit.
- load "ags";
> val it = () : unit
- load "ttt";
> val it = () : unit
- structure TTTAgs = AgsFun(structure Game = TTT);
> structure TTTAgs :
 {structure Game :
 {structure Move :
 {type move = move,
 exn Move : exn,
 val fromString : string -> move,
 val prompt : player -> string,
 val toString : player -> move -> string},
 type config = config,
 val finished : config -> bool,
 val initial : player -> config,
 val makemove : config -> move -> config,
 val outcome : config -> outcome option,
 val possmoves : config -> move list,
 val toString : config -> string,
 val whoseturn : config -> player},
 val bestmove : config -> move option,
 val forecast : config -> string}
-

This functor application creates a structure that implements the AGS signature:

<ags-sig.sml>=
signature AGS = sig
 structure Game : GAME
 (* Given a configuration returns the
 * most beneficial move for the player

COMP 105 Homework: Standard ML Modules

Testing your code: useing the AGS with Tic-Tac-Toe 8

 * to move *)
 val bestmove : Game.config -> Game.Move.move option

 (* Given a configuration computes the
 * maximum benefit which can be
 * obtained against an optimum
 * player. The benefit is converted
 * to a printable representation *)
 val forecast : Game.config -> string
end

Defines AGS, bestmove, forecast, Game (links are to index).

The function bestmove returns the best move in a configuration, or NONE if no move is possible, i.e., the configuration is
final. The function forecast returns a string predicting the outcome from a configuration if both players make perfect
moves. The prediction, which should be "Win", "Loss", or "Tie", is from the point of view of the player whose turn it is.

These functions can be slow because the AGS tries all possible combinations of moves. Be patient.

We have also provided you an interactive player. It uses the AGS so you must instantiate it to the Tic-Tac-Toe AGS using the
following command:

<examples>= [D->]
structure P = PlayFun(structure Ags = TTTAgs);

Defines P (links are to index).

Again, to get PlayFun you will have to load the right module:

<transcript from an actual session>+= [<-D]
- load "play";
> val it = () : unit
- structure P = PlayFun(structure Ags = TTTAgs);
> structure P :
 {structure Game : ...
 exn Quit : exn,
 val getamove : player list -> config -> move,
 val play : (config -> move) -> config -> outcome}
-

The structure this application creates implements the following signature :

<play-sig.sml>=
signature PLAY = sig
 structure Game : GAME
 exception Quit
 val getamove : Player.player list -> Game.config -> Game.Move.move
 (* raises Quit if human player refuses to provide a move *)

 val play : (Game.config -> Game.Move.move) -> Game.config -> Player.outcome
end

Defines Game, getamove, PLAY, play, Quit (links are to index).

The function getamove expects a list of players for which the computer is supposed to play (the computer might play for X,
for O, for both or for none). The return value is a function which the interactive player will use to request a move given a
configuration. The idea is that the function returned will ask the AGS for a move if the computer is playing for the player to
move, or will prompt the user and convert the user's response into a move.

The function play expects an input function (one built by getamove) and a starting configuration. This function then starts
an interactive loop printing the intermediate configurations and prompting the users for moves (or asking the AGS where

COMP 105 Homework: Standard ML Modules

Testing your code: useing the AGS with Tic-Tac-Toe 9

appropriate). One example is :

<examples>+= [<-D]
val computerxo = P.getamove [Player.X, Player.O]
 (*Computer plays for both X and O *)

val computero = P.getamove [Player.O]
 (*Computer plays only O *)

val cnfi = TTT.initial Player.X
 (* Empty configuration with X to start *)

val frustration = P.play computero
 (* We play against the computer *)

val _ = frustration cnfi
 (* A frustrating exercise *)

Defines cnfi, computero, computerxo, frustration (links are to index).

Playing Other Games

The code we supply includes a description of the game ``Nim''. The structure that implements ``Nim'' is called structure
Nim. After you create an AGS solver and an interactive player for ``Nim'' you can play Nim with the AGS. The commands to
instantiate AGS to ``Nim'' are:

<nim examples>=
structure NIMAgs = AgsFun(structure Game = Nim)
structure PN = PlayFun(structure Ags = NIMAgs)

Defines NIMAgs, PN (links are to index).

You play Nim by running /comp/105/bin/nim, but the user interface stinks.

We've also implemented a version of ``Connect 4'' that would be better called ``Connect 3'' (since 4 would be too slow). It is
in /comp/105/bin/four.

Building an AGS

C.Implement an Abstract Game Solver (Difficulty ***). Given a configuration, an AGS should compute the benefits of all
possible moves and pick the best one. More precisely, given a configuration and a player, the AGS assigns a benefit to that
player of that configuration. A final configuration in which X has won should have maximum benefit to X and minimum
benefit to O, and vice versa. Ties should have intermediate and equal benefit to both players. We compute the benefit of an
intermediate configuration by looking at all possible moves and the benefits of the resulting configurations.

There are a variety of ways to view benefits; for example, we could assign larger benefits to winning quickly, and so on. For
this assignment, however, it will be sufficient to consider three levels of benefits:

Player to move can force a win•
Both players can force a tie•
Player to move can be forced to lose by his adversary•

For extra credit you can prove that one of these three situations must hold in any game described by the GAME signature,
provided that the game is deterministic and is guaranteed to terminate after finitely many moves.

Write an AGS using the following template:

<template for functor AgsFun>=

COMP 105 Homework: Standard ML Modules

Playing Other Games 10

functor AgsFun (structure Game : GAME) : AGS = struct
 structure Game = Game

 fun bestresult conf = ...
 fun bestmove conf = ...
 fun forecast conf = ...
end

Defines AgsFun, bestmove, bestresult, forecast, Game (links are to index).

Note that the AgsFun definition uses the plain colon (:), not the opaque signature match :>. This means that the identity of
the types Game.Move.move and Game.config is allowed to ``leak out.'' An alternative is to write the functor this way:

<alternative template for functor AgsFun>=
functor AgsFun (structure Game : GAME) :> AGS
 where type Game.Move.move = Game.Move.move
 and type Game.config = Game.config
= struct
 structure Game = Game

 fun bestresult conf = ...
 fun bestmove conf = ...
 fun forecast conf = ...
end

Defines AgsFun, bestmove, bestresult, forecast, Game (links are to index).

Whichever way you write the functor, the function bestresult is a suggested helper function that should return a pair of
values:

The best move, if any, for the player to take in the current configuration. This should be a value of type
Game.Move.move option, so if the configuration is final, you can return NONE.

•

The predicted outcome of the game if both players play perfectly. It suffices to use an outcome of type
Player.outcome, but you can play around with this one some&emdash;for example, you might want to return
an outcome like ``Player X wins in 3 moves.'' This would help you build an aggressive AGS.

You might be tempted to use a ``relative'' outcome like ``Win, Lose, or Tie.'' This can be made to work, but it is
harder to get right, especially in games where players don't always take turns.

•

In order to make bestresult work, you'll need some recursive calls. You'll also want a helper function that lets you
compare the benefits of different outcomes, so bestresult can choose the most desirable outcome for the current player.

Hints:

To speed up the AGS, you may want to stop the search as soon as you find a forced win.•
Do not assume that players take turns, that the last player to move always wins, or any other properties of
Tic-Tac-Toe. Use whoseturn and outcome instead. We will test your AGS on games that are quite different
from Tic-Tac-Toe.

•

To test your AGS, you'll need to replace our ags.ui and ags.uo files with the ones you compile from your source code.
At this point you'll be able to run the same test cases you used earlier, as well as what's in part B.

My AGS takes 34 lines of Standard ML.

One common mistake to avoid

If you build a simple AGS that fits in less than 40 lines of code, it is not going to try to fool you: if you can force a win, the
AGS will pick a move more or less arbitrarily. A simple AGS has no notion of ``better'' or ``worse'' moves; it knows only
whether it can force a win.

COMP 105 Homework: Standard ML Modules

Building an AGS 11

Here's the common mistake: you're playing against the AGS, and it makes a terrible move. You think it's broken. For
example, suppose you are playing X, the AGS is playing O, and you start play in this position:

 | | O | |

 | | X | |

 | | | |

You move in the upper left corner. The AGS does not move lower right to block you. Is it broken? No—the AGS
recognizes that you can force a win, and it just gives up.

If you want an AGS that won't give up, you need to implement an aggressive version that will delay the inevitable as long as
possible. An aggressive AGS searches more states so that it can (a) win as quickly as possible and (b) hold on in a lost
position as long as possible.

My aggressive AGS is under 60 lines of Standard ML code.

Descriptions of the games

Here are descriptions of 3 games: ``Tic-Tac-Toe'', ``Nim'' ``and ``Connect 4''. Do not worry if you haven't seen the game
before&emdash;you can learn by playing against a perfect or near-perfect player. (The Connect 4 player would be perfect if it
were faster.) For the purpose of this assignment you do not have to know any tricks of the games but only to understand their
rules.

Tic Tac Toe

This is an adversary game played by two persons using a 3x3 square board. The players (traditionally called X and O) take
turns in placing X's or O's in the empty squares on the board (player X places only X's and O only O's). The board is empty in
the initial configuration.

The first player who managed to obtain a full line, column or diagonal marked with his name is the winner. The game can
also end in a tie. In the picture below the first configuration is a win for O, the next two are wins for X and the last one is a
tie.

------------- ------------- ------------- -------------
| X | | X | | | | X | | X | O | | | O | O | X |
------------- ------------- ------------- -------------
| | X | | | O | X | O | | X | O | | | X | X | O |
------------- ------------- ------------- -------------
| O | O | O | | X | | O | | X | | O | | O | X | O |
------------- ------------- ------------- -------------

In this game a player who plays perfectly cannot lose. All your base are belong to the AGS.

Nim

This is an adversary game played by two persons. The game is played with number of sticks arranged in 3 rows. In the initial
state the rows usually contain 3, 5 and 7 sticks respectively. The players take turns in removing sticks: each player can
remove 1, 2 or 3 adjacent sticks from one row. The one that removes the last stick is the loser. Or, stated differently the first
player who has no sticks to remove is the winner. Below were presented two configurations. The first one is the initial
configuration (for the 3, 5 and 7) case and the other one is the configuration obtained after a few moves. A possible sequence
of moves that might lead to this configuration is:

X removes sticks 0, 1 and 2 from row 11.

COMP 105 Homework: Standard ML Modules

One common mistake to avoid 12

O removes stick 1 from row 02.
X removes stick 6 from row 23.
O removes sticks 3 and 4 from row 24.

Row 0: | | | | _ |

Row 1: | | | | | _ _ _ | |

Row 2: | | | | | | | | | | _ _ | _

We have represented a stick using a ``|''and a missing stick using a ``_''. It might be wise to play with a smaller configuration
(2, 3 and 4 for example) because otherwise the AGS will take too long to produce its answers.

For this game the first player can always win no matter what the other does. If you let the AGS start you have no chance. If
you play first you can beat the AGS, but you have to play well.

Connect 4

This is an adversary game played by two persons using 6 rods and 36 balls. Imagine the rods standing vertically, and each
ball has a hole in it, so you can drop a ball onto a rod. The balls are divided in two equal groups marked X and O. The players
take turns in making moves. A move for a player consists in sliding one of its own balls down a rod which is not full (the
capacity of a rod is 6). The purpose is to obtain 4 balls of the same type adjacent on a horizontal, vertical or diagonal line.
The game ends in a tie when all the rods are full and no player has won. We represent below the initial configuration of the
game and a final state where X has won.

					O					
					O	O				
					O X X X X					
----------- -----------

Our version uses 5 rods and connects 3, because otherwise the AGS takes too long.

Extra Credit

Symmetry. Speed up Tic-Tac-Toe by exploiting symmetry as described above.

Proof. Prove the ``forcing'' property of these simple games as described above above.

Four. Implement Connect 4.

Game. Suggest another simple adversary game, and (with the instructor's approval) implement it. The game should be small
with a small number of possible moves; otherwise the exhaustive search is infeasible.

Aggression. With the simple benefits outlined above, the AGS will ``give up'' if it can't beat a perfect player---all moves are
equally bad, and it apparently moves at random. What this scheme doesn't account for is that the other player might not be
perfect, so there is a reason to prefer the most distant loss. In the dual situation, when the AGS knows it can win no matter
what, it will pick a winning move at random instead of winning as quickly as possible. This behavior may lead you to
suspect bugs in your AGS. Don't be fooled.

Change your benefits so that the AGS prefers the closest win and the most distant loss. (This means you can only prune the
search if you find a win in one move.) If you are clever, you can encode all this information in one value of type real.

Learning. We can re-use the GAME signature for more than one purpose. Implement a ``matchbox'' learning engine in the
style explained by Martin Gardner's article on the reading list. You can use the SML/NJ library to store state with each

COMP 105 Homework: Standard ML Modules

Nim 13

configuration, using the following signautre:

signature ORDERED_GAME = sig
 include ORD_KEY
 include GAME
 sharing type conf = ord_key
end;

You may have to modify the AGS to notify each player of the outcome of the game. See me for more help with details.

What code we give you and how to compile

In the git repository at /comp/105/git/ttt, you'll find sources for most of the signatures, structures, and functors in this
assignment. You'll also find an AGS in binary form only. And you'll find a compile script, which should compile your
code using the Moscow ML compiler, mosmlc.

<example transcript of compilation>=
mosmlc -c -toplevel game-sig.ui player.ui ttt.sml

This compilation produces two files:

ttt.ui, which can be used on the command line when compiling other units that depend on TTT.•
ttt.uo, which contains the compiled binary•

You can do two things with the .uo files:

Load them directly into an interactive session, e.g.,

: nr@labrador 2856 ; mosml
Moscow ML version 2.10-2 (Tufts University, February 2011)
Enter `quit();' to quit.
- load "ttt";
> val it = () : unit
- open TTT;
> structure Move :
 {type move = move,
 exn Move = Move : exn,
 ...}
 type config = config
 ...
 val finished = fn : config -> bool
 ...

Once you load a module, you cannot recompile it and reload it later. You have to start Moscow ML over again,
or perhaps you can recompile from within the interactive session (I'm not sure about this one).

•

You can link a bunch of .uo files together to form an executable binary. To do anything interesting, one of the
source files should have a top-level call to play, forecast, or some other interesting function.

•

What to submit

For this assignment you should use the script submit105-sml to submit

Either README•
For problem 1, file arbitrary.sml•
For problem 2, files heap-sig.sml and heapsort.sml•
For part A, file ttt.sml•
For part C, file ags.sml•

COMP 105 Homework: Standard ML Modules

Extra Credit 14

The ML files should contain all structure and function definitions that you write for this assignment (including any helper
functions that may be necessary), in the order they should be compiled. The files you submit must compile with Moscow
ML, using the compile script we give you. We will reject files with syntax or type errors. Your files should compile without
warning messages. If you must, you can include multiple structures in your files, but please don't make copies of the
structures and signatures above; we already have them.

Acknowledgments

This assignment is derived from one graciously provided by Bob Harper. George Necula, who was his teaching assistant at
the time (and is now a professor at Berkeley and is world famous as the inventor of proof-carrying code), did the bulk of the
work.

Compiling Standard ML using MLton

If you find that your games are running too slow, you may want to try compiling them with MLton. MLton is a
whole-program compiler; all your modules must be in a single file. For example:

cat player-sig.sml player.sml game-sig.sml ags-sig.sml play-sig.sml \
 play.sml ttt.sml ags.sml mrun.sml > playttt.sml
mlton -output ttt -verbose 1 playttt.sml

Because MLton requires source code, you will be able to use it only once you have your own AGS. More information about
MLton is available on the man page and at www.mlton.org.

Cross-reference

ML Identifiers

AGS: D1, U2, U3•
AgsFun: U1, U2, U3, D4, D5•
Basics: D1•
bestmove: U1, D2, D3, D4•
bestresult: D1, D2•
boxString: D1•
cnfi: D1•
computero: D1•
computerxo: D1•
config: D1, U2, U3, U4, U5, U6, U7, D8•
final_peg: D1•
finished: D1, U2•
forecast: U1, D2, D3, D4•
frustration: D1•
GAME: U1, D2, U3, U4, U5, U6, U7, U8, U9, U10•
Game: U1, U2, D3, U4, D5, U6, D7, D8•
getamove: U1, D2, U3•
initial: D1, U2, U3, U4•
initial_hole: D1•
makemove: D1, U2•
Move: D1, U2, U3, U4, U5, U6•
NIMAgs: D1•
otherplayer: D1, D2, U3•
outcome: D1, D2, D3, U4, U5, U6•
outcomeToString: D1, D2•
P: D1, U2, U3•

COMP 105 Homework: Standard ML Modules

What to submit 15

http://www.cs.cmu.edu/~rwh/
http://www.cs.berkeley.edu/~necula/
http://www.mlton.org

PEG_BASICS: D1•
PEG_PARMS: D1•
PegBasics: D1•
PegGame: D1•
PLAY: D1•
play: U1, D2, U3•
PLAYER: D1, U2, U3•
Player: U1, D2, U3, U4, U5, U6, U7, U8•
player: D1, D2, U3, U4, U5, U6, U7, U8•
PN: D1•
possmoves: D1, U2•
Quit: U1, D2•
rowString: D1•
toString: D1, D2, D3, U4, U5•
TTT: U1, D2, U3, U4, U5•
TTTAgs: D1, U2, U3, U4•
whoseturn: D1, U2, U3•

Code chunks

<sources.cm for part A>: D1•
<sources.cm for supplying your own AGS>: D1•
<ags-sig.sml>: D1•
<alternative template for functor AgsFun>: D1•
<example of creating a game-specific AGS>: D1•
<example transcript of compilation>: D1•
<examples>: D1, D2•
<game-sig.sml>: D1•
<nim examples>: D1•
<peg solitaire sketch>: D1•
<play-sig.sml>: D1•
<player-sig.sml>: D1•
<player.sml>: D1•
<sample function rowString>: D1•
<template for ttt.sml>: D1•
<template for functor AgsFun>: D1•
<transcript from an actual session>: D1, D2•

COMP 105 Homework: Standard ML Modules

ML Identifiers 16

	COMP 105 Homework: Standard ML Modules

