
COMP 105 Assignment: Higher-Order Functions
Due Friday, February 22 at 5:59PM, six hours before midnight

Preliminaries: Setup, Interpreter, and Help With Tracing/Debugging

The executable µScheme interpreter is in /comp/105/bin/uscheme; if you are set up with use comp105, you should
be able to run uscheme as a command. The interpreter accepts a -q (``quiet'') option, which turns off prompting. Your
homework will be graded using uscheme. When using the interpreter interactively, you may find it helpful to use ledit,
as in the command

 ledit uscheme

We have updated /comp/105/bin/uscheme with the &trace facility described in part (b) of Exercise 50 on page 168
of Ramsey. You may find it useful.

Dire Warnings

The same warnings apply as last time: none of the Scheme programs you submit may use any imperative features.
Banish set, while, print, and begin from your vocabulary! If you break this rule for any exercise, you get No Credit
for that exercise. (You may find it useful to use begin and print while debugging, but they must not appear in any code
you submit.)

As a substitute for assignment, use let or let*. Also use let or letrec for ``helper'' functions. Except as noted below,
do not define helper functions at top level. When you do define inner helper functions, avoid passing as parameters values
that are already available in the environment.

Your solutions should be valid µScheme; in particular, they must pass the following test:

/comp/105/bin/uscheme -q < myfilename > /dev/null

without any error messages. If your file produces error messages, we won't test your solution and you will earn No Credit for
functional correctness (you can still earn credit for readability).

Overview, organization, and what to submit

For this assignment, you will do Exercises 9 (b-g,i-j), 10, 15, and 22 from pages page 157–162 of Ramsey, plus the five
exercises A, M, P, S, and T below. There are also extra-credit exercises of significant interest (and difficulty).

Place your solutions to Exercises 9 (b-g,i-j), 10, 15, 22 and exercises A, P, and S, as well as any extra credit that you choose
to submit, in a file called solution.scm. (The solution to exercise T goes in its own file, solver-tests.scm.) Be
sure to put the solutions in order and to precede each solution by a comment that looks like something like this:

;;
;; Problem P
;;

Place your solutions to Exercises 37 and M in a file called semantics.pdf. You can create this file using LaTeX or Lyx
another mathematical word processor, or you can write your solution by hand and scan it.

If you use LaTeX, the mathpartir package is invaluable for typesetting inference rules and derivations.•
If you scan your solutions, please be sure all pages are oriented right-side up in the resulting PDF. If pages are
upside-down or sideways, we may ask you to resubmit.

•

On this assignment, there is no pair programming.

COMP 105 Higher-Order Functions Homework

COMP 105 Assignment: Higher-Order Functions 1

http://www.latex-project.org/
http://www.lyx.org/
http://cristal.inria.fr/~remy/latex/

Details of all the exercises

A. Good functional style. The function

(define f-imperative (y) (x) ; x is a local variable
 (begin
 (set x e)
 (while (p x y)
 (set x (g x y)))
 (h x y)))

is in a typical imperative style, with assignment and looping. Write an equivalent function f-functional that doesn't use
the imperative features begin (sequencing), while (goto), and set (assignment).

Assume that p, g, and h are free variables which refer to externally defined functions.•
Assume that e is an arbitrary expression.•
Use as many ``helper functions'' as you like, as long as they are defined using let or letrec and not at top level.•

Hint #1: If you have trouble getting started, rewrite while to use if and goto. Now, what is like a goto?

Hint #2: (set x e) binds the value of e to the name x. What other ways do you know of binding the value of an
expression to a name?

Don't be confused about the purpose of this exercise. The exercise is a ``thought experiment.'' We don't want you to write and
run code for some particular choice of g, h, p, e, x, and y. Instead, we want you write a function that works the same as
f-imperative given any choice of g, h, p, e, x, and y. So for example, if f-imperative would loop forever on some
inputs, your f-functional should also loop forever on exactly the same inputs.

Once you get your mind twisted in the right way, this exercise should be easy. The point of the exercise is not only to show
that you can program without imperative features, but to help you develop a technique for eliminating such features. You'll
use this technique again later on.

My estimate of difficulty: most students find this exercise hard (though there is very little code)

9, 10. Higher-order functions. Do Exercise 9 on page 157 of Ramsey, parts(b) to (g), part (i), and part (j). Do Exercise 10 on
page 158. You must not use recursion—solutions using recursion will receive No Credit. (This restriction applies only to
code you write. For example, gcd, which is in the initial basis, or insert, which is given, may use recursion.) For
Exercise 9 only, you may define helper functions at top level.

For Exercise 10 you get full credit if your implementations return correct results. You get EXTRA CREDIT
(EXACT-EXISTS) if you can duplicate exists? and all? exactly. To earn the extra credit, it must be impossible for an
adversary to write a µScheme program that produces different output with your version than with a standard version.
However, the adversary is not permitted to change the names in the initial basis.

My estimate of difficulty: medium to easy (the first one or two are medium difficulty, but because the problems are so
similar, once you have any one or two, the rest are easy)

M. Reasoning about higher-order functions. Using the calculational techniques from Section 3.4.5, prove that

 (o ((curry map) f) ((curry map) g)) == ((curry map) (o f g))

To prove two functions equal, prove that when applied to equal arguments, they return equal results.

Take the following laws as given:

 ((o f g) x) == (f (g x)) ; apply-compose law
 (((curry f) x) y) == (f x y) ; apply-curried law

COMP 105 Higher-Order Functions Homework

Details of all the exercises 2

Using these laws should keep your proof relatively simple.

My estimate of difficulty: medium

P. Even more higher-order functions. Write a function palindrome? that tells whether a list of symbols is a palindrome,
that is, it spells the same words both forwards and backwards. Here's the catch: you have to ignore the dash used to separate
words. Examples:

-> (palindrome? '(m a d a m - i m - a d a m))
#t
-> (palindrome? '(w a s - t h a t - a - r a t - i - s a w))
#f
-> (palindrome? '(w a s - i t - a - r a t - i - s a w))
#t
-> (palindrome? '(k u r r e m k a r m e r r u k))
#f

For EXTRA CREDIT (NOCASES), implement palindrome? without using an explicit if, either in palindrome? or
in any helper function that you define.

My estimate of difficulty: easy

15. Functions as values. Do Exercise 15 on page 159 of Ramsey. When you code the third approach to polymorphism, please
write a function mk-set-ops. This function should take one argument (the equality predicate) and should return a list of
six values, in this order:

The empty set1.
Function member?2.
Function add-element3.
Function union4.
Function inter5.
Function diff6.

My estimate of difficulty: hard, because it requires a new way of thinking. Once you learn to think that way, the functions
are easy.

S. Higher-order, polymorphic sorting. Using filter and curry, define a function qsort that, when passed a binary
comparison function (like <), returns a Quicksort function. So, for example,

-> ((qsort <) '(6 9 1 7 4 14 8 10 3 5 11 15 2 13 12))
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15)

-> ((qsort >) '(6 9 1 7 4 14 8 10 3 5 11 15 2 13 12))
(15 14 13 12 11 10 9 8 7 6 5 4 3 2 1)

You will also find it helpful to use the function-composition function o.

If you are not familiar with Quicksort, we have prepared a short Quicksort handout online.

Your Quicksort should not use the append function in any of its disguises. In other words, don't copy cons cells
unnecessarily. (If you can't figure this part out, go ahead and use append; you will get partial credit.) Hint #1: Use method
of accumulating parameters covered in class when we discussed revapp. That is, think about writing a helper function that
takes at least two arguments: a list l to be sorted and another list tail to be appended to the sorted list l.

Hint #2: What part of Quicksort could filter and o help with?

Your code should use as few helper functions as possible. In particular, if you count up the number of occurrences of
define and lambda, they should total at most three. (And if you give up and use append, that should save you a

COMP 105 Higher-Order Functions Homework

Details of all the exercises 3

lambda.) If you need more lambda abstractions, you are doing something wrong. As usual, any helper functions should be
defined internally using let or letrec, not at top level.

Remember to give a brief explanation of why your recursive sort routine terminates. If you write more than a dozen lines
of code for this exercise, you're probably in trouble.

(For the bloody-minded among you, the C standard library specifies a higher-order Quicksort routine. How
short an implementation can you write in C? How many more bugs did you find in your C version than in
your Scheme version? How much longer did it take you? Do you find the answers surprising when you
compare your experience with C to your experience with Scheme? No credit is being offered for the
answers to any of these C-related questions. I include them only so you can torture your friends who
haven't had this course... In case you wanted to know, P. J. Plauger has written a pretty good Quicksort in
about 65 lines of ANSI standard C. He is quite careful about efficiency issues, like bounding use of the call
stack.)

Here are some exacting test cases:

 ((qsort <) '(1 1 1))
 ((qsort <=) '(1 1 1))
 ((qsort <) '())

You might also try using qsort to sort a list of lists by putting the shortest lists first.

My Quicksort is 11 lines of µScheme.

My estimate of difficulty: medium

22. Continuation-passing style. Do Exercise 22 on page 162 of Ramsey. Don't overlook the possibility of deeply nested
formulas with one kind of operator under another!
You must define a function make-formula-true which takes three parameters: a formula, a failure continuation, and a
success continuation. The failure continuation should not accept any arguments, and the success continuation should accept
two arguments: the first is the current (and perhaps partial) solution, and the second is a "resume" continuation.
My solution to this exercise is under 50 lines of µScheme.

My estimate of difficulty: hard

T. Testing your solver. In file solver-tests.scm, submit three test cases that together exercise all the capabilities of
your solver. These test cases should be in their own file, and they should contain two val bindings for each test case:
f1 should be the formula input the the solver, and s1 should be either a satifying assignment, or if no satisfying assignment
exists, then it should be the symbol no-solution. If, for example, I wanted to code the test case that appears on page 112
of the book, I might write

(val f1 '(and (or x y z) (or (not x) (not y) (not z)) (or x y (not z))))
(val s1 '((x #t) (y #f)))

As another test case, I might write

(val f2 '(and x (not x)))
(val s2 'no-solution)

Be sure to consider combinations of the various Boolean operators. Explain why these particular test cases are
important—your test cases must not be too complicated to be explained.

We hope to run every submitted solver on every test case. Your goal should be to design test cases that cause other solvers to
fail.

COMP 105 Higher-Order Functions Homework

Details of all the exercises 4

Extra Credit

Extra credit (FIVES). Programs as data. To deepen your understanding of LISP and Scheme, here is a toy example of the
kind of symbolic problem for which LISP is famous.

Consider the class of well-formed arithmetic computations using the numeral 5. These are expressions formed by taking the
integer literal 5, the four arithmetic operators +, -, *, and /, and properly placed parentheses. Such expressions correspond to
binary trees in which the internal nodes are operators and every leaf is a 5. Write a Scheme program to answer one or more of
the following questions:

What is the smallest positive integer than cannot be computed by an expression involving exactly five 5's?•
What is the largest prime number that can computed by an expression involving exactly five 5's?•
Exhibit an expression that evaluates to that prime number.•

And, without implementing anything,

Explain how you would change your implementation to use exact division instead of integer division.•

Hints:

You can build S-expressions that represent the arithmetic expressions in the exercise, and you can just call eval to
find out what they evaluate to.

•

This exercise involves an exhaustive search (for all numbers that can be computed with 5's), so good techniques are
important. This is an excellent problem for dynamic programming (handout online).

•

It will help you debug if you write a 'set of integer' implementation that keeps elements in order.•
You may want to speed up the search by writing a specialized version of eval.•
You may have to do something special to avoid division by zero. This is something of a pain in LISP, but you can
cheat by specializing eval.

•

Rational arithmetic is a good way to implement exact division.•

Extra credit (FUNENV): In the theory, you've seen that we can represent environments as functions, not as assocation lists.
You can do the same thing in code. If you used this new representation, how would you change the metacircular evaluator in
Ramsey, Section 3.15? (You don't have to write the code, just explain how you would do it.) Hint: you'll have to find a
suitable value for the function to return in case the symbol isn't in the environment. Nil is probably not a good choice. In fact,
nothing is a very good choice. This kind of dilemma motivates the use of exceptions in languages like CLU, ML, Modula-3,
Ada, and C++.

Extra credit (LAMBDA). lambda is more powerful than you might think. For extra credit, do any or all parts of
Exercise 16 on page 159 of Ramsey. Because this problem redefines a bunch of standard constants, it needs to go in its own
file, lambda.scm.

Test your work using the following scenario:

-> (define nth (n l)
 (if (= n 1) (car l)
 (nth (- n 1) (cdr l))))
-> (val l (cons 'first (cons 'second (cons 'third nil))))
-> (nth 2 l)
second
-> (nth 3 l)
third

Hints:

Perhaps you should use closures to represent cons cells and the empty list. Remember how we used lambda to
store data when we did the the random-number generator in class.

•

Given that cons should probably return a function (closure), try to make that function as simple as possible.•

COMP 105 Higher-Order Functions Homework

Extra Credit 5

Avoid common mistakes

The most common mistakes on this assignment have to do with the Boolean-formula solver in Exercise 22. They are

It's easy to handle fewer cases than are actually present in the exercise. You can avoid this mistake by considering
all ways the operators and, or, and not can be combined pairwise to make formulas.

•

It's easy to write near-duplicate code that handles essentially similar cases multiple times. This mistake is harder to
avoid; I recommend that you look at your cases carefully, and if you see two pieces of code that look similar, try
abstracting the similar parts into a function.

•

It's easy to submit code with the wrong interface.•

Another common mistake is passing unnecessary parameters to a nested helper function. Here's a silly example:

 (define sum-upto (n)
 (letrec ((sigma (lambda (m n) ;;; UGLY CODE
 (if (> m n) 0 (+ m (sigma (+ m 1) n))))))
 (sigma 1 n)))

The problem here is that the n parameter to sigma never changes, and it is already available in the environment.
To eliminate this kind of problem, don't pass the parameter:

 (define sum-upto (n)
 (letrec ((sum-from (lambda (m) ;;; BETTER CODE
 (if (> m n) 0 (+ m (sum-from (+ m 1)))))))
 (sum-from 1)))

I've changed the name, but the only other things that are different is I've removed the formal parameter from the lambda and
I've removed the second actual parameter from the call sites. I can still use n in the body of sum-from; it's visible from the
definition.

Another common mistake is to fail to redefine functions length and so on in Exercise 10. Yes, we really want you to
provide new definitions that replace the existing functions, just as the exercise says.

Another common mistake is to put your answer to some part of 37 in your solution.scm. All parts of this answer,
including Part B, go in semantics.pdf.

Another common mistake is to forget to explain why qsort terminates.

What to submit

Provide a README file, and in it, please do as follows:

Please tell us with whom you collaborated•
Please tell us what problems you solved•
On each of the dimensions documentation, naming, structure, form, and correctness listed below, please let us know
whether you believe your work was Exemplary, Satisfactory, or whether it needs improvement.

•

Please tell us how many hours you spent on the assignment•

If you want, include any insights you may have had about the exercises, but detailed remarks about your solutions are
probably best left to comments in the source code.

If you wish, you may also turn in a file named transcript.txt that contains test cases for your solutions. You don't have
to give us test cases; the test cases shown above are there to help you, not to make more work for you. If you do show test
cases, please cut and paste a transcript of your interactions with the interpreters, just like the transcripts from the book, as in
the following example:

-> (count 'a '(1 b a (c a)))

COMP 105 Higher-Order Functions Homework

Avoid common mistakes 6

1
-> (countall 'a '(1 b a (c a)))
2

When you are ready, run submit105-hofs to submit your work, which should include the following files:

README: This documentation file is mandatory.•
solution.scm: This source file is mandatory.•
solver-tests.scm: This source file is mandatory.•
lambda.scm: This source file is optional; if you've chosen to do the LAMBDA extra credit (Exercise 16 on
page 159), put your answers here. (Your answers to Exercise 16 must not go in solution.scm.)

•

semantics.pdf: This source file is mandatory; you may prepare it by computer, or you can scan a handwritten
solution. Please do not submit photos taken with cell-phone cameras; they are blurry and hard to read. And as
noted above, please be sure all images in the PDF are right-side up.

•

transcript.txt: This optional file can contain your test cases.•

How your work will be evaluated

Structure and organization criteria

Most of these you have seen before. As always, we emphasize contracts and naming. InÂ particular, unless the contract is
obvious from the name and from the names of the parameters, an inner function defined with lambda and a let form
needs a contract.

There are a few new criteria around Quicksort and around the use of basis functions.

Exemplary Satisfactory Must improve
Form • Code is laid out in a way that

makes good use of scarce vertical
space. Blank lines are used
judiciously to break large blocks
of code into groups, each of
which can be understood as a
unit.

• All code respects the offside
rule

• Indentation is consistent
everywhere.

• New: Indentation leaves most
code in the left half or middle
part of the line.

• No code is commented out.

• Solution file contains no
distracting test cases or print
statements.

• Code has a few too many blank
lines.

• Code needs a few more blank lines
to break big blocks into smaller
chunks that course staff can more
easily understand.

• The code contains one or two
violations of the offside rule

• In one or two places, code is not
indented in the same way as
structurally similar code elsewhere.

• New: Indentation pushes significant
amounts of code to the right margin.

• Solution file may contain clearly
marked test functions, but they are
never executed. It's easy to read the
code without having to look at the
test functions.

• Code wastes scarce vertical space
with too many blank lines, block or
line comments, or syntactic
markers carrying no information.

• Code preserves vertical space too
aggressively, using so few blank
lines that a reader suffers from a
"wall of text" effect.

• Code preserves vertical space too
aggressively by crowding multiple
expressions onto a line using some
kind of greedy algorithm, as
opposed to a layout that
communicates the syntactic
structure of the code.

• In some parts of code, every
single line of code is separated
form its neighbor by a blank line,
throwing away half of the vertical
space (serious fault).

• The code contains three or more
violations of the offside rule

• The code is not indented
consistently.

COMP 105 Higher-Order Functions Homework

How to get code and What to submit 7

http://www.cs.tufts.edu/comp/105/details.html#offside
http://www.cs.tufts.edu/comp/105/details.html#offside
http://www.cs.tufts.edu/comp/105/details.html#offside
http://www.cs.tufts.edu/comp/105/details.html#offside

• New: Indentation pushes
significant amounts of code so far
to the right margin that lots of extra
line breaks are needed to stick
within the 80-column limit.

• Solution file contains code that
has been commented out.

• Solution file contains test cases
that are run when loaded.

• When loaded, solution file prints
test results.

Naming • Each function is named either
with a noun describing the result
it returns, or with a verb
describing the action it does to its
argument. (Or the function is a
predicate and is named as
suggested below.)

• In a function definition, the
name of each parameter is a noun
saying what, in the world of
ideas, the parameter represents.

• Or the name of a parameter is
the name of an entity in the
problem statement, or a name
from the underlying mathematics.

• Or the name of a parameter is
short and conventional. For
example, a magnitude or count
might be n or m. An index might
be i, j, or k. A pointer might be
p; a string might be s. A variable
might be x; an expression might
be e. A list might be xs or ys.

• Names that are visible only in a
very small scope are short and
conventional.

• Functions' names contain
appropriate nouns and verbs, but the
names are more complex than needed
to convey the function's meaning.

• Functions' names contain some
suitable nouns and verbs, but they
don't convey enough information
about what the function returns or
does.

• The name of a parameter is a noun
phrase formed from multiple words.

• Although the name of a parameter
is not short and conventional, not an
English noun, and not a name from
the math or the problem, it is still
recognizable---perhaps as an
abbreviation or a compound of
abbreviations.

• Names that are visible only in a
very small scope are reasonably
short.

• Function's names include verbs
that are too generic, like
"calculate", "process", "get",
"find", or "check"

• Auxiliary functions are given
names that don't state their
contracts, but that instead indicate
a vague relationship with another
function. Often such names are
formed by combining the name of
the other function with a suffix
such as aux, helper, 1, or even
_.

• Course staff cannot identify the
connection between a function's
name and what it returns or what it
does.

• The name of a parameter is a
compound phrase phrase which
could be reduced to a single noun.

• The name of some parameter is
not recognizable---or at least,
course staff cannot figure it out.

• The name of a list parameter is
neither a plural noun form nor a
conventional name like xs or ys.

• Long names are used in very
small scopes (exception granted for
some function parameters).

• Very short names are used with
global scope.

Documentation • The contract of each function is
clear from the function's name,
the names of its parameters, and

• A function's contract omits some
parameters.

• A function is not named after the
thing it returns, and the function's
documentation does not say what it

COMP 105 Higher-Order Functions Homework

Structure and organization criteria 8

http://www.cs.tufts.edu/comp/105/details.html#contracts
http://www.cs.tufts.edu/comp/105/details.html#contracts
http://www.cs.tufts.edu/comp/105/details.html#contracts

perhaps a one-line comment
describing the result.

• When names are not enough,
each function is documented with
a contract that explains what the
function returns, in terms of the
parameters, which are mentioned
by name.

• From the name of a function,
the names of its parameters, and
the accompanying
documentation, it is easy to
determine how each parameter
affects the result.

• Documentation appears
consistent with the code being
described.

• As an alternative to internal
documentation, a function's
documentation may refer the
reader to the problem
specification where the function's
contract is given.

• A function's documentation
mentions every parameter, but does
not specify a contract.

• A function's documentation
includes information that is
redundant with the code, e.g., "this
function has two parameters."

• A function's contract omits some
constraints on parameters, e.g.,
forgetting to say that the contract
requires nonnegative parameters.

returns.

• A function's documentation
includes a narrative description of
what happens in the body of the
function, instead of a contract that
mentions only the parameters and
result.

• A function's documentation
neither specifies a contract nor
mentions every parameter.

• There are multiple functions that
are not part of the specification of
the problem, and from looking just
at the names of the functions and
the names of their parameters, it's
hard for us to figure out what the
functions do.

• Documentation appears
inconsistent with the code being
described.

Structure • Short problems are solved using
simple anonymous lambda
expressions, not named helper
functions.

• New: Quicksort does not use
append and is implemented
using at most three define and
lambda, in any combination.

• New: Or, Quicksort uses
append and is implemented
using at most two define and
lambda, in any combination.

• New: Quicksort uses one
null? test and one if

• New: Quicksort has a very solid
explanation for why it terminates.

• New: Or, Quicksort has a
believable explanation for why it
terminates.

• When possible, inner functions
use the parameters and
let-bound names of outer

• Most short problems are solved
using anonymous lambdas, but there
are some named helper functions.

• New: Quicksort is implemented
using more than three define and
lambda, in any combination.

• New: Or, Quicksort uses append
and is implemented using three
define and lambdas, in any
combination.

• New: Quicksort uses up to two
null? tests and up to two ifs.

• New: Quicksort mentions
termination.

• An inner function is passed, as a
parameter, the value of a parameter
or let-bound variable of an outer
function, which it could have
accessed directly.

• Course staff have to work to tell
whether the code is correct or
incorrect.

• Most short problems are solved
using named helper functions;
there aren't enough anonymous
lambda expressions.

• New: Quicksort uses more than
two null? tests or more than two
ifs.

• New: Or, Quicksort does not use
any null? tests or ifs (serious
fault).

• New: Quicksort does not mention
termination.

• Helper functions are defined at
top level.

• From reading the code, course
staff cannot tell whether it is
correct or incorrect.

• From reading the code, course
staff cannot easily tell what it is
doing.

• There's about twice as much code

COMP 105 Higher-Order Functions Homework

Structure and organization criteria 9

http://www.cs.tufts.edu/comp/105/details.html#contracts
http://www.cs.tufts.edu/comp/105/details.html#contracts
http://www.cs.tufts.edu/comp/105/details.html#contracts
http://www.cs.tufts.edu/comp/105/details.html#contracts

functions directly.

• Helper functions are defined
internally using let, let*, or
letrec.

• The code of each function is so
clear that, with the help of the
function's contract, course staff
can easily tell whether the code is
correct or incorrect.

• There's only as much code as is
needed to do the job.

• New: The initial basis of
Î¼Scheme is used effectively.

• There's somewhat more code than
is needed to do the job.

• New: Functions in the initial basis,
when used, are used correctly.

as is needed to do the job.

• New: Functions in the initial
basis are redefined in the
submission.

Performance • Empty lists are distinguished
from non-empty lists in constant
time.

• Distinguishing an empty list from
a non-empty list might take longer
than constant time.

Cost and correctness of your code

We'll be paying some attention to cost as well as correctness.

Exemplary Satisfactory Must improve
Correctness • The translation in problem A is

correct.

• Your code passes every one of our
stringent tests.

• Testing shows that your code is of
high quality in all respects.

• New: File solver-tests.scm
contains exactly 6 val bindings and
no other code.

• New: In file
solver-tests.scm, values s1,
s2, and s3 are either satisfying
assignents or the symbol
no-solution.

• New: In file
solver-tests.scm, values f1,
f2, and f3 represent valid
formulas.

• The translation in problem A is
almost correct, but an easily
identifiable part is missing.

• Testing reveals that your code
demonstrates quality and
significant learning, but some
significant parts of the
specification may have been
overlooked or implemented
incorrectly.

• The translation in problem A is
obviously incorrect,

• Or course staff cannot understand the
translation in problem A.

• Testing suggests evidence of effort,
but the performance of your code
under test falls short of what we
believe is needed to foster success.

• Testing reveals your work to be
substantially incomplete, or shows
serious deficiencies in meeting the
problem specifications (serious fault).

• Code cannot be tested because of
loading errors, or no solutions were
submitted (No Credit).

• New: File solver-tests.scm
contains other code besides the 6 val
bindings requested.

• New: In file solver-tests.scm,
value s1, s2, or s3 claims to be a
satisfying assignment, but it isn't.

COMP 105 Higher-Order Functions Homework

Cost and correctness of your code 10

• New: Or, in file
solver-tests.scm, value s1, s2,
or s3 claims there is no solution, but
the corresponding formula does have a
solution.

• New: In file solver-tests.scm,
values f1, f2, or f3 does not
represent a valid formula.

Proofs and inference rules

These are the same criteria as before, with a little extra emphasis on using structural induction correctly.

Exemplary Satisfactory Must improve
Proofs • New: Proofs that involve

predefined functions appeal to their
definitions or to laws that are proved
in the book.

• New: Proofs that involve
inductively defined structures,
including lists and S-expressions,
use structural induction exactly
where needed.

• New: Proofs involve predefined
functions but do not appeal to their
definitions or to laws that are proved in
the book.

• New: Proofs that involve inductively
defined structures, including lists and
S-expressions, use structural induction,
even if it may not always be needed.

• New: A proof that involves an
inductively defined structure, like a list
or an S-expression, does not use
structural induction, but structural
induction is needed.

COMP 105 Higher-Order Functions Homework

Proofs and inference rules 11

	COMP 105 Higher-Order Functions Homework

