
COMP105 Assignment: An Imperative Core
Due Wednesday, January 23 at 11:59PM.

Getting Started

To add the course binaries to your execution path, run

use -q comp105

You may want to put this command in your .cshrc or your .profile. The -q option is needed to prevent use
from spraying text onto standard output, which may interfere with with scp, ssh, git, and rsync.

•

IMPORTANT NOTE: This assignment is due one minute before midnight on a class day. You may turn it in up to
24 hours after the due date, which will cost you one extension token. If you wish not to spend an extension token,
then when midnight arrives submit whatever you have. We are very willing to give partial credit.

•

Programming in Impcore

These are ``finger exercises'' to get you into the swing of the LISP syntax and style of programming. You can start these
exercises immediately after the first lecture. If you find it entertaining, you may write very efficient solutions—but do not
feel compelled to do so. Do not share your solutions with anyone. We encourage you to discuss ideas, but noone else may
see your code.

Do exercises 3 through 8 on page 54 of Ramsey's textbook. Place your solutions to problems 3 through 8 in a file
called solution.imp. You must use recursion. While loops will be disabled.

You can find an impcore interpreter in /comp/105/bin; if you have run use as suggested above you should be
able to run it just by typing

 ledit impcore

The ledit command gives you the ability to retrieve and edit previous lines of input; see its man page.

Note that you can run the contents of a file through the interpreter by typing impcore < file. You can
eliminate unwanted prompts by running impcore -q < file. You may find it useful to create some test cases
in a file mytests; you can then check your work by typing

 cat solution.imp mytests | impcore -q

Don't include test cases in the solution.imp file you submit.

Your solutions must be valid Impcore; in particular, they must pass the following test:

/comp/105/bin/impcore -q < solution.imp > /dev/null

without any error messages. If your file produces error messages, we won't test your solution and you will earn No
Credit for functional correctness (you can still earn credit for readability).

You may find it more convenient to keep solutions in separate files as you develop them. If so, we recommend that
you do so and combine them in the end with cat. For example,

 cat s2 s3 s4 s5 s6 s7 > solution.imp

•

In doing problems 3 through 8, use helper functions where appropriate, but do not use global variables.•
Below each function, not as part of that function's regular documentation, please put a comment that explains what
inductive structure that function is imposing on the integers or the natural numbers. For example, I could write the

•

COMP105 Assignment: Impcore

COMP105 Assignment: An Imperative Core 1

http://www-cs-students.stanford.edu/~blynn/gitmagic/
http://samba.anu.edu.au/rsync/
http://docs.camlcity.org/docs/godipkg/3.10/apps-ledit/man/man1/ledit.1.html

even? function this way:

(define even? (n)
 (if (= n 0) 1
 (if (= n 1) 0
 (even? (- n 2)))))
 ;; Breaks down the natural numbers into three cases:
 ;; 0
 ;; 1
 ;; n+2, where n is a natural number

The solutions you write for problems 3 through 8 should be in order in the file solution.imp (i.e. problem 3
first, problem 8 last) and each solution should be preceeded by a comment that looks like something like this:

;;
;; Problem N
;;

•

My solutions total 50–60 lines of Impcore.

If you have difficulty, find a TA who can work you through some similar problems.

How your work will be evaluated

A big part of this assignment is for you to be sure you understand how we expect your code to be structured and organized.
There is some material about this on the details page on the course web site. When we get your work, we will evaluate it in
two ways:

About 60% of your grade will be based on our judgement of the structure and organization of your code. To judge
structure and organization, we will use the following four dimensions:

Documentation assesses whether your code is documented appropriately.♦
Form assesses whether your code uses indentation, line breaks, and comments in a way that makes it easy
for us to read.

♦

Naming assesses your choice of names. (To people who aspire to be great programmers, names matter
deeply.)

♦

Structure assesses the underlying structure of your solution, not just how its elements are documented,
formatted, and named.

♦

•

About 40% of your grade will be based on our judgement of the correctness of your code. We often look at code to
see if it is correct, but our primary tool for assessing correctness is by testing.

On a typical assignment, the correctness of your code would carry more weight, but relative to the other homeworks
in 105, the problems on this assignment are very easy, so they carry less weight.

•

The detailed criteria we will use to assess your work are as follows:

Exemplary Satisfactory Must improve
Documentation • The contract of each function

is clear from the function's
name, the names of its
parameters, and perhaps a
one-line comment describing the
result.

• When names are not enough,
each function is documented
with a contract that explains
what the function returns, in
terms of the parameters, which

• A function's contract omits some
parameters.

• A function's documentation
mentions every parameter, but does
not specify a contract.

• A function's documentation
includes information that is
redundant with the code, e.g., "this
function has two parameters."

• A function is not named after the
thing it returns, and the function's
documentation does not say what it
returns.

• A function's documentation
includes a narrative description of
what happens in the body of the
function, instead of a contract that
mentions only the parameters and
result.

COMP105 Assignment: Impcore

Programming in Impcore 2

http://www.cs.tufts.edu/comp/105/details.html#contracts
http://www.cs.tufts.edu/comp/105/details.html#contracts
http://www.cs.tufts.edu/comp/105/details.html#contracts
http://www.cs.tufts.edu/comp/105/details.html#contracts
http://www.cs.tufts.edu/comp/105/details.html#contracts

are mentioned by name.

• From the name of a function,
the names of its parameters, and
the accompanying
documentation, it is easy to
determine how each parameter
affects the result.

• The contract of each function
is written without case analysis,
or case analysis was
unavoidable.

• Documentation appears
consistent with the code being
described.

• A function's contract omits some
constraints on parameters, e.g.,
forgetting to say that the contract
requires nonnegative parameters.

• A function's contract includes a case
analysis that could have been
avoided, perhaps by letting some
behavior go unspecified.

• A function's documentation
neither specifies a contract nor
mentions every parameter.

• There are multiple functions that
are not part of the specification of
the problem, and from looking just
at the names of the functions and
the names of their parameters, it's
hard for us to figure out what the
functions do.

• A function's contract includes a
redundant case analysis.

• Documentation appears
inconsistent with the code being
described.

Form • All code fits in 80 columns.

• The submitted code contains
no tab characters.

• All code respects the offside
rule

• Indentation is consistent
everywhere.

• In Impcore, if a construct spans
multiple lines, its closing
parenthesis appears at the end of
a line, possibly grouped with one
or more other closing
parentheses.

• No code is commented out.

• Solution file contains no
distracting test cases or print
statements.

• One or two lines are wider than 80
columns.

• The code contains one or two
violations of the offside rule

• In one or two places, code is not
indented in the same way as
structurally similar code elsewhere.

• Solution file may contain clearly
marked test functions, but they are
never executed. It's easy to read the
code without having to look at the
test functions.

• Three or more lines are wider than
80 columns.

• An ASCII tab character lurks
somewhere in the submission.

• The code contains three or more
violations of the offside rule

• The code is not indented
consistently.

• The closing parenthesis of a
multi-line construct is followed by
more code (or by an open
parenthesis) on the same line.

• A closing parenthesis appears on
a line by itself.

• Solution file contains code that
has been commented out.

• Solution file contains test cases
that are run when loaded.

• When loaded, solution file prints
test results.

Naming • Each function is named either
with a noun describing the result
it returns, or with a verb
describing the action it does to
its argument. (Or the function is
a predicate and is named as
suggested below.)

• Functions' names contain
appropriate nouns and verbs, but the
names are more complex than needed
to convey the function's meaning.

• Functions' names contain some
suitable nouns and verbs, but they
don't convey enough information
about what the function returns or

• Function's names include verbs
that are too generic, like
"calculate", "process", "get", "find",
or "check"

• Auxiliary functions are given
names that don't state their
contracts, but that instead indicate a
vague relationship with another

COMP105 Assignment: Impcore

How your work will be evaluated 3

http://www.cs.tufts.edu/comp/105/details.html#contracts
http://www.cs.tufts.edu/comp/105/details.html#contracts
http://www.cs.tufts.edu/comp/105/details.html#contracts
http://www.cs.tufts.edu/comp/105/details.html#contracts
http://www.cs.tufts.edu/comp/105/details.html#offside
http://www.cs.tufts.edu/comp/105/details.html#offside
http://www.cs.tufts.edu/comp/105/details.html#offside
http://www.cs.tufts.edu/comp/105/details.html#offside
http://www.cs.tufts.edu/comp/105/details.html#contracts

• A function that is used as a
predicate (for if or while) has
a name that is formed by writing
a property followed by a
question mark. Examples might
include even? or prime?.
(Applies only if the language
permits question marks in
names.)

• Or, the code defines no
predicates.

• In a function definition, the
name of each parameter is a
noun saying what, in the world
of ideas, the parameter
represents.

• Or the name of a parameter is
the name of an entity in the
problem statement, or a name
from the underlying
mathematics.

• Or the name of a parameter is
short and conventional. For
example, a magnitude or count
might be n or m. An index might
be i, j, or k. A pointer might be
p; a string might be s. A
variable might be x; an
expression might be e.

does.

• A function that is used as a
predicate (for if or while) does not
have a name that ends in a question
mark. (Applies only if the language
permits question marks in names.)

• The name of a parameter is a noun
phrase formed from multiple words.

• Although the name of a parameter is
not short and conventional, not an
English noun, and not a name from
the math or the problem, it is still
recognizable---perhaps as an
abbreviation or a compound of
abbreviations.

function. Often such names are
formed by combining the name of
the other function with a suffix
such as aux, helper, 1, or even
_.

• Course staff cannot identify the
connection between a function's
name and what it returns or what it
does.

• The name of a parameter is a
compound phrase phrase which
could be reduced to a single noun.

• The name of some parameter is
not recognizable---or at least,
course staff cannot figure it out.

Structure • The code of each function is so
clear that, with the help of the
function's contract, course staff
can easily tell whether the code
is correct or incorrect.

• There's only as much code as is
needed to do the job.

• In every case analysis, all cases
are necessary.

• In the body of a recursive
function, the code that handles
the base case(s) appears before
any recursive calls.

• Solutions are recursive, as
requested in the assignment.

• Expressions cannot be made
any simpler by application of

• Course staff have to work to tell
whether the code is correct or
incorrect.

• There's somewhat more code than is
needed to do the job.

• In some case analyses, there are
cases which are redundant (i.e., the
situation is covered by other cases
which are also present in the code).

• Code for one or more base cases
appears after a recursive call.

• From reading the code, course
staff cannot tell whether it is correct
or incorrect.

• From reading the code, course
staff cannot easily tell what it is
doing.

• There's about twice as much code
as is needed to do the job.

• A significant fraction of the case
analyses in the code, maybe a third,
are redundant.

• Code uses while or set
(serious fault)

• Code can be simplified by
applying algebraic laws. For
example, the code says (+ x 0),
but it could say just x.

COMP105 Assignment: Impcore

How your work will be evaluated 4

algebraic laws.
Correctness • Impcore functions test correct

with no faults.

• Or, under test, Impcore
functions have only tiny faults,
typically arising from problems
with arithmetic overflow or from
some confusion about exactly
what numbers are prime.

• Testing Impcore solutions identifies
a few faults.

• Or, testing Impcore solutions
identifies a single fault that shows a
lack of understanding.

• Testing Impcore code shows a
preponderance of faults.

• Impcore code fails because the
names of helper functions are
spelled differently in different
places (serious fault).

• When we attempt to load Impcore
code, there are errors (No Credit).

Exemplary work typically earns a Very Good grade; if exemplary work truly excels, it may earn an Excellent grade.
Satisfactory work typically earns a Good grade. Work that must improve typically earns a Fair grade, but work that has a
serious fault may earn a Poor grade, and as noted in the table, a very serious fault may result in a grade of No Credit.

Difficulty Alert

This assignment is three or four times easier than a typical COMP 105 assignment. Its role is to get you acclimated and to
help you start thinking systematically about how recursion works. Later assignments get much harder and more
time-consuming, so don't use this one to gauge the difficulty of the course.

How to submit your work

Before submitting your code, test it. We do not provide any tests; you must write your own.

To submit, change into the directory containing your code and run submit105-impcore to submit your work. In addition
to file solution.imp, please also include a file called README. Use your README file to

Tell us how to pronounce your name, as in "NORE-muhn RAM-zee" or "ANN-drew Guh-LAHNT".•
Tell us how well you think you did on each of the five dimensions: Documentation, Form, Naming, Structure, and
Correctness

•

Tell us how long it took you to complete the assignment•

(If you wish to use PDF, then please submit README.pdf instead of README.)

COMP105 Assignment: Impcore

Difficulty Alert 5

	COMP105 Assignment: Impcore

