
COMP105 Assignment: Lambda Calculus

Due Monday, April 8, at 11:59PM.
Deadline extended! Due Tuesday, April 9, at 11:59PM.

Setup and Instructions

You will need

 git clone /comp/105/git/lambda

which chould give you a directory lambda with files linterp.sml, Lhelp.ui, Lhelp.uo, Makefile, and
basis.lam.

Do all problems below.

There are three problems on implementing the lambda calculus, which you can do with a partner, For problems 1-3,
modify the linterp.sml file from the git repository.

•

There are four problems on programming with Church numerals, which you'll do on your own. Put your answers for
to these problems, 4-7, in a file called church.lam.

•

Introduction to the Lambda interpreter

You will be working with a small, interactive interpreter for the lambda calculus. This section explains what syntax to use
and how to interact with the interpreter.

Concrete syntax

Every definition must be terminated with a semicolon. Comments are C++ style line comments, starting with the string //
and ending at the next newline. A definition can be a term, a binding, or a use statement.
A use statement loads a file into the interpreter as if it had been typed in directly. A use statement is of the form
-> use filename;
When a term is entered at the toplevel, any free variables in the term which appear in the environment are substituted with
their bindings in the environment, then the term is reduced to normal form (if possible) and the result is printed.
-> term;
A binding first evaluates the term on the right hand side as above, and then binds the name on the left hand side to the
resulting term in the environment. It is an error for the term on the right hand side to contain any free variables which are not
bound in the environment. Bindings are of the form:
-> name = term;
or
-> noreduce name = term;
If the noreduce keyword appears, the term on the right-hand side is not normalized. This tactic can be useful for terms that
have no normal form, such as

noreduce bot = (\x.x x)(\x.x x);
noreduce Y = \f.(\x.f(x x))(\x.f(x x));

A lambda term can be either a variable, a lambda abstraction, an application, or a parenthesized lambda term. Precedence is
as in ML. A lambda abstraction is written as follows. Note that each lambda abstraction abstracts over exactly one variable.

 \name.term

Application of one term to another is written:

 term1 term2

COMP 105 Homework: Lambda calculus

COMP105 Assignment: Lambda Calculus 1

The lambda interpreter is very liberal about names of variables. A name is any string of characters that contains neither
whitespace, nor control characters, nor any of the following characters: \ () . = /. Also, the string use is reserved and is
therefore not a name. So for example, the following are all legal:

1 = \f.\x.f x;
True = \x.\y.x;
one = True 1;

A short example transcript

A healthy lambda interpreter should be capable of something like the following:

<transcript>=
-> true = \x.\y.x;
-> false = \x.\y.y;
-> pair = \x.\y.\f.f x y;
-> fst = \p. p (\x.\y.x);
-> snd = \p.p(\x.\y.y);
-> true;
\x.\y.x
-> fst (pair true false);
\x.\y.x
-> snd (pair true false);
\x.\y.y
-> if = \x.\y.\z.x y z;
if
-> (if true fst snd) (pair false true);
\x.\y.y
-> (if false fst snd) (pair true false);
\x.\y.y

For more example definitions, see the basis.lam file distributed with the assignment.

Modifying the Lambda Interpreter: Exercises for pairs

The purpose of these problems is to help you learn about substitution and reduction, the fundamental operations of the
lambda calculus. We also give you a little more practice in continuation passing, which is an essential technique in
lambda-land. You may do these exercises by yourself or with a partner.

For these problems, define appropriate types and functions in linterp.sml. When you are done, you will have a working
lambda interpreter. Some of the code we give you (Lhelp.ui and Lhelp.uo) is object code only, so you will have to
build the interpreter using Moscow ML. Just typing make should do it.

1. Evaluation—Basics (estimated difficulty *). This problem has two parts:

Using ML, create a type definition for a type term, which should represent a term in the untyped lambda calculus.
Using your representation, define the following functions with the given types:

 lam : string -> term -> term (* lambda abstraction *)
 app : term -> term -> term (* application *)
 var : string -> term (* variable *)
 cpsLambda : (* observer *)
 forall 'a .
 term ->
 (string -> term -> 'a) ->
 (term -> term -> 'a) ->
 (string -> 'a) ->
 'a

These functions must obey the following algebraic laws:

a.

COMP 105 Homework: Lambda calculus

Concrete syntax 2

 cpsLambda (lam x e) f g h = f x e
 cpsLambda (app e e') f g h = g e e'
 cpsLambda (var x) f g h = h x

Using cpsLambda, define a function toString of type term -> string that converts a term to a string in
uScheme syntax. Your toString function should be independent of your representation. That is, it should work
using the functions above.

b.

My solution to this problem is under 30 lines of ML code.

2. Evaluation—Substitution (estimated difficulty **). Implement substitution on your term representation. Define a
function subst of type string * term -> term -> term. To compute the substitution M[x|–>N], you should call
subst (x, N) M.
Also define a function freeVars of type term -> string list which returns a list of all the free variables in a term.

My solution to this problem is under 40 lines of ML code.

3. Evaluation—Reductions (estimated difficulty ***). In this problem, you use your substitution function to implement two
different evaluation strategies.

Implement normal-order reduction on terms. That is, write a function reduceN : term -> term that takes a
term, performs a single reduction step (either beta or eta) in normal order, and returns a new term. If the term you
are given is already in normal form, your code should raise the exception NormalForm, which you should define.

a.

Implement applicative-order reduction on terms. That is, write a function reduceA : term -> term that takes
a term, performs a single reduction step (either beta or eta) in applicative order, and returns a new term. If the term
you are given is already in normal form, your code should raise the exception NormalForm, which you should
reuse from the previous part.

b.

My solution to this problem is under 20 lines of ML code.

Work with Church Numerals: Exercises to do on your own

The purpose of the problems below is to give you a little practice programming in the lambda calculus. My solutions to all
four problems total less than fifteen lines of code. You must do these exercises by yourself.

4. Church Numerals—parity (estimated difficulty *). Without using recursion or a fixed-point combinator, define a
function even? which, when applied to a Church numeral, returns the Church encoding of true or false, depending on
whether the numeral represents an even number or an odd number.

Ultimately, you will write your function in lambda notation acceptable to the lambda interpreter, but you may find it useful to
try to write your initial version in Typed uScheme (or ML or uML or uScheme) to make it easier to debug.

Remember,

<church numerals and Booleans>=
0 = \f.\x.x;
succ = \n.\f.\x.f (n f x);
+ = \n.\m.n succ m;
* = \n.\m.n (+ m) 0;

true = \x.\y.x;
false = \x.\y.y;

You can load the initial basis with these definitions already created by typing: use basis.lam; in your interpreter.

5. Church Numerals—division by two (estimated difficulty ***). Without using recursion or a fixed-point combinator,
define a function div2 which divides a Church numeral by two (rounding down). That is div2 applied to the numeral for
2n returns n, and div2 applied to the numeral for 2nâ—�+â—�1 also returnsÂ n.

COMP 105 Homework: Lambda calculus

Modifying the Lambda Interpreter: Exercises for pairs 3

Hint: For ideas, revisit the programming problems on the midterm.

6. Church Numerals—binary (estimated difficulty **) Implement the function binary from the Impcore homework.
The argument and result should be Church numerals. For example,

<transcript for binary>=
-> binary 0;
\f.\x.x
-> binary 1;
\f.f
-> binary 2;
\f.\x.f (f (f (f (f (f (f (f (f (f x)))))))))
-> binary 3;
\f.\x.f (f (f (f (f (f (f (f (f (f (f x))))))))))

For this problem, you may use the Y combinator. If you do, remember to use noreduce when defining binary, e.g.,

 noreduce binary = ... ;

Note: This problem, although not so difficult, may be time-consuming. If you get bogged down, go forward to the next
problem, which requires similar skills in recursion, fixed points, and Church numerals. Then come back to this problem.

EXTRA CREDIT. Write a function binary-sym that takes three arguments: a symbol for zero, a symbol for one, and a
Church numeral. Function binary-sym reduces to a term that "looks like" the binary representation of the given Church
numeral. Examples:

<transcript for binary-sym>=
-> binary-sym _ | 0;
_
-> binary-sym _ | 1;
|
-> binary-sym _ | 2;
| _
-> binary-sym _ | (+ 2 4);
| | _
-> binary-sym Zero One (+ 2 4);
One One Zero

Note: I can't identify any practical value to binary-sym. It is purely for showing off your new skills.

7. Church Numerals—list selection (estimated difficulty ***). Write a function nth such that given a Church numeral n
and a church-encoded list xs of length at least n+1, nth n xs returns the nth element of xs:

-> 0;
\f.\x.x
-> 2;
\f.\x.f (f x)
-> nth 0 (cons Alpha (cons Bravo (cons Charlie nil)));
Alpha
-> nth 2 (cons Alpha (cons Bravo (cons Charlie nil)));
Charlie

If you want to define nth as a recursive function, use the Y combinator, and use noreduce to define nth.

Don't even try to deal with the case where xs is too short.

Hint: One option is to go on the web or go to Rojas and learn how to tell if a Church numeral is zero and if not, and how to
take its predecessor. There are other, better options.

COMP 105 Homework: Lambda calculus

Work with Church Numerals: Exercises to do on your own 4

Common mistakes, alarums, and excursions

The lambda intepreter

Here are some common mistakes to avoid in the first part:

Don't forget the eta rule:

 \x.M x --> M provided x is not free in M

Here is an reduction in two eta steps:

 \x.\y.cons x y --> \x.cons x --> cons

Your interpreters must eta-reduce when possible.

•

Don't forget to reduce under lambdas.•
Don't forget to use normal-order reduction in the code you submit.•
Don't clone and modify your code for reduction strategies; too many people who do this wind up with wrong
answers. The code should not be that long; just type in every case.

•

Don't think that an application is in normal form just because one subterm is in normal form—you have to check
both subterms. Most students do this using exception handlers, but if you are not comfortable with exception
handlers, you can write your reducer in continuation-passing style instead.

•

Don't try to be clever about a divergent term; just reduce it. (It's a common mistake to try to detect the possibility of
an infinite loop. Mr Turing proved that you can't detect an infinite loop, so please don't try.)

Do make sure to use normal-order reduction, so that you don't reduce a divergent term unnecessarily.

•

If you test an interpreter before implementing reduction, you may see some alarming-looking terms that have extra lambdas
and applications. This is because the interpreter uses lambda to implement the substitution that is needed for the free
variables in your terms. Here's a sample:

<transcript of interpreter without reductions>=
-> thing = \x.\y.y x;
thing
-> thing;
(\thing.thing) \x.\y.y x

Everything is correct here except that the code claims something is in normal form when it isn't. If you reduce the term by
hand, you should see that it has the normal form you would expect. A term that refers to even more defined variables could
start to look very exciting indeed.

Programming with Church numerals

Here are some common mistakes to avoid in the second part:

Don't forget the question mark in the name of even?.•
When using a fixed-point combinator, don't forget noreduce.•
Don't use the list representation or primitives from Wikipedia. We will test your code using the representation
and primitives described in class, which you will also find in the file basis.lam.

•

Don't include any use directives in church.lam.•
Don't copy basis functions from basis.lam. We will load the basis before running your code.

To make sure your code is well formed, load it using

 cat basis.lam church.lam | ./linterp

If you want to build a test suite, run your tests by putting them in file test.lam, then running

•

COMP 105 Homework: Lambda calculus

Common mistakes, alarums, and excursions 5

 cat basis.lam church.lam test.lam | ./linterp

More Extra Credit

If you solve the binary-sym extra credit, please put the solution in your church.lam file.

Solutions to any of the extra-credit problems below should be placed in your README file. Some may be accompanied by
code in your linterp.sml file.

Extra Credit—Normalization. Write a higher-order function that takes as argument a reducing strategy (e.g., reduceA or
reduceN) and returns a function that normalizes a term. Your function should also count the number of reductions it takes
to reach a normal form. As a tiny experiment, report the cost of computing using Church numerals in both reduction
strategies. For example, you could report the number of reductions it takes to reduce ``three times four'' to normal form.

This function should be doable in about 10 lines of ML.

Extra Credit—Normal forms galore. Discover what Head Normal Form and Weak Head Normal Form are and implement
reduction strategies for them. Explain, in an organized way, the differences between the four reduction strategies you have
implemented.

Extra Credit—Typed Equality. For extra credit, write down equality on Church numerals using Typed uScheme, give the
type of the term in algebraic notation, and explain why this function can't be written in ML. (By using the ``erasure'' theorem
in reverse, you can take your untyped version and just add type abstractions and type applications.)

What to submit

For this assignment,

Please use submit105-lambda-pair to submit your modified linterp.sml for the parts on evaluation.•
Please use submit105-lambda-solo to submit these files:

README♦
church.lam for the parts on Church Numerals♦

•

How your work will be evaluated

Your ML code will be judged by the usual criteria, emphasizing

Correct implementation of the lambda calculus•
Good form•
Names and contracts for helper functions•
Structure that exploits standard basis functions, especially higher-order functions, and that avoids redundant case
analysis

•

Your lambda code will be judged on correctness, form, naming, and documentation, but not so much on structure.
In particular, because the lambda calculus is such a low-level language, we will especially emphasize names and contracts
for helper functions.

This is low-level programming, and if you don't get your code exactly right, the only way we can recognize and
reward your learning is by reading the code. It's your job to make it clear to us that even if your code isn't perfect,
you understand what you're doing.

•

Try to write your contracts in terms of higher-level data structures and operations. For example, even though the
following function does some fancy manipulation on terms, it doesn't need much in the way of a contract:

 double = \n.\f.\x. n (\y.f (f y)) x; // double a Church numeral

•

COMP 105 Homework: Lambda calculus

Programming with Church numerals 6

Documenting lambda calculus is like documenting assembly code: it's often sufficient to say what's happening at a
higher level of abstraction.
Although it is seldom ideal, it can be OK to use higher-level code to document your lambda code. In particular, if
you want to use Scheme or ML to explain what your lambda code is doing, this can work only because Scheme and
ML operate at much higher levels of abstraction. Don't fall into the trap of writing the same code twice—if you are
going to use code in a contract, it must operate at a significantly higher level of abstraction than the code it is trying
to document.

•

In more detail, here are our criteria:

Exemplary Satisfactory Must improve
Naming • Each Î»-calculus function is named

either with a noun describing the
result it returns, or with a verb
describing the action it does to its
argument, or (if a predicate) as a
property with a question mark.

• Functions' names contain
appropriate nouns and
verbs, but the names are
more complex than needed
to convey the function's
meaning.

• Functions' names contain
some suitable nouns and
verbs, but they don't convey
enough information about
what the function returns or
does.

• Function's names include verbs that are
too generic, like "calculate", "process",
"get", "find", or "check"

• Auxiliary functions are given names
that don't state their contracts, but that
instead indicate a vague relationship with
another function. Often such names are
formed by combining the name of the
other function with a suffix such as aux,
helper, 1, or even _.

• Course staff cannot identify the
connection between a function's name
and what it returns or what it does.

Documentation • The contract of each function is
clear from the function's name, the
names of its parameters, and perhaps
a one-line comment describing the
result.

• Or, when names alone are not
enough, each function's contract is
documented with a type (in a
comment)

• Or, when names and a type are not
enough, each function's contract is
documented by writing the
function's operation in a high-level
language with high-level data
structures.

• Or, when a function cannot be
explained at a high level, each
function is documented with a
meticulous contract that explains
what Î»-calulucs term the function
returns, in terms of the parameters,
which are mentioned by name.

• All recursive functions use
structural recursion and therefore
don't need documentation.

• A function's contract
omits some parameters.

• A function's
documentation mentions
every parameter, but does
not specify a contract.

• A recursive function is
accompanied by an
argument about
termination, but course staff
have trouble following the
argument.

• A function is not named after the thing
it returns, and the function's
documentation does not say what it
returns.

• A function's documentation includes a
narrative description of what happens in
the body of the function, instead of a
contract that mentions only the
parameters and result.

• A function's documentation neither
specifies a contract nor mentions every
parameter.

• A function is documented at a low level
(Î»-calculus terms) when higher-level
documentation (pairs, lists, Booleans,
natural numbers) is possible.

• There are multiple functions that are not
part of the specification of the problem,
and from looking just at the names of the
functions and the names of their
parameters, it's hard for us to figure out
what the functions do.

• A recursive function is accompanied by
an argument about termination, but

COMP 105 Homework: Lambda calculus

How your work will be evaluated 7

http://www.cs.tufts.edu/comp/105/details.html#contracts
http://www.cs.tufts.edu/comp/105/details.html#contracts
http://www.cs.tufts.edu/comp/105/details.html#contracts
http://www.cs.tufts.edu/comp/105/details.html#contracts
http://www.cs.tufts.edu/comp/105/details.html#contracts
http://www.cs.tufts.edu/comp/105/details.html#contracts

• Or, every function that does not
use structural recursion is
documented with a short argument
that explains why it terminates.

course staff believe the argument is
wrong.

• A recursive function does not use
structural recursion, and course staff
cannot find an explanation of why it
terminates.

Structure • File church.lam loads without
errors.

• The code for reduction contains no
redundant case analysis.

• Where appropriate, ML code uses
map, List.filter,
List.exists, List.all, and
foldl or foldr.

• File church.lam loads
with an I/O error and/or
possibly some divergent
terms.

• Some code for reduction
contains redundant case
analysis.

• ML code uses standard
higher-order functions, but
some opportunities for
using folds have been
overlooked.

• File church.lam loads with an
undefined identifier on the RHS or with
some other error.

• Both normal-order and
applicative-order reduction contain
redundant case analysis.

• ML code defines recursive helper
functions that could have been defined
non-recursively using map, filter,
exists, all, and so on.

Form • The code has no offside violations.

• Or, the code has just a couple of
minor offside violations.

• Indentation is consistent
everywhere.

• The submission has no bracket
faults.

• The submission has a few minor
bracket faults.

• Or, the submission has no
bracketed names, but a few
bracketed conditions or other faults.

• The code has several
offside violations, but
course staff can follow
what's going on without
difficulty.

• In one or two places, code
is not indented in the same
way as structurally similar
code elsewhere.

• The submission has some
redundant parentheses
around function
applications that are under
infix operators (not checked
by the bracketing tool)

• Or, the submission
contains a handful of
bracketing faults.

• Or, the submission
contains more than a
handful of bracketing
faults, but just a few
bracketed names or
conditions.

• Offside violations make it hard for
course staff to follow the code.

• The code is not indented consistently.

• The submission contains more than a
handful of parenthesized names as in
(x)

• The submission contains more than a
handful of parenthesized if conditions.

COMP 105 Homework: Lambda calculus

How your work will be evaluated 8

	COMP 105 Homework: Lambda calculus

