
Implementing uML: Hindley-Milner Type Inference

Due Saturday, March 30 at 11:59PM.
Deadline extended! New deadline Monday, April 1 at 11:59PM.

In this assignment you will implement Hindley-Milner type inference, which represents the current ``best practice'' for
flexible static typing. The assignment has two purposes:

To help you develop a deep understanding of type inference•
To help you continue to build your ML programming skills•

Complete Exercises S and T below, and from Chapter 7 in Ramsey, complete Exercises 1, 2, 4, 13, 16, and 17.

Getting the code

To get the code,

 git clone linux.cs.tufts.edu:/comp/105/book-code

If you have a version that is older than March 26, 2013, you will need to bring your version up to date using git pull.

The code you need is in bare/uml/ml.sml.

Two exercises to do by yourself (10%)

Complete Exercises 1 and 2 on page 334 of Ramsey.
These exercises explore some implications of type inference. The answers to both exercises should go into file 1-2.uml;
your answer to Exercise 2 should appear in a comment.
In your answer to question 1, do not use letrec.

Six exercises to do with a partner (90%)

Complete Exercises 4, 13, 16, and 17 from pages 334–337 of Ramsey, and the two exercises S and T below.
For the coding exercises you'll be modifying the interpreter in book-code/bare/uml/ml.sml.

S. Test cases for the solver.
Submit three test cases for the constraint solver. At least two of these test cases should be constraints that have no solution.
Assuming that we provide a function constraintTest : con -> answer, put your test cases in file stest.sml as
three successive calls to constraintTest. Do not define constraintTest yourself.

Here is a sample stest.sml file:

val _ = constraintTest (TYVAR "a" =*= TYVAR "b")
val _ = constraintTest (CONAPP (TYCON "list", [TYVAR "a"]) =*= TYCON "int")
val _ = constraintTest (TYCON "bool" =*= TYCON "int")

Naturally, you will supply your own test cases.

T. Test cases for type inference.
Submit three test cases for type inference. At least two of these test cases should be for terms that fail to type check. Each test
case should be a definition written in uML. Put your test cases in a file ttest.uml. Here is a sample ttest.uml file:

(val weird (lambda (x y z) (cons x y z)))
(+ 1 #t)
(lambda (x) (cons x x))

COMP 105 Homework: uML Type Inference

Implementing uML: Hindley-Milner Type Inference 1

Naturally, you will supply your own test cases.

For the remaining exercises, here are some additional remarks and suggestions.

Understand the most difficult part of a constraint solver.
Complete Exercise 13 on page 336 of Ramsey.

•

Implement a constraint solver
Complete Exercise 16 on page 337 of Ramsey. Take advantage of the debugging redefinition of standardize
shown below. Be sure your solver produces the correct result on our three test cases and also on your three test
cases.
This exercise is probably the most difficult part of the assignment. Before proceeding with type inference, try to
show your solver code to the course staff.

•

Plan for type inference
Complete Exercise 4 on page 334 of Ramsey. Put your answer in file rules.pdf.

•

Implement type inference
Complete Exercise 17 on page 337 Ramsey.

•

This is one assignment where it pays to run a lot of tests, of both good and bad definitions. The most effective test of your
algorithm is not that it properly assign types to correct terms, but that it reject ill-typed terms. This assignment is your best
chance to earn the large bonuses available by finding bugs in the instructor's code. I have posted a functional topological sort
that makes an interesting test case.

Incidentally, if you call your interpreter ml.sml, you can build a standalone version in a.out by running
mosmlc ml.sml or a faster version in ml by running mlton -output a.out ml.sml.

Hints, guidelines, and test code

The type-inference code will be easier to write with the aid of a summary of the µML type system which I have placed
online.

The algorithm for standardizing a constraint calls for a lot of case analysis. I found it easier to implement this case analysis
by splitting standardize into two functions:

Function standardize handles all three forms of constraint: trivial constraints, simple type-equality constraints
and conjunctions. When it sees a conjunction, it does a case analysis on the left conjunct.

•

Function standardize does not do anything with simple type equalities. When standardize sees a simple
type equality, either at top level or as the left child of /\, it calls the following function:

 val standardizeEqAnd : ty * ty * con -> (name * ty) list

A call to standardizeEqAnd(tau_1, tau_2, C) returns a standard form of the constraint tau_1 =*= tau_2 /\ C. This
function implements all the rules in Figure 7.1 that relate to simple type-equality constraints.

•

To help you with the solver, once you have implemented standardize, the following code redefines standardize into a
version that checks itself for sanity. It guarantees that the standard form you produce implies the constraint you were given.
This is not quite as good as checking for equivalence, but it is a lot better than no checking at all.

 val standardize = fn c =>
 let val std = standardize c
 val theta = standardSubstitution std
 in if solves (theta, c) then
 std
 else
 let fun eqAnd ((a, t'), c) = TYVAR a =*= t' /\ c
 val msgs =
 ["Constraint ", constraintString (untriviate c), "\n reduces to"
 , constraintString (untriviate (foldr eqAnd TRIVIAL std))
 , "\n but substitution yields "

COMP 105 Homework: uML Type Inference

Six exercises to do with a partner (90%) 2

http://www.cs.tufts.edu/comp/105/handouts/uml-types.pdf

 , constraintString (untriviate (consubst theta c)), "\n"
]
 in raise BugInTypeInference (concat msgs)
 end

 end

A prudent person might extend this code with an additional test

 val _ = if isInStandardForm std then ()
 else raise BugInTypeInference "not in standard form"

I would expect you to write the function isInStandardForm.

With your solver in place, the type inference should be straightforward, with two exceptions: let and letrec. You can
emulate the implementations for val and val-rec, but you must split the constraint. The splitting is covered in detail in
the book, on pages 310–312. This math is subtle here, and you may find this part of the book heavy going. The last lecture on
type inference will be on how to implement this splitting.

Extra Credit

For extra credit, you may complete any of the following:

Mutation, as in Exercise 22(a)(b) and possibly (c)•
Explicit types, as in Exercise 23•
Better error messages, as in Exercise 19(a)(b) and possibly (c)•
Tuples, as in Exercise 20•
Generative types, as in Exercise 21•

Of these exercises the most interesting are probably Mutation (easy) and Explicit types (not easy).

Testing

The course interpreter is located in /comp/105/bin/uml. If your interpreter can process the initial basis and infer correct
types, you are doing OK.

The real test of your interpreter is that it should reject incorrect definitions. You should prepare a dozen or so definitions that
should not type check, and make sure they don't. For example:

(val bad (lambda (x) (cons x x)))
(val bad (lambda (x) (cdr (pair x x))))

Pick your toughest three test cases to submit for Exercise T.

Avoid common mistakes

Here some common mistakes:

As you write standardize, it's a common mistake to overlook the lessons of Exercise 13. Check the types that
are inferred for the functions in the initial basis—if they are too general, the fault is probably here.

•

Another common mistake is to create too many fresh variables or to fail to constrain your fresh variables.•
Another surprisingly common mistake is to include redundant cases in the code for inferring the type of a list
literal. As is almost always true of functions that consume lists, it's sufficient to write one case for NIL and one case
for PAIR.

•

It's a common mistake to define a new exception and not handle it. If you define any new exceptions, make sure
they are handled. It's not acceptable for your interpreter to crash with an unhandled exception just because some
µML code didn't type-check.

•

COMP 105 Homework: uML Type Inference

Hints, guidelines, and test code 3

It's a common mistake to omit the initial basis for testing and then to forget to include an initial basis in the
interpreter you submit.

•

There are also some common assumptions which are mistaken:

It is a mistake to assume that an element of a literal list always has a monomorphic type.•
It is a mistake to assume that begin is never empty.•

What to submit

For your solo work, run submit105-ml-inf-solo to submit file 1-2.uml.

For your work with a partner, run submit105-ml-inf-pair to submit these files:

README, telling us with whom you collaborated, how long you worked, what parts you finished (including any
extra credit), and so on.
Your README file should also contain your answer to Exercise 13.

•

stest.sml, containing your answer to Exercise S•
ttest.uml, containing your answer to Exercise T•
rules.pdf, containing your answer to Exercise 4•
ml.sml, containing a completely interpreter for µML which includes your answers to Exercises 16 and 17.•

In the README, please tell us what parts of the assignment you have completed, including any extra-credit parts.

Your solutions are going to be evaluated automatically. We must be able to compile your solution in Moscow ML by typing,
e.g.,

mosmlc ml.sml

If there are errors or warnings in this step, your work will earn No Credit for functional correctness.

How your work will be evaluated

Your typing rules will be evaluated using the usual criteria for inference rules, which I won't repeat here.

We will focus most of our evaluation on your constraint solving and type inference.

Exemplary Satisfactory Must improve
Form • The code has no offside violations.

• Or, the code has just a couple of minor
offside violations.

• Indentation is consistent everywhere.

• The submission has no bracket faults.

• The submission has a few minor bracket
faults.

• Or, the submission has no bracketed
names, but a few bracketed conditions or
other faults.

• The code has several offside
violations, but course staff can
follow what's going on without
difficulty.

• In one or two places, code is
not indented in the same way as
structurally similar code
elsewhere.

• The submission has some
redundant parentheses around
function applications that are
under infix operators (not
checked by the bracketing tool)

• Offside violations make it hard for
course staff to follow the code.

• The code is not indented
consistently.

• The submission contains more
than a handful of parenthesized
names as in (x)

• The submission contains more
than a handful of parenthesized if
conditions.

COMP 105 Homework: uML Type Inference

Avoid common mistakes 4

• Or, the submission contains a
handful of bracketing faults.

• Or, the submission contains
more than a handful of
bracketing faults, but just a few
bracketed names or conditions.

Names • Type variables have names beginning with
a; types have names beginning with t or
tau; constraints have names beginning
with c; substitutions have names beginning
with theta; lists of things have names that
begin conventionally and end in s.

• Types, type variables,
constraints, and substitutions
mostly respect conventions, but
there are some names like x or
l that aren't part of the typical
convention.

• Some names misuse standard
conventions; for example, in some
places, a type variable might have a
name beginning with t, leading a
careless reader to confuse it with a
type.

Structure • The nine cases of simple type equality are
handled by these five patterns: TYVAR/any,
any/TYVAR, CONAPP/CONAPP,
TYCON/TYCON, other.

• The code for solving Î±â–�â��â–�Ï� has
exactly three cases.

• The constraint solver is implemented
using an appropriate set of helper functions,
each of which has a good name and a clear
contract.

• Type inference for list literals has no
redundant case analysis.

• Type inference for expressions has no
redundant case analysis.

• In the code for type inference, course staff
see how each part of the code is necessary
to implement the algorithm correctly.

• Wherever possible appropriate,
submission uses map, filter, foldr,
and exists, either from List or from
ListPair

• The nine cases are handled by
nine patterns: one for each pair
of value constructors for ty

• The code for Î±â–�â��â–�Ï�
has more than three cases, but
the nontrivial cases all look
different.

• The constraint solver is
implemented using too many
helper functions, but each one
has a good name and a clear
contract.

• The constraint solver is
implemented using too few
helper functions, and the course
staff has some trouble
understanding the solver.

• Type inference for list literals
has one redundant case analysis.

• Type inference for expressions
has one redundant case analysis.

• In some parts of the code for
type inference, course staff see
some code that they believe is
more complex than is required
by the typing rules.

• Submission sometimes uses a
fold where map, filter, or
exists could be used.

• The case analysis for a simple
type equality does not have either
of the two structures on the left.

• The code for Î±â–�â��â–�Ï� has
more than three cases, and different
nontrivial cases share duplicate or
near-duplicate code.

• Course staff cannot identify the
role of helper functions; course
staff can't identify contracts and
can't infer contracts from names.

• Type inference for list literals has
more than one redundant case
analysis.

• Type inference for expressions
has more than one redundant case
analysis.

• Course staff believe that the code
is significantly more complex than
what is required to implement the
typing rules.

• Submission includes one or more
recursive functions that could have
been written without recursion by
using map, filter,
List.exists, or a ListPair
function.

COMP 105 Homework: uML Type Inference

How your work will be evaluated 5

	COMP 105 Homework: uML Type Inference

