
COMP105 Assignment: Operational Semantics
Due Friday, February 1 at 5:59PM, six hours before midnight. Using a single extension token on this assignment will
extend the deadline by two-plus days, to Sunday, February 3 at 11:59PM.

The purpose of this assignment is to help you develop rudimentary skills with operational semantics, inference rules, and
syntactic proof technique. You will use these skills heavily throughout the first two-thirds of the course, and you will use
them again later if you ever want to keep up with the latest new ideas in programming languages or if you want to go on to
advanced study.

Some of the essential skills are

Understanding what judgment forms mean, how to read them, and how to write them•
Understanding what constitutes a valid syntactic proof, known as a derivation•
Understanding how a valid derivation in the operational semantics relates to the successful evaluation of an
expression

•

Proving facts about families of programs by reasoning about derivations, a technique known as metatheory•
Using operational semantics to express language features and language-design ideas•
Connecting operational semantics with informal English explanations of language features•
Connecting operational semantics with code in compilers or interpreters•

Few of these skills can be mastered in a single assignment. When you've completed the assignment, IÂ hope you will feel
confident of your knowledge of exactly the way judgment forms, inference rules, and derivations are written. On the other
skills, you'll have made a start.

Part A: Adding Local Variables to the Interpreter (Work with a partner, 25
percent)

This exercise will help you understand how operational semantics is implemented, and how language changes can be realized
in C code. You will do Exercise 26 from page 58 of Ramsey's book. We recommend that you solve this problem with a
partner, but this solution must be kept separate from your other solutions. Your programming partner, if any, must
not see your other work.

Get your copy of the code from the book by running

 git clone linux.cs.tufts.edu:/comp/105/book-code

or if that doesn't work, from a lab or linux machine, try

 git clone /comp/105/book-code

You can find the source code from Chapter 2 in subdirectory bare/impcore or commented/impcore. The
bare version, which we recommend, contains just the C code from the book, with simple comments identifying
page numbers. The commented version, which you may use if you like, includes part of the book text as
commentary.

•

We provide new versions of all.h, ast.c, definition-code.c and parse.c that handle local variables.
These version are found in subdirectory bare/impcore-with-locals. There are not many changes; to see
what is different, try running

 diff -r bare/impcore bare/impcore-with-locals

You may wish to try the -u or -y options with diff

In the directory bare/impcore-with-locals, you can build an interpreter by typing make, but when you run
the interpreter, it will halt with an assertion failure. You'll need to change the interpreter to add local variables:

•

COMP105 Assignment: Operational Semantics

COMP105 Assignment: Operational Semantics 1

In impcore.c, you will have to modify the functions in the initial basis to use the new syntax.♦
In eval.c, you will have to modify the evaluator to give the right semantics to local variables. Local
variables that have the same name as a formal parameter should hide that formal parameter, as in C.

♦

You also have the right to modify other files as you see fit.♦
Create a file called README in this directory (your impcore-with-locals directory). Use this file to describe
your solution to this problem.

•

Part B: Operational semantics, derviations, and metatheory (Individual
work, 75 percent)

These are exercises intended to help you become fluent with operational semantics. Do not share your solutions with any
programming partners. We encourage you to discuss ideas, but nobody else may see your rules, your derivations, or
your code.
If you have difficulty, find a TA, who can help you work a couple of similar problems.

For these exercises you will turn in two files: theory.pdf and 14.imp. For file theory.pdf, you will probably find it
easiest to write your answers on paper and scan it. Please see the note about how to organize your answers.

Do Exercises 13 and 14 on page 56 of Ramsey's book. The purpose of these exercises is to give you a feel for the
kinds of choices language designers can make. Please include your answer to exercise 13 as part of theory.pdf.
Please put your answer to exercise 14 in file 14.imp.

•

Do Exercise 10 on page 55 of Ramsey's book. The purpose of the exercise is to help you develop your
understanding of derivations, so be sure to make your derivation complete and formal. You can write out a
derivation like the ones in the book, as a single proof tree with a horizontal line over each node, or if you prefer, you
can write a sequence of judgments, number each judgment, and write a proof tree containing only the numbers of the
judgments, which you will find easier to fit on the page.

Please include your answer as part of file theory.pdf.

•

Do Exercise 11 on page 55 of Ramsey's book. Now that you know how to write a derivation, in this exercise you
start reasoning about derivations.

Please include your answer as part of file theory.pdf.

•

Do Exercise 20 on pages 56–57 of Ramsey's book. In this exercise you raise your game again, reasoning about the
set of all valid derivations. When you have got your thinking to this level, you can see how language designers use
operational semantics to show nontrivial properties of their languages—and how these properties can guide
implementors.

Please include your answer in file theory.pdf.

Metatheoretic proofs are probably unfamiliar, so you may want to look at some sample cases we have provided to
help you. Also, to relieve some of the tedium (which is very common in programming-language proofs), we suggest
that you allow your proof for the AddApply case to stand in for all other cases involving primitive operators. We
also suggest that you simplify by leaving out the global environment ξ.

•

Organizing the answers to Part B

To help us read your answers to Part B, we need for you to organize them carefully:

The answer to each question must start on a new page.•
The answers must appear in order: Exercises 10, 11, 13, and finally 20.•

Submitting

Before submitting code, test it. We do not provide any tests; you write your own.

COMP105 Assignment: Operational Semantics

Part A: Adding Local Variables to the Interpreter (Work with a partner, 25percent) 2

To submit part B, which you will have done by yourself, change into the appropriate directory and run
submit105-opsem-solo to submit your work. In addition to files 14.imp and theory.pdf, please also
include a file called README. Use your README file to

Tell us how long it took you to complete the entire assignment (parts A and B)♦
Tell us how well you think you did on each of the four evaluation dimensions for operational semantics
below (Semantics, Rules, Derivations, and Metatheory).

♦

Tell us anything else you think it useful for us to know.♦
(If you wish to use PDF, then please submit README.pdf instead of README.)

•

To submit part A, which you will have done with a partner, change into bare/impcore-with-locals and run
submit105-opsem-pair to submit your work.

•

How your work will be evaluated

Adding local variables to Impcore

Exemplary Satisfactory Must improve
Locals • Change to interpreter appears motivated

either by changing the semantics as little as
possible or by changing the code as little as
possible.

• Local variables for Impcore pass simple
tests.

• Course staff believe they can
see motivation for changes to
interpreter, but more changes
were made than necessary.

• Local variables for Impcore
pass some tests.

• Course staff cannot understand
what ideas were used to change
the interpreter.

• Local variables for Impcore pass
few or no tests.

Form • Code taken from the book is either totally
unchanged or is changed in a meaningful
way.

• All code, including code from the book, fits
in 80 columns.

• All code, except possibly machine-altered
code from the book, respects the offside rule

• Indentation is consistent everywhere.

• No code is commented out.

• Solution file contains no distracting test
cases or print statements.

• One or two lines are wider
than 80 columns.

• The code contains one or two
violations of the offside rule

• In one or two places, code is
not indented in the same way as
structurally similar code
elsewhere.

• Solution file may contain
clearly marked test functions,
but they are never executed. It's
easy to read the code without
having to look at the test
functions.

• Code taken from the book has
been changed cosmetically (e.g.,
by changing line breaks or
indentation, or by changing
names) without changing the
code's function.

• Three or more lines are wider
than 80 columns.

• The code contains three or more
violations of the offside rule

• The code is not indented
consistently.

• Solution file contains code that
has been commented out.

• Solution file contains test cases
that are run when loaded.

• When loaded, solution file prints
test results.

Naming • Where the code implements math, the names
of each variable in the code is either the same
as what's in the math (e.g., rho for Ï–), or is
an English equivalent for what the code
stands for (e.g., parameters or parms for
Ï–).

• Where the code implements
math, the names don't help the
course staff figure out how the
code corresponds to the math.

• Where the code implements
math, the course staff cannot
figure out how the code
corresponds to the math.

Structure

COMP105 Assignment: Operational Semantics

Submitting 3

http://www.cs.tufts.edu/comp/105/details.html#offside
http://www.cs.tufts.edu/comp/105/details.html#offside
http://www.cs.tufts.edu/comp/105/details.html#offside

• The code is so clear that course staff can
instantly tell whether it is correct or incorrect.

• There's only as much code as is needed to
do the job.

• The code contains no redundant case
analysis.

• Course staff have to work to
tell whether the code is correct
or incorrect.

• There's somewhat more code
than is needed to do the job.

• The code contains a little
redundant case analysis.

• From reading the code, course
staff cannot tell whether it is
correct or incorrect.

• From reading the code, course
staff cannot easily tell what it is
doing.

• There's about twice as much
code as is needed to do the job.

• A significant fraction of the case
analyses in the code, maybe a
third, are redundant.

Operational semantics

Exemplary Satisfactory Must improve
Semantics • The program which is supposed to

behave differently in Awk, Icon,
and Impcore semantics behaves
exactly as specified with each
semantics.

• The program which is supposed to
behave differently in Awk, Icon, and
Impcore semantics behaves almost
exactly as specified with each semantics.

• The program which is
supposed to behave
differently in Awk, Icon,
and Impcore semantics gets
one or more semantics
wrong.

• The program which is
supposed to behave
differently in Awk, Icon,
and Impcore semantics
looks like it is probably
correct, but it does not meet
the specification: either
running the code does not
print, or it prints two or
more times.

Rules • Every inference rule has a single
conclusion which is a judgment
form of the operational semantics.

• In every inference rule, every
premise is either a judgment form of
the operational semantics or a
simple mathematical predicate such
as equality or set membership.

• In every inference rule, if two
states, two environments, or two of
any other thing must be the same,
then they are notated using a single
metavariable that appears in
multiple places. (Example: Ï– or Ï•)

• In every inference rule, if two
states, two environments, or two of
any other thing may be different,
then they are notated using different

• In every inference rule, two states, two
environments, or two of any other thing
must be the same, yet they are notated
using different metavariables. However,
the inference rule includes a premise that
these metavariables are equal. (Example:
Ï–1â—�=â—�Ï–2)

• A new language design has a few too
many new or changes a few too many
existing rules.

• Or, a new language design is missing a
few rules that are needed, or it doesn't
change a few existing rules that need to
be changed.

• Notation that is presented
as an inference rule has
more than one judgment
form or other predicate
below the line.

• Inference rules contain
notation above the line that
does not resemble a
judgment form and is not a
simple mathematical
predicate.

• Inference rules contain
notation, either above or
below the line, that
resembles a judgment form
but is not actually a
judgment form.

COMP105 Assignment: Operational Semantics

Adding local variables to Impcore 4

metavariables. (Example: Ï– and
Ï–Ê¹)

• New language designs use or
change just enough rules to do the
job.

• Inference rules use one judgment
form per syntactic category.

• In every inference rule,
two states, two
environments, or two of any
other thing must be the
same, yet they are notated
using different
metavariables, and nothing
in the rule forces these
metavariables to be equal.
(Example: Ï– and Ï–Ê¹ are
both used, yet they must be
identical.)

• In some inference rule,
two states, two
environments, or two other
things may be different, but
they are notated using a
single metavariable.
(Example: using Ï–
everywhere, but in some
places, Ï–Ê¹ is needed.)

• In a new language design,
the number of new or
changed rules is a lot
different from what is
needed.

• Inference rules contain a
mix of judgment forms
even when describing the
semantics of a single
syntactic category.

Derivations • In every derivation, every
utterance is either a judgment form
of the operational semantics or a
simple mathematical predicate such
as equality or set membership.

• In every derivation, every
judgement follows from
instantiating a rule from the
operational semantics. (Instantiating
means substituting for meta
variables.) The judgement appears
below a horizontal line, and above
that line is one derivation of each
premise.

• In every derivation, equal
environments are notated equally. In
a derivation, Ï– and Ï–Ê¹ must refer
to different environments.

• In one or more derivations, there are a
few horizontal lines that appear to be
instances of inference rules, but the
instantiations are not valid. (Example:
rule requires two environments to be the
same, but in the derivation they are
different.)

• In a derivation, the semantics requires
new bindings to be added to some
environments, and the derivation contains
environments extended with the right
new bindings, but not in exactly the right
places.

• In one or more
derivations, there are
horizontal lines that the
course staff is unable to
relate to any inference rule.

• In one or more
derivations, there are many
horizontal lines that appear
to be instances of inference
rules, but the instantiations
are not valid.

• A derivation is called for,
but course staff cannot
identify the tree structure of
the judgments forming the
derivation.

• In a derivation, the
semantics requires new

COMP105 Assignment: Operational Semantics

Operational semantics 5

• Every derivation takes the form of
a tree. The root of the tree, which is
written at the bottom, is the
judgment that is derived (proved).

• In every derivation, new bindings
are added to an environment exactly
as and when required by the
semantics.

bindings to be added to
some environments, and the
derivation does not contain
any environments extended
with new bindings, but the
new bindings in the
derivation are not the
bindings required by the
semantics. (Example: the
semantics calls for a
binding of answer to 42, but
instead answer is bound to
0.)

• In a derivation, the
semantics requires new
bindings to be added to
some environments, but the
derivation does not contain
any environments extended
with new bindings.

Metatheory • Metatheoretic proofs operate by
structural induction on derivations,
and derivations are named.

• Metatheoretic proofs classify
derivations by case analysis over the
final rule in each derivation. The
case analysis includes every
possible derivation, and cases with
similar proofs are grouped together.

• Metatheoretic proofs operate by
structural induction on derivations, but
derivations and subderivations are not
named, so course staff may not be certain
of what's being claimed.

• Metatheoretic proofs classify
derivations by case analysis over the final
rule in each derivation. The case analysis
includes every possible derivation, but
the grouping of the cases does not bring
together cases with similar proofs.

• Metatheoretic proofs don't
use structural induction on
derivations (serious fault).

• Metatheoretic proofs have
incomplete case analyses of
derivations.

• Metatheoretic proofs are
missing many cases
(serious fault).

• Course staff cannot figure
out how metatheoretic proof
is broken down by cases
(serious fault).

COMP105 Assignment: Operational Semantics

Operational semantics 6

Example cases for Exercise 20

Here are some sample cases for the inductive proof required in Exercise 20
on page 56 of Ramsey’s book.

Consider the rule for if:

〈e1, ξ, φ, ρ〉 ⇓ 〈v1, ξ
′, φ, ρ′〉 v1 6= 0 〈e2, ξ

′, φ, ρ′〉 ⇓ 〈v2, ξ
′′, φ, ρ′′〉

〈if(e1, e2, e3), ξ, φ, ρ〉 ⇓ 〈v2, ξ′′, φ, ρ′′〉.
(IfTrue)

By the induction hypothesis, we can evaluate 〈e1, ξ, φ, ρ〉 ⇓ 〈v1, ξ
′, φ, ρ′〉 using

a stack, and the evaluation will pop ρ and push ρ′ without making a copy
of ρ. Because ρ does not appear anywhere else in the rule, it is never used
again, so it is safe to pop it and throw it away. We can use the induction
hypothesis again to show that the evaluation of e2 can pop ρ′ and push ρ′′,
and ρ′ is not copied. Moreover, ρ′ is not used in the rule after the evaluation
of e2.

Finally, we see that ρ′′ is used only as part of the result of the rule. We
can conclude, then, that when e1 evaluates to a nonzero value, we can safely
evaluate if(e1, e2, e3) on a stack, and the evaluation effectively pops ρ, which
is never used again, then pushes ρ′′.

The FormalVar rule is one of the base cases; it doesn’t require the
induction hypothesis.

x ∈ dom ρ

〈var(x), ξ, φ, ρ〉 ⇓ 〈ρ(x), ξ, φ, ρ〉
(FormalVar)

By examining the rule, we see that it is possible to implement it as follows:
pop ρ, test x ∈ dom ρ, and compute ρ(x). Then push ρ back on the environ-
ment stack, after which the only copy is once again on top of the stack.

1

