
COMP 105 Assignment: Functional programming in
µScheme
Due Monday, February 11 at 11:59PM.

This assignment is all individual work. There is no pair programming.

Preliminaries and Setup

The purpose of this assignment is to give you extensive practice writing functions that work with lists and S-expressions, plus
a little bit more practice with programming-language theory and proofs. The assignment is based primarily on Sections
3.1 through 3.6 of Ramsey. You will also need to know the syntax in Section 3.11 and the initial basis in Section 3.13—the
table on page 124 is your lifeline. One question uses material from Section 3.12. Finally, although it is not necessary, you
may find some problems easier to solve if you read ahead into Sections 3.7 through 3.9.

You will write about seventeen functions and do a few proofs. The functions are small; most are in the range of 4 to 8 lines,
and none of my solutions is more than a dozen lines. If you don't read ahead, a couple of your functions will be a bit longer,
which is OK.

There are a lot of problems, but only one hard one: in problem D, there is enough code that it can be tricky to get everything
right. (Scheme is so expressive that you can get yourself into trouble even in a 12-line function.)

The executable micro-Scheme interpreter is in /comp/105/bin/uscheme; if you are set up with use comp105, you
should be able to run uscheme as a command. The interpreter accepts a -q (``quiet'') option, which turns off prompting.
Your homework will be graded using uscheme.

When using the interpreter interactively, you may find it helpful to use ledit, as in the command

 ledit uscheme

Dire Warnings

Since we're talking about functional programming, the Scheme programs you submit must not use any imperative
features. Banish set, while, print, and begin from your vocabulary! If you break this rule for any problem, you get
No Credit for that problem. (You may find it useful to use begin and print while debugging, but they must not appear in
any code you submit.)

As a substitute for assignment, use let or let*.

Helper functions may be defined at top level provided they have meaningful names and their contracts are documented. You
may also read ahead and define local functions using lambda along with let, letrec, or let*. If you do define local
functions, avoid passing them redundant parameters.

Your solutions should be valid micro-Scheme; in particular, they must pass the following test:

/comp/105/bin/uscheme -q < myfilename

without any error messages. If your file produces error messages, we won't test your solution and you will earn No Credit for
functional correctness. (You can still earn credit for readability).

Overview, organization, and what to submit

For this assignment, you will do Exercises 1, 2, 14, 5, 30, and 37 in the book, plus the problems A through G below. You will
submit three files: README, theory.pdf (containing the solutions to 1, 30, 37, and G) and solution.scm (containing

COMP 105 Scheme Homework

COMP 105 Assignment: Functional programming in µScheme 1

the solutions to all the other exercises). You can create theory.pdf using LaTeX or Lyx another mathematical word
processor, or you can write your solution by hand and scan it.

Details of all the problems

1. A list of S-expressions is an S-expression. Do Exercise 1 on page 154 of Ramsey. Do this proof before tackling Exercise 2;
the proof should give you ideas about how to implement the code.
My estimate of difficulty: medium, because you haven't seen this kind of proof before.

2. Recursive functions on lists. Do all parts of Exercise 2 on page 154 of Ramsey. Expect to write some recursive functions,
but you may also read ahead and use the higher-order functions in Sections 3.7 through 3.9.
My estimate of difficulty: if you exploit the result in Exercise 1, this problem is relatively easy. If not, you can get tangled up
in case analyses.

5. Taking and dropping a prefix of a list. Do Exercise 5 on page 156 of Ramsey.
My estimate of difficulty: easy.

14. Let-binding. Do Exercise 14 on page 159 of Ramsey. You should be able to answer the questions in at most a few
sentences. Place your answer as comments in file solutions.scm.
My estimate of difficulty: easy.

30. Calculational proof. Do Exercise 30 on page 164 of Ramsey, proving that reversing a list does not change its length. Put
your solution in file theory.pdf.
My estimate of difficulty: medium.
Hint: structural induction.

37. Operational semantics and language design. Do all parts of Exercise 37 on page 165 of Ramsey. Be sure your answer to
part (b) compiles and runs under uscheme. Put your answers to all parts in file theory.pdf.
My estimate of difficulty: easy (parts a and b) and medium (part c).

A. Take and drop.
Function (take n xs) expects a natural number and a list. It returns the longest prefix of xs that contains at most n
elements.
Function (drop n xs) expects a natural number and a list. Roughly, it removes n elements from the front of the list. The
exact semantics are given by this algebraic law: for any list xs and natural number n,

 (append (take n xs) (drop n xs)) == xs

Implement take and drop.
My estimate of difficulty: easy, provided you read the specification carefully

B. Zip and unzip.
Function zip converts a pair of lists to an association list; unzip converts an association list to a pair of lists. If zip is
given lists of unequal length, its behavior is not specified.

-> (zip '(1 2 3) '(a b c))
((1 a) (2 b) (3 c))
-> (unzip '((I Magnin) (U Thant) (E Coli)))
((I U E) (Magnin Thant Coli))

Provided lists xs and ys are the same length, zip and unzip satisfy these algebraic laws:

 (zip (car (unzip pairs)) (cadr (unzip pairs))) == pairs
 (unzip (zip xs ys)) == (list2 xs ys)

Implement zip and unzip.
My estimate of difficulty: medium, provided you don't mind what happens to unspecified arguments. (If you insist on nailing

COMP 105 Scheme Homework

Overview, organization, and what to submit 2

http://www.latex-project.org/
http://www.lyx.org/

down the behavior in the unspecified cases, you may find that your code grows uncomfortably complex.)

C. Arg max.
Function arg-max expects two arguments: a function f that maps a value in set A to a number, and a nonempty list as of
values in set A. It returns an element a in as for which (f a) is as large as possible.

-> (define square (a) (* a a))
-> (arg-max square '(5 4 3 2 1))
5
-> (define invert (a) (/ 1000 a))
-> (arg-max invert '(5 4 3 2 1))
1
-> (arg-max (lambda (x) (- 0 (square (- x 3)))) '(5 4 3 2 1))
3

Implement arg-max.

Hint: the specification says that list argument to arg-max is not empty. Exploit this part of the specification.
My estimate of difficulty: easy

D. Graph functions.
From COMP 15, you should be familiar with graphs and graph algorithms. In this problem you will write code that changes
representations directed graphs. You will work with two representations:

The first representation is a list of edges, where a single edge is represented by a two-element list. For example, the
list (A B) represents an edge from A to B.

•

The second representation uses a successors map: a graph is represented by an association list in which each node is
associated with a list of its successors.

•

For example, the ASCII-art graph

 A --> B --> C
 | ^
 | |
 +-----------+

could be represented as an edge list by '((A B) (B C) (A C)) and as a successors map by '((A (B C)) (B
(C)) (C ())).

Write function successors-map-of-edge-list, which accepts a graph in edge-list representation and
returns a representation of the same graph in successors-map representation.

1.

Write function edge-list-of-successors-map, which accepts a graph in successors-map representation
and returns a representation of the same graph in edge-list representation.

2.

Hint: your new best friend is let*.
My estimate of difficulty: hard (there is little conceptual difficulty, but by 105 standards, there is a lot of code)

E. Merging sorted lists
Implement function merge, which expects two sorted lists of numbers and returns a single sorted list containing exactly the
same elements as the two argument lists together:

-> (merge '(1 2 3) '(4 5 6))
(1 2 3 4 5 6)
-> (merge '(1 3 5) '(2 4 6))
(1 2 3 4 5 6)

My estimate of difficulty: medium (you will have to think about the structure of a function that consumes two lists)

COMP 105 Scheme Homework

Details of all the problems 3

F. Interleaving lists
Implement function interleave, which expects as arguments two lists xs and ys, and returns a single list obtained by
choosing elements alternately, first from xs and then from ys. When either xs or ys runs out, interleave takes the
remaining elements from the other list, so that the elements of the result are exactly the elements of the two argument lists
taken together.

-> (interleave '(1 2 3) '(a b c))
(1 a 2 b 3 c)
-> (interleave '(1 2 3) '(a b c d e f))
(1 a 2 b 3 c d e f)
-> (interleave '(1 2 3 4 5 6) '(a b c))
(1 a 2 b 3 c 4 5 6)

N.B. This is another function that consumes two lists.
My estimate of difficulty: easy to get a solution that works, medium to avoid unnecessary case analysis

G. From operational semantics to algebraic laws
This problem has two parts.

The operational semantics for uScheme includes rules for cons, car, and cdr. Assuming that x and xs are
variables and are defined in ρ (rho), use the operational semantics to prove that

 (cdr (cons x xs)) == xs

1.

Use the operational semantics to prove or disprove the following conjecture: if e1 and e2 are arbitrary expressions,
in any context where the evaluation of e1 terminates and the evaluation of e2 terminates, the evaluation of (cdr
(cons e1 e2)) terminates, and

(cdr (cons e1 e2)) == e2

The conjecture says that two independent evaluations, starting from the same initial state, produce the same value
as a result.

2.

My estimate of difficulty: medium, because working with formal proofs is tedious

How your work will be evaluated

Programming in µScheme

The criteria we will use to assess your µScheme code are mostly the same as the criteria we used to assess your Impcore core.
Be aware that there are a few new criteria.

We will evaluate the correctness of your code by extensive testing.

Exemplary Satisfactory Must improve
Cost • New: Empty lists are

distinguished from non-empty
lists in constant time.

• New: Distinguishing an empty
list from a non-empty list might
take longer than constant time.

Documentation • The contract of each function is
clear from the function's name,
the names of its parameters, and
perhaps a one-line comment
describing the result.

• When names are not enough,
each function is documented with

• A function's contract omits some
parameters.

• A function's documentation
mentions every parameter, but does
not specify a contract.

• A function is not named after the
thing it returns, and the function's
documentation does not say what it
returns.

• A function's documentation
includes a narrative description of
what happens in the body of the

COMP 105 Scheme Homework

How your work will be evaluated 4

http://www.cs.tufts.edu/comp/105/details.html#contracts
http://www.cs.tufts.edu/comp/105/details.html#contracts
http://www.cs.tufts.edu/comp/105/details.html#contracts

a contract that explains what the
function returns, in terms of the
parameters, which are mentioned
by name.

• From the name of a function,
the names of its parameters, and
the accompanying
documentation, it is easy to
determine how each parameter
affects the result.

• The contract of each function is
written without case analysis, or
case analysis was unavoidable.

• Documentation appears
consistent with the code being
described.

• New: As an alternative to
internal documentation, a
function's documentation may
refer the reader to the problem
specification where the function's
contract is given.

• A function's documentation
includes information that is
redundant with the code, e.g., "this
function has two parameters."

• A function's contract omits some
constraints on parameters, e.g.,
forgetting to say that the contract
requires nonnegative parameters.

• A function's contract includes a
case analysis that could have been
avoided, perhaps by letting some
behavior go unspecified.

function, instead of a contract that
mentions only the parameters and
result.

• A function's documentation
neither specifies a contract nor
mentions every parameter.

• There are multiple functions that
are not part of the specification of
the problem, and from looking just
at the names of the functions and
the names of their parameters, it's
hard for us to figure out what the
functions do.

• A function's contract includes a
redundant case analysis.

• Documentation appears
inconsistent with the code being
described.

Naming • Each function is named either
with a noun describing the result
it returns, or with a verb
describing the action it does to its
argument. (Or the function is a
predicate and is named as
suggested below.)

• A function that is used as a
predicate (for if or while) has
a name that is formed by writing
a property followed by a question
mark. Examples might include
even? or prime?. (Applies
only if the language permits
question marks in names.)

• Or, the code defines no
predicates.

• In a function definition, the
name of each parameter is a noun
saying what, in the world of
ideas, the parameter represents.

• Or the name of a parameter is
the name of an entity in the
problem statement, or a name
from the underlying mathematics.

• Functions' names contain
appropriate nouns and verbs, but the
names are more complex than
needed to convey the function's
meaning.

• Functions' names contain some
suitable nouns and verbs, but they
don't convey enough information
about what the function returns or
does.

• A function that is used as a
predicate (for if or while) does
not have a name that ends in a
question mark. (Applies only if the
language permits question marks in
names.)

• The name of a parameter is a noun
phrase formed from multiple words.

• Although the name of a parameter
is not short and conventional, not an
English noun, and not a name from
the math or the problem, it is still
recognizable---perhaps as an
abbreviation or a compound of
abbreviations.

• Function's names include verbs
that are too generic, like
"calculate", "process", "get",
"find", or "check"

• Auxiliary functions are given
names that don't state their
contracts, but that instead indicate
a vague relationship with another
function. Often such names are
formed by combining the name of
the other function with a suffix
such as aux, helper, 1, or even
_.

• Course staff cannot identify the
connection between a function's
name and what it returns or what it
does.

• The name of a parameter is a
compound phrase phrase which
could be reduced to a single noun.

• The name of some parameter is
not recognizable---or at least,
course staff cannot figure it out.

• New: The name of a list

COMP 105 Scheme Homework

Programming in µScheme 5

http://www.cs.tufts.edu/comp/105/details.html#contracts
http://www.cs.tufts.edu/comp/105/details.html#contracts
http://www.cs.tufts.edu/comp/105/details.html#contracts
http://www.cs.tufts.edu/comp/105/details.html#contracts
http://www.cs.tufts.edu/comp/105/details.html#contracts
http://www.cs.tufts.edu/comp/105/details.html#contracts
http://www.cs.tufts.edu/comp/105/details.html#contracts

• Or the name of a parameter is
short and conventional. For
example, a magnitude or count
might be n or m. An index might
be i, j, or k. A pointer might be
p; a string might be s. A variable
might be x; an expression might
be e. New: A list might be xs or
ys.

• New: Names that are visible
only in a very small scope are
short and conventional.

• New: Names that are visible only
in a very small scope are reasonably
short.

parameter is neither a plural noun
form nor a conventional name like
xs or ys.

• New: Long names are used in
very small scopes (exception
granted for some function
parameters).

• New: Very short names are used
with global scope.

Structure • New: The assignment does not
use set, while, print, or
begin.

• The code of each function is so
clear that, with the help of the
function's contract, course staff
can easily tell whether the code is
correct or incorrect.

• There's only as much code as is
needed to do the job.

• Helper functions are used only
where needed.

• New: Code uses Boolean values
#t and #f where Booleans are
called for.

• The code has as little case
analysis as possible (i.e., the
course staff can see no simple
way to eliminate any case
analysis)

• When possible, inner functions
use the parameters and
let-bound names of outer
functions directly.

• In every case analysis, all cases
are necessary.

• New: Expressions cannot be
made any simpler by application
of algebraic laws.

• Course staff have to work to tell
whether the code is correct or
incorrect.

• There's somewhat more code than
is needed to do the job.

• The code contains unnecessary
helper functions, but the course staff
find them simple and easy to read.

• The code contains case analysis
that the course staff can see follows
from the structure of the data, but
that could be simplified away by
applying equational reasoning.

• An inner function is passed, as a
parameter, the value of a parameter
or let-bound variable of an outer
function, which it could have
accessed directly.

• In some case analyses, there are
cases which are redundant (i.e., the
situation is covered by other cases
which are also present in the code).

• New: Some code uses set,
while, print, or begin (No
Credit).

• From reading the code, course
staff cannot tell whether it is
correct or incorrect.

• From reading the code, course
staff cannot easily tell what it is
doing.

• There's about twice as much code
as is needed to do the job.

• The code contains unnecessary
helper functions, and the course
staff find them complex or and
difficult to read.

• New: Code uses integers, like 0
or 1, where Booleans are called
for.

• The code contains superfluous
case analysis that is not mandated
by the structure of the data.

• A significant fraction of the case
analyses in the code, maybe a
third, are redundant.

• New: Code can be simplified by
applying algebraic laws. For
example, the code says (+ x 0),
but it could say just x.

Form • New: Code is laid out in a way
that makes good use of scarce
vertical space. Blank lines are
used judiciously to break large
blocks of code into groups, each

• New: Code has a few too many
blank lines.

• New: Code needs a few more blank
lines to break big blocks into smaller

• New: Code wastes scarce vertical
space with too many blank lines,
block or line comments, or
syntactic markers carrying no
information.

COMP 105 Scheme Homework

Programming in µScheme 6

of which can be understood as a
unit.

• All code fits in 80 columns.

• The submitted code contains no
tab characters.

• All code respects the offside
rule

• Indentation is consistent
everywhere.

• In Impcore, if a construct spans
multiple lines, its closing
parenthesis appears at the end of
a line, possibly grouped with one
or more other closing
parentheses.

• No code is commented out.

• Solution file contains no
distracting test cases or print
statements.

chunks that course staff can more
easily understand.

• One or two lines are wider than 80
columns.

• The code contains one or two
violations of the offside rule

• In one or two places, code is not
indented in the same way as
structurally similar code elsewhere.

• Solution file may contain clearly
marked test functions, but they are
never executed. It's easy to read the
code without having to look at the
test functions.

• New: Code preserves vertical
space too aggressively, using so
few blank lines that a reader
suffers from a "wall of text" effect.

• New: Code preserves vertical
space too aggressively by
crowding multiple expressions
onto a line using some kind of
greedy algorithm, as opposed to a
layout that communicates the
syntactic structure of the code.

• New: In some parts of code,
every single line of code is
separated form its neighbor by a
blank line, throwing away half of
the vertical space (serious fault).

• Three or more lines are wider
than 80 columns.

• An ASCII tab character lurks
somewhere in the submission.

• The code contains three or more
violations of the offside rule

• The code is not indented
consistently.

• The closing parenthesis of a
multi-line construct is followed by
more code (or by an open
parenthesis) on the same line.

• A closing parenthesis appears on
a line by itself.

• Solution file contains code that
has been commented out.

• Solution file contains test cases
that are run when loaded.

• When loaded, solution file prints
test results.

Correctness • New: Your Î¼Scheme code
loads without errors.

• Your code passes all the tests
we can devise.

• Or, your code passes all tests
but one.

• Your code fails a few of our
stringent tests.

• New: Loading your Î¼Scheme
into uscheme causes an error
message (No Credit).

• Your code fails many tests.

COMP 105 Scheme Homework

Programming in µScheme 7

http://www.cs.tufts.edu/comp/105/details.html#offside
http://www.cs.tufts.edu/comp/105/details.html#offside
http://www.cs.tufts.edu/comp/105/details.html#offside
http://www.cs.tufts.edu/comp/105/details.html#offside

Theory

The proofs for this homework are different from the derivations and metatheoretic proofs from the operational-semantics
homework, and different criteria apply.

Exemplary Satisfactory Must improve
Let • Your explanation of the strange let

code is accurate and appeals to the
relevant semantic rules by name. The
meanings of the rules are explained
informally.

• Your explanation of the strange let
code is accurate and appeals to the
relevant semantic rules by name, but it
does not explain the rules.

• Your explanation of the
strange let code does not
identify which rules of the
Î¼Scheme semantics must be
used to explain the code.

Proofs • Course staff find proofs short, clear,
and convincing.

• Proofs have exactly as much case
analysis as is needed (which could mean
no case analysis)

• Proofs by induction explicitly say what
data is inducted over and clearly identify
the induction hypothesis.

• Each calculational proof is laid out as
shown in the textbook, with each term
on one line, and every equals sign
between two terms has a comment that
explains why the two terms are equal.

• Course staff find a proof clear and
convincing, but a bit long.

• Or, course staff have to work a bit too
hard to understand a proof.

• A proof has a case analysis which is
complete but could be eliminated.

• A proof by induction doesn't say
explicitly what data is inducted over, but
course staff can figure it out.

• A proof by induction is not explicit
about what the induction hypothesis is,
but course staff can figure it out.

• Each calculational proof is laid out as
shown in the textbook, with each term on
one line, and most of the the equals signs
between terms have comments that
explain why the two terms are equal.

• Course staff don't understand a
proof or aren't convinced by it.

• A proof has an incomplete
case analysis: not all cases are
covered.

• In a proof by induction, course
staff cannot figure out what data
is inducted over.

• In a proof by induction, course
staff cannot figure out what the
induction hypothesis is.

• A calculational proof is laid
out correctly, but few of the
equalities are explained.

• A calculational proof is called
for, but course staff cannot
recognize its structure as being
the same structure shown in the
book.

What to submit

Provide a README file, and in it, please do as follows:

Please tell us with whom you collaborated•
Please tell us what problems you solved•
On each of the dimensions form, documentation, naming, structure, cost, and correctness, please let us know
whether you believe your work was Exemplary, Satisfactory, or whether it needs improvement.

•

Please tell us how many hours you spent on the assignment•

If you want, include any insights you may have had about the problems, but detailed remarks about your solutions are best
left to comments in the source code.

When you are ready, run submit105-scheme to submit your work, which should include the following files:

README: This documentation file is mandatory.•
solution.scm: This source file is mandatory.•
theory.pdf: This source file is mandatory; you may prepare it by computer, or you can scan a handwritten
solution.

•

COMP 105 Scheme Homework

Theory 8

	COMP 105 Scheme Homework

