
COMP 105 Assignment: Smalltalk

Due Monday, April 22, at 11:59 PM.

The purpose of this assignment is to help you get acquainted with pure object-oriented programming. The assignment is
divided into two parts.

In the first part, you do a few small warmup problems to get you used to pure object-oriented style and to acquaint
you with uSmalltalk's large initial basis.

•

In the second part, you implement bignums in uSmalltalk. Bignums are useful in their own right, and they illustrate
the important object-oriented technique of double dispatch.

•

You will find a uSmalltalk interpreter in /comp/105/bin/usmalltalk. This interpreter treats the variable &trace
specially; by defining it with val, you can trace message sends and answers. It is an invaluable aid to debugging.

You will find useful sources are in the git repository, which you can clone by

 git clone linux.cs.tufts.edu:/comp/105/book-code

The repository examples directory includes copies of the initial basis, collection classes, financial history, and other
examples from the textbook.

Helpful hint

Don't overlook the protocol and localProtocol methods which are defined on every class, as shown in Figure 10.5
on page 413.

Part I: Object-oriented warmup (to do on your own)

In Ramsey, Chapter 10, do Exercises 4, 9, 10, and 29a on pages 508 to 510 and 515.
Estimated difficulty: **

To solve all four problems, you shouldn't need to add or change more than 20 lines of code in total.

Part II: Bignums (to do with a partner)

In Ramsey, Chapter 10, do Exercises 31, 32, and 33 on pages 516–519 and Exercise T below.
To simplify your life, you need not implement long division, and we recommend you choose base b = 10. If you want to
experiment with other bases, you get significant extra credit.

My Natural class is over 100 lines of uSmalltalk code; my large-integer classes are 22 lines apiece. My modifications to
predefined number classes are about 25 lines.
Estimated difficulty: ****

Background

Sometimes you want to do computations that require more precision than you have available in a machine word. Full
Scheme, Smalltalk, and Icon all provide ``bignums.'' These are integer implementations that automatically expand to as much
precision as you need. Because of their dynamic-typing discipline, these languages make the transition transparently—you
can't easily tell when you're using native machine integers and when you're using bignums. In uSmalltalk, the data abstraction
can almost completely hide whether you have regular or extra-precision integers.

You will find bignums and the bignum algorithms discussed at some length in Dave Hanson's book (which should be free
online to Tufts students) and in the article by Per Brinch Hansen. Be aware that your assignment below differs significantly
from the implementation in Hanson's book.

COMP 105 Smalltalk Homework

COMP 105 Assignment: Smalltalk 1

http://code.google.com/p/cii/source/browse/tags/v20/src/xp.c

Notes and hints

This is a big, complicated set of problems with a lot of methods. There is a handout online with suggestions about
which methods depend on which other methods and in what order to tackle them.

•

It is very annoying that you are stuck with a 1-based array type to implement a 0-based abstraction (polynomials) for
class Natural. I recommend that you use the digit: and digit:put: methods to hide the 1-based nature of
the underlying representation.

•

If you should choose to do the extra credit with large bases (below), remember that the private decimal method
must return a list of decimal digits, even if base 10 is not what is used in the representation. Suppress leading zeroes
unless the value of Natural is itself zero.

•

You can think about borrowing code from Hanson's implementation (see also his distribution), but unless you've
looked at the book you may be a bit overwhelmed. XP_add does add with carry. XP_sub does subtract with
borrow. XP_mul does z := z + x * y, which is useful, but is not what we want unless z is zero initially.
Moreover, Hanson has to pass all the lengths explicitly.

•

Mutation is used heavily in Hanson's implementation, but the class Natural is an immutable type. Your methods
must not mutate existing natural numbers; you can mutate only a newly allocated number that you are sure has not
been seen by any client.

•

If you use the digit: method carefully, you'll have to worry about sizes only when you allocate new results.•
Because classes are objects like any others, you can change most classes by redefining them, as the code in Ramsey,
page 519 redefines class SmallInteger. In order to make your solution work with an unmodified usmalltalk,
you must use this technique.

•

Testing bignum arithmetic

To help you test your work, here is code that computes and prints factorials:

<fact.smt>=
(define factorial (n)
 (if (strictlyPositive n)
 [(* n (value factorial (- n 1)))]
 [1]))

(class Factorial Object
 ()
 (classMethod printUpto: (limit) (locals n nfac)
 (begin
 (set n 1)
 (set nfac 1)
 (while [(<= n limit)]
 [(print n) (print #!) (print space) (print #=) (print space) (println nfac)
 (set n (+ n 1))
 (set nfac (* n nfac))]))))

You might find it useful to test your implementation with the following table of factorials:

 1! = 1
 2! = 2
 3! = 6
 4! = 24
 5! = 120
 6! = 720
 7! = 5040
 8! = 40320
 9! = 362880
10! = 3628800
11! = 39916800
12! = 479001600
13! = 6227020800
14! = 87178291200
15! = 1307674368000
16! = 20922789888000

COMP 105 Smalltalk Homework

Notes and hints 2

http://www.cs.princeton.edu/software/cii

17! = 355687428096000
18! = 6402373705728000
19! = 121645100408832000
20! = 2432902008176640000
21! = 51090942171709440000
22! = 1124000727777607680000
23! = 25852016738884976640000
24! = 620448401733239439360000
25! = 15511210043330985984000000

Be warned that this test by itself is inadequate. You will want other tests. Here is some advice

Try testing your class Natural by generating a long, random string of digits, then computing the corresponding
number using a combination of addition and multiplication by 10.

•

If you don't have multiplication working yet, you can use the following sequence to multiply by 10:

(set p n) ; p == n
(set p (+ p p)) ; p == 2n
(set p (+ p p)) ; p == 4n
(set p (+ p n)) ; p == 5n
(set p (+ p p)) ; p == 10n

This idea will test only your addition; if you have bugs there, fix them before you go on.

•

You can write, in µSmalltalk itself, a method that uses the techniques above to convert a sequenceable collection of
decimal digits into a natural number.

•

For easy comparison, you can even define a subclass of Array or List that prints just the digits, with no spaces.•
Once you are confident that addition works, you can test subtraction of natural numbers by generating a long
random sequence, then subtracting the same sequence in which all digits except the most significant are replaced by
zero.

•

You can create more ambitious tests of subtraction by generating random natural numbers and using the algebraic
law (m + n) - m = n. You can also check to see that unless n is zero, m - (m + n) causes a run-time error.

•

It is harder to test multiplication, but you can at least use repeated addition to test multiplication by small values.
The timesRepeat: method is defined on any integer.

•

You can also easily test multiplication by large powers of 10.•
You can use similar techniques to test large integers.•

If you want more effective tests of multiplication and so on, compare your results with a working implementation of
bignums. The languages Scheme, Icon, and Haskell all provide such implementations. (Be aware that the real Scheme
define syntax is slightly different from what we use in uScheme.) We recommend you use ghci on the command line;
standard infix syntax works. If you want something more elaborate, use Standard ML of New Jersey (command sml), which
has an IntInf module that implements bignums.

Exercise T

Submit one other test of your bignums in bigtests.smt and explain in what way the submitted test is superior to the
factorial test. The question you should ask yourself is: What will constitute an adequate test of bignums?

Your bigtests.smt file should be formatted as follows:

It should begin with whatever definitions you need to run the test.1.
It should contain a summary characterization of the test in at most 60~characters, formatted on a line by itself as
follows:

; Summary:

(Your summary should be a simple English phrase that describes your test. Examples might be ``Ackermann's
function of (1, 1),'' ``sequence of powers of 2,'' or ``combinations of +, *, and - on random numbers.'')

2.

It should define a class Test105 with a class method run that actually runs the test.3.

COMP 105 Smalltalk Homework

Testing bignum arithmetic 3

It should end with comments that contain just the output from sending the run method to the Test105 class, and
nothing else. If the output is a single line, write a one-line comment. If the output takes multiple lines, put each line
of output in a comment on its own line.

4.

The expression (run Test105) must take less than 2 CPU seconds to evaluate.5.

You bigtests.smt file should not include any code that implements bignums. Here is a trivial example:

<example bigtests.smt>=
; Summary: 10 to the tenth power
(class Test105 Object
 ()
 (class-method run ()
 (locals n 10-to-the-n)
 (set n 0)
 (set 10-to-the-n 1)
 (whileTrue: [(< n 10)]
 [(set n (+ n 1))
 (set 10-to-the-n (* 10 10-to-the-n))])
 10-to-the-n)
)
; 10000000000

If this test is run in an unmodified interpreter, it breaks with an arithmetic overflow and a stack trace.

Extra-credit problem: Base variations

A key problem in the representation of integers is the choice of the base b. Today's hardware supports b = 2 and sometimes
b = 10, but when we want bignums, the choice of b is hard to make in the general case:

If b = 10, then converting to decimal representation is trivial, but storing bignums requires lots of memory.•
The larger b is, the less memory is required, and the more efficient everything is.•
If b is a power of 10, converting to decimal is relatively easy and is very efficient. Otherwise it requires (possibly
long) division.

•

If (b-1) * (b-1) fits in a machine word, than you can implement multiplication in high-level languages without
difficulty. (Serious implementations pick the largest b such that a[i] is guaranteed to fit in a machine word, e.g.,
2^64 on modern machines. Unfortunately, to work with such large values of b requires special machine
instructions to support ``add with carry'' and 128-bit multiply, so serious implementations have to be written in
assembly language.)

•

If b is a power of 2, bit-shift can be very efficient, but conversion to decimal is expensive. Fast bit-shift can be
important in cryptographic and communications applications.

•

If you want signed integers, there are more choices: signed-magnitude and b's-complement. Knuth volume 2 is pretty
informative about these topics.

For extra credit, try the following variations on your implementation of class Natural:

Implement the class using an internal base b=10. Measure the time needed to compute the first 50 factorials.1.
Make an argument for the largest possible base that is still a power of 10. Change your class to use that base
internally. (If you are both careful and clever, you should be able to change only the class method base and not any
other code.) Measure the time needed to compute the first 50 factorials. Note both your measurements and your
argument in your README file.

2.

Because Smalltalk hides the representation from clients, a well-behaved client won't be affected by a change of base. If we
wanted, we could take more serious measurements and pick the most efficient representation.

COMP 105 Smalltalk Homework

Exercise T 4

More Extra-credit problems

Division. Implement long division for Natural and for large integers. If this changes your argument for the largest possible
base, explain how.

Largest base. Change the base to the largest reasonable base, not necessarily a power of 10. You will have to re-implement
decimal using long division. Measure the time needed to compute and print the first 50 factorials. Does the smaller
number of digits recoup the higher cost of converting to decimal?

Comparisons. Make sure comparisons work, even with mixed kinds of integers. So for example, make sure comparisons
such as (< 5 (* 1000000 1000000)) produce sensible answers.

Space costs. Instrument your Natural class to keep track of the size of numbers, and measure the space cost of the
different bases. Estimate the difference in garbage-collection overhead for computing with the different bases, given a
fixed-size heap.

Pi (hard). Use a power series to compute the first 100 digits of pi (the ratio of a circle's circumference to its diameter). Be
sure to cite your sources for the proper series approximation and its convergence properties. Hint: I vaguely remember that
there's a faster convergence for pi over 4. Check with a numerical analyst.

Avoid Common Mistakes

Here are some common mistakes to avoid:

It's common to overlook class methods. They are a good place to put information that doesn't change over the life of
your program.

•

It's surprisingly common for students to submit code for the small problems without ever even having run the code
or loaded it into an interpreter. If you run even one test case, you will be ahead of the game.

•

It's too common to submit bignum code without having tested all combinations of methods and arguments. Your
best plan is to write a simple shell script that has three nested loops (over operator and both operands) and can emit
test code either for your own interpreter or for an interpreter that has bignums built in, like ghci.

•

It's a common mistake to submit a file bigtests.smt that has junk at the end or is otherwise badly formatted and
thereby earns little credit.

•

It's relatively common for students' code to make a false distinction between two flavors of zero. In integer
arithmetic, there is only one zero, and it always prints as ``0''.

•

What to submit

Solo work

A README file•
A file finhist.smt showing your solution to Exercise 9.•
A file basis.smt showing whatever changes you had to make to the initial basis to do Exercises 4, 29a, and 10. Please
identify your solutions using conspicuous comments, e.g.,

;;
;;;;
;;;; solution to Exercise 4
(class Array ...
)

Pair work

•

A README file that should include some indication of how you tested your bignum code for Part II. Of course we also
want the usual stuff about your collaborators and your time spent.

•

A file bignum.smt showing your solutions to Exercises 31, 32, and 33. This file must work with an unmodified
usmalltalk interpreter. Therefore, if for example you use results from Exercises 4, 29a, or any other problem (e.g., the

•

COMP 105 Smalltalk Homework

More Extra-credit problems 5

class method from: on the Array class), you will need to duplicate those results in bignum.smt as well as in
basis.smt above.
A file bigtests.smt showing your solutions to Exercise T.

Submit code using submit105-small-solo and submit105-small-pair.

How your work will be evaluated

All our usual expections for form, naming, and documentation apply. But in this assignment we will focus on structure
and clarity.

Exemplary Satisfactory Must improve
Structure • An object's behavior is controlled

by dispatching (or double
dispatching) to an appropriate
method of its class.

• Code uses method dispatch
instead of conditionals.

• Mixed operations on different
classes of numbers are
implemented using double
dispatch.

• Or, mixed operations on different
classes of numbers are
implemented by arranging for the
classes to share a common
protocol.

• Or, mixed operations on different
classes of numbers are
implemented by arranging for
unconditional coercions.

• Code deals with exceptional or
unusual conditions by passing a
suitable exnBlock or other
block.

• Code achieves new functionality
by reusing existing methods, e.g.,
by sending messages to super.

• Or, code achieves new
functionality by adding new
methods to old classes to respond
to an existing protocol.

• Code that works with collections
works with any Collection
class.

• An object's behavior is
influenced by interrogating it to
learn something about its class.

• Code contains one avoidable
conditional.

• Mixed operations on different
classes of integers involve
explicit conditionals.

• Code protects itself against
exceptional or unusual conditions
by using Booleans.

• Code contains methods that
appear to have been copied and
modified.

• The base used for natural
numbers appears in exactly one
place, but code that depends on it
knows what it is, and that code
will break if the base is changed
in any way.

• Overflow is detected only by
assuming the number of bits used
to represent a machine integer,
but the number of bits is explicit
in the code.

• Code contains case analysis or a
conditional that depends on the
class of an object.

• Code contains more than one
avoidable conditional.

• Mixed operations on different
classes of integers are
implemented by interrogating
objects about their classes.

• Code copies methods instead of
arranging to invoke the originals.

• Code that is supposed to works
with all collections works only
with some subclasses of
collections.

• The base used for natural
numbers appears in multiple
places.

• Overflow is detected only by
assuming the number of bits used
to represent a machine integer, and
the number of bits is implicit in the
value of some frightening decimal
literal.

•

COMP 105 Smalltalk Homework

Pair work 6

• The base used for natural
numbers appears in exactly one
place, and all code that depends on
it consults that place.

• Or, the base used for natural
numbers appears in exactly one
place, and code that depends on
either consults that place or
assumes that the base is some
power of 10

• No matter how many bits are
used to represent a machine
integer, overflow is detected by
using appropriate primitive
methods, not by comparing against
particular integers.

Clarity • Course staff see no more code
than is needed to solve the
problem.

• Course staff see how the structure
of the code follows from the
structure of the problem.

• Course staff see somewhat more
code than is needed to solve the
problem.

• Course staff can relate the
structure of the code to the
structure of the problem, but
there are parts they don't
understand.

• Course staff roughly twice as
much code as is needed to solve
the problem.

• Course staff cannot follow the
code and relate its structure to the
structure of the problem.

Documentation • Private methods are documented
with contracts.

• Or, private methods use exactly
the contracts suggested in the
bignums handout.

• Private methods are neither
documented nor consistent with
the bignums handout.

COMP 105 Smalltalk Homework

How your work will be evaluated 7

	COMP 105 Smalltalk Homework

