
COMP 105 Homework: Standard ML Modules
Due Wednesday, May 1 at 11:59 PM
(May be extended to May 2 by expending one token)

The purpose of this assignment is threefold:

To get some practice with Standard ML modules•
To use Standard ML modules to put together a nontrivial program.•
To see how to reuse code that depends not just on other values, but also on other types.•

You will complete problems 1–3 and problems A and B.

The code in this handout, together with a compile script, can be had by

 git clone linux.cs.tufts.edu:/comp/105/git/ttt

The assignment is intended for pairs.

Contents

Part I: ML modules finger exercises•
Part II: Playing adversary games•

The idea behind the Abstract Game Solver (AGS)♦
Basic data in the problem: Players and outcomes♦
Specification of an abstract game♦
Adversary game problems♦

Problem A: Implement Tic-Tac-Toe◊
Testing your code: using the AGS with Tic-Tac-Toe◊
Problem B: Building an AGS◊

A common mistake to avoid when debugging your AGS⋅
Using your AGS to play other games◊

Descriptions of the games♦
Tic Tac Toe◊
Nim◊
Connect 4◊

Extra Credit♦
What to submit•
Acknowledgments•
Appendix I: Two ways to compile Standard ML modules•

Compiling Standard ML modules using Moscow ML♦
Compiling Standard ML to native machine code using MLton♦

Appendix II: The code we give you and how to get it•
Appendix III: How your work will be evaluated•

Interface design and modular programming♦
Mutability♦
Evaluation criteria♦

Interface design and documentation◊
Program structure◊
Performance and correctness◊

COMP 105 Homework: Standard ML Modules

COMP 105 Homework: Standard ML Modules 1

Part I: ML modules finger exercises

A simple functor (Difficulty *, Time **). Remember the polymorphic sets we used when studying µScheme and
core ML? To make them work, we tried two different strategies:

To get set operations, pass in a comparison function and get a list of operations back (Higher-order
functions homework)

♦

Store the comparison function as part of the set itself (Core ML homework)♦
The second strategy is not very reliable—imagine the chaos that ensues if you try to take the union of two sets, but
they have different comparison functions!

The first strategy can be awkward in a typed language, because it can put extra type variables into the type of every
function.

In this problem, you'll use Standard ML modules to define dictionaries which are guaranteed to use a consistent
comparison function and do not require any extra parameters at run time. Instead you'll use one module parameter at
link time.

In this problem, you'll be implementing dictionaries with this signature:

<dict-sig.sml>=
signature DICT = sig
 type key (* a key used for lookup *)
 type 'a dict (* a finite map from keys to values of type 'a *)

 exception NotFound of key

 val empty : 'a dict
 val find : key * 'a dict -> 'a (* may raise NotFound *)
 val bind : key * 'a * 'a dict -> 'a dict

 (* contracts:
empty is the empty map
find (k, d) returns the x that d maps k to, or if d does not map k,

 it raises `NotFound k`
bind (k, x, d) = d' such that

 - d' maps k to x
 - if k' <> k, d' maps k' the same way d does

 laws:
find (k, bind (k, x, d)) = x
find (k, bind (k', x, d)) = find (x, d) if k <> k'
find (k, empty) raises NotFound k

 *)
end

Defines bind, DICT, dict, empty, find, key, NotFound (links are to index).

The comparison function is hidden inside the the module, so at run time, there are no extra types to think about and
no comparison functions to pass!

To compile the file dict-sig.sml you will need to use the -toplevel option, e.g.,

 mosmlc -toplevel -c dict-sig.sml

This problem has four parts:

Choose a representation for dictionaries. Representations already implemented for you include the
representation of environments in the book and the binary-search trees from the Core ML homework.
Or you can come up with a new representation of your own.

a.

1.

COMP 105 Homework: Standard ML Modules

Part I: ML modules finger exercises 2

The abstraction is immutable, but if you want to use a mutable representation like a hash table, you
can—but you must be sure that the mutability cannot be observed.
Figure out what you need to know about the key type to implement your chosen representation. You
probably will want one or more functions which consume values of type key and return values of type
order. (Type order is explained in more detail in the Core ML homework.)

b.

Define a signature KEY to record the knowledge you figured out in the previous step.
Write this signature in file key-sig.sml.

c.

In file dict.sml, implement a functor DictFn which takes as argument a structure Key matching
signature KEY and returns a structure matching DICT where type key = Key.key. The dict
type must remain abstract.

d.

To compile your functor, you will need to use the -toplevel option, and you'll need to provide compiled versions
of the signatures for DICT and KEY.

 mosmlc -toplevel -c dict-sig.ui key-sig.ui dict.sml

You will have produced dist-sig.ui by compiling dict-sig.sml, and similarly for key-sig.ui.

If you want to test your functor, define a structure StringDict :> DICT where type key = string.
One interface, three implementations (Difficulty *, Time **). The ERROR signature from class looks like this:

<error-sig.sml>=
signature ERROR = sig
 type error (* a single error *)
 type summary (* summary of what errors occurred *)

 val nothing : summary (* no errors occurred *)
 val oneError : error -> summary

 val <+> : summary * summary -> summary (* combine summaries *)

 (* laws:
nothing <+> s == s

 s <+> nothing == s
 s1 <+> (s2 <+> s3) == (s1 <+> s2) <+> s3 // associativity
 *)
end

Defines <+>, ERROR, error, nothing, oneError, summary (links are to index).

In this problem you will write three implementations of this signature:

Implement a module

 FirstError :> ERROR where type error = string
 and type summary = string option

such that the summary always contains the first error to occur, if any.
Please put your implementation in file first-error.sml.
(My solution to this problem requires a dozen lines of code.)

a.

Implement a module

 WorstError :> ERROR where type error = { severity : int, msg : string }
 and type summary = { severity : int, msg : string } option

such that the summary contains the most severe error to occur, if any.
Please put your implementation in file worst-error.sml.
(My solution to this problem requires 13 lines of code.)

b.

Implement a module

 AllErrors :> ...

c.

2.

COMP 105 Homework: Standard ML Modules

Part I: ML modules finger exercises 3

such that the summary contains all the errors that occur. Please also write and deploy a signature suitable
for sealing this module.
Please put your implementation in file all-errors.sml.
(My solution to this problem requires 11 lines of code.)

Data structures (Difficulty *, Time **). A heap is a collection of elements with an operation that quickly finds and
removes a minimal element. (The heap assumes that a total order exists on the elements; a minimal element is an
element of the heap that is at least as small as any other element. A heap may contain more than one minimal
element, in which case it is not specified which such element is removed.)

Design an abstraction for representing heaps in ML. Your abstraction may be mutable or immutable.

Formalize your abstraction by giving an ML signature HEAP describing the abstraction. Be sure to

Define two abstract types: one to represent a heap and one to represent an element.◊
Identify each operation as a creator, producer, mutator, or observer (as described in Section 3.4.2
on page 76 of Ramsey)

◊

Specify what each operation does, either using informal English, algebraic laws, or both◊
The heap assumes that values of the element type are totally ordered; be sure to expose that total order in
the interface.

Put your signature into a file called heap-sig.sml. You will need to compile it with the -toplevel
option, e.g.,

mosmlc -toplevel -c heap-sig.sml

Notice that for this part of the problem you write no code. All you write is the interface.

a.

Use your abstraction to implement heap sort. That is, write a functor HeapsortFn that takes a structure
matching signature HEAP and produces a structure that contains a function that sorts a list of elements by
inserting all the elements into a heap, then removing them one by one until the heap is empty.

Give your functor an explicit result signature, paying careful attention to type revelation.◊
You need not implement HEAP. This is the whole point!◊

Put your HeapsortFn functor into a file called heapsort.sml. You will need to compile it with the
-toplevel option, e.g.,

mosmlc -toplevel -c heap-sig.ui heapsort.sml

Because the heapsort.sml refers to signature HEAP, you must pass it the heap-sig.ui file where
signature HEAP is defined. You will have produced heap-sig.ui by compiling heap-sig.sml.

b.

3.

Part II: Playing adversary games

In problems A and B below, you will implement and use a system for playing simple adversary games. The program will
show game configurations, accept moves from the user and choose the best move.

The system is based on an abstract game solver (AGS) which, given a description of the rules of the game, will be able to
select the best move in a particular configuration. An AGS is obtained by abstracting (separating) the details of a particular
game from the details of the solving procedure. The solving procedure uses exhaustive search: it tries all possible moves and
picks the best. Such a search can solve games of complete information, provided the configuration space is small enough.
And the search is general enough that we can abstract away details of many games, separating the implementation of the
solver from the implementation of the game itself.

To separate game from solver, in such a way that a single solver can be used with many games, requires a carefully designed
interface. In this problem, we give you such an interface, which is specified using the SML signature GAME. (The signature
was designed by George Necula and modified by Norman Ramsey.)

The GAME signature declares all the types and functions that an Abstract Game Solver must know about a game. The
signature is general enough to cover a variety of games. Even details like ``the players take turns'' are considered to be part of

COMP 105 Homework: Standard ML Modules

Part II: Playing adversary games 4

the rules of the game—such rules are hidden behind the GAME interface, and the AGS operates correctly no matter what order
players move in. (You could even implement a solitaire as a ``two-player'' game in which the second player never gets a
turn!)

You will use two-player games in the last two parts of this assignment: implement a particular game and implement an AGS
of your own.

The idea behind the Abstract Game Solver (AGS)

As players move, the state of a game moves from one configuration to another. In any given configuration, our solver
considers all possible moves. After each move, it examines the resulting configuration and tries all possible moves from that
configuration, and so on. In each configuration, the solver assumes that the player plays perfectly, that is, whenever possible
the player will choose a move that forces a win.

This method (``exhaustive search'') is suitable only for very small games. Nobody would use it for a game like chess, for
example. Nevertheless, variations of this idea are used successfully even for chess; the idea is to stop or ``prune'' the search
before it goes too far.

Basic data in the problem: Players and outcomes

Representation is the essence or pgoramming. We start by describing basic representations for the essential facts we assume
about each game:

There are two players.4.
A game ends in an outcome: either one of the players has won, or the outcome is a tie.5.

The representations of these central concepts are exposed, not abstract. They are given by the signature PLAYER.

<player-sig.sml>=
signature PLAYER = sig
 datatype player = X | O (* 2 players called X and O *)
 datatype outcome = WINS of player | TIE

 (* Returns the other player *)
 val otherplayer : player -> player

 val toString : player -> string

 val outcomeToString : outcome -> string
end

Defines otherplayer, outcome, outcomeToString, PLAYER, player, toString (links are to
index).

The signature player also includes some functions that compute with players and outcomes. Here's the implementation of
signature PLAYER in a structure called Player.

<player.sml>=
structure Player :> PLAYER = struct
 datatype player = X | O
 datatype outcome = WINS of player | TIE

 fun otherplayer X = O
 | otherplayer O = X

 fun toString X = "X"
 | toString O = "O"

 fun outcomeToString TIE = "Tie"
 | outcomeToString (WINS p) = toString p ^ " wins"

COMP 105 Homework: Standard ML Modules

The idea behind the Abstract Game Solver (AGS) 5

end

Defines otherplayer, outcome, outcomeToString, Player, player, toString (links are to
index).

Although it might seem overly pedantic, we prefer to isolate details like the player names and how to convert them to a
printable representation. To refer to Player types, constructors, and functions, you will use the ``fully qualified''
ML module syntax, as in the examples Player.otherplayer p, Player.X, Player.O, and Player.WINS p. The
last three expressions can also be used as patterns.

Specification of an abstract game

The AGS can play any game that meets the specification given in signature GAME. This signature gives a contract for an
entire module, which subsumes the contracts for all its exported functions.

<game-sig.sml>=
signature GAME = sig
 structure Move : sig (* information related to moves *)
 eqtype move (* A move (perhaps a set of coordinates) *)
 exception Move (* Raised (by makemove & fromString) for invalid moves *)
 val fromString : string -> move
 (* converts a string to a move; If the string does not
 correspond to a valid move, fromString raises Move *)
 val prompt : Player.player -> string
 (* Given a player, return a request for a move
 for that player *)
 val toString : Player.player -> move -> string
 (* Returns a short message describing a
 move. Example: "Player X moves to ...".
 The message may not contain a newline. *)
 end

 type config (* A representation for a game configuration. It
 must include a full description of the state
 of a game at a particular moment, including
 keeping track of whose turn it is to move.
 Configurations must appear immutable.
 If a mutable representation is used, it must
 be impossible for a client to tell that a
 mutation has taken place. *)

 val toString : config -> string
 (* Returns an ASCII representation of the
 configuration. The string must show whose turn it is. *)

 val initial : Player.player -> config
 (* Initial configuration for a game when
 "player" is the one to start. We need the
 parameter because the configuration includes
 the player to move. *)

 val whoseturn : config -> Player.player
 (* Extracts the player whose turn is to move
 from a configuration. We need this function because
 the solver may need to know whose
 turn it is, and the solver does not have
 access to the representation of a configuration.
 *)

 val makemove: config -> Move.move -> config
 (* Changes the configuration by making a move.
 The player making the move is encoded in the
 configuration. Be sure that the new
 configuration knows who is to move. *)

COMP 105 Homework: Standard ML Modules

Basic data in the problem: Players and outcomes 6

 val outcome : config -> Player.outcome option
 (* If the configuration represents a finished game,
 return SOME applied to the outcome.
 If the game isn't over, return NONE. *)

 val finished : config -> bool
 (* True if the configuration is final. This
 might be because one player has won,
 or it might be that nobody can move
 (which would be considered a tie). *)

 val possmoves : config -> Move.move list
 (* A list of possible moves in a given
 configuration. ONLY final configurations
 might return nil. This means that a
 configuration which is not final MUST have
 some possible moves. In other words,
 part of the contract is that if 'finished cfg'
 is false, 'possmoves cfg' must return non-nil. *)

end

Defines config, finished, GAME, initial, makemove, Move, outcome, possmoves,
toString, whoseturn (links are to index).

This is a broad interface. For example, there are three different ways to tell if a game is over!

Adversary game problems

Problem A: Implement Tic-Tac-Toe

A. Implement ``Tic-Tac-Toe.'' (Difficulty **, Time ***) More precisely, implement a module TTT matching signature
GAME that describes Tic-Tac-Toe. If you are unfamiliar with Tic-Tac-Toe (elsewhere called ``Noughts and Crosses''), you
can find an explanation at the end of this assignment. Call your structure TTT, put it in the file ttt.sml, and use the
following pattern :

<template for ttt.sml>=
structure TTT :> GAME =
 struct
 structure Move = struct
 type move = ... (* or use a datatype *)
 exception Move
 ...
 end

 type config = ... (* or use a datatype config = *)

 fun initial p = ...
 fun whoseturn c = ...

 ... and so on for all the values in GAME ...
 end

Defines TTT (links are to index).

Note the use of :>, which means that the only access to the types is through the functions in the GAME signature.

When writing TTT, you must define all types and values mentioned in the signature GAME, and all values must have the types
specified. You might want to define additional values, which you will be able to use as helper functions. These functions
cannot be called from anyone else's code: because TTT is forced to have signature GAME, the functions are not visible outside

COMP 105 Homework: Standard ML Modules

Specification of an abstract game 7

the TTT module, and therefore no other code can depend on them.

So we can test your code, we insist that you use the following names of squares in Move.toString and
Move.fromString:

 upper left | upper middle | upper right
-------------+---------------+---------------
middle left | middle | middle right
-------------+---------------+---------------
 lower left | lower middle | lower right

You should always print and recognize these full names. If you wish, you may also recognize the abbreviations ul, um, ur,
ml, m, mr, ll, lm, and lr in the function Move.fromString.

Here are step-by-step instructions:

Choose how you will represent the state of the game (i.e., define config). This step is crucial because it
determines how complex your implementation will be. There are many possible representations; any one is OK
provided you are able to implement the functions required by the signature. Choose a representation that will make it
easy to implement makemove, possmoves, and outcome.

The AGS cannot possibly depend on your choice of representation (the ML module system guarantees it), so you are
free to choose whatever representation you like. Even more important, you can change your reprsesentation at
any time, and no code outside your own module will be affected. If you have any difficulty implementing the
functions in the GAME interface, you should change your representation—or at least think about it.

Document your representation by stating any invariants that it satisfies, and explain how your representation
relates to the abstraction of the tic-tac-toe grid.

You might be tempted to use mutable data to represent game state. Don't! The contract of the GAME interface
requires that any value of type config be available to the AGS indefinitely. Mutating a configuration is not safe.

If you think you might want immutable arrays, check out the Vector structure (see the ML supplement). (You can
find out what's in any ML structure by typing, e.g., open Vector at the interactive prompt, or you can consult the
 Standard Basis documentation. You can also use Moscow ML's help system, e.g,

- help "Vector";

If you get interested in vectors, don't overlook the function Vector.tabulate.)

One more thing. You may be tempted to start out by representing the contents of a square on the board using 0 and 1
or other arbitrary values. If you go this route, why not use Player.player option? It will make your program
more elegant and easier to understand.

a.

Choose a representation for moves. That is, write move. Everything said for configurations applies here also, but
this choice seems less critical.

b.

Declare the exception Move.c.
Write the function initial.d.
Write the function whoseturn.e.
Write makemove. The contract requires it to be Curried.f.
Write outcome. If the configuration is not final and nobody has won, return NONE.
Hints for Tic-Tac-Toe:

You could write a function which checks lines, another that checks columns and finally one that checks
diagonals. Then outcome could call these functions with the right parameters.

♦

You could try pattern matching. Standard ML supports pattern matches on vectors by, e.g., case a of
#[x, y, z] =>

♦

g.

Write finished. This function should return true if somebody has won or if no move is possible (everybody is
stuck). Be smart and use another function to do most of the work.

h.

COMP 105 Homework: Standard ML Modules

Problem A: Implement Tic-Tac-Toe 8

http://www.standardml.org/Basis/index.html

Write possmoves. This function must return a list of the possible moves (in no particular order). It is in
everybody's interest that the list have no duplicates. If the game is over, no further moves are possible, and
possmoves must return nil. (In this case, according to contract, finished must return true.)

If you want to be clever, you can exploit rotation and reflection symmetries to prune the list returned by
possmoves. You may be surprised how much difference this makes to performance. For extra credit,

submit a version of possmoves that exploits symmetry to minimize the number of possible moves1.
give a ``back of the envelope'' estimate of the time to be saved when the AGS plays against itself2.
measure the actual time savings using the Timer and Time structures thusly:

fun time f arg =
 let val start = Timer.startRealTimer()
 val answer = f arg
 val endit = Timer.checkRealTimer start
 in print ("Time is " ^ Time.toString endit ^ "\n");
 answer
 end

You can also try startCPUTimer and checkCPUTimer, but the answers you get are a bit more
complicated.

3.

i.

Create a data structure that associates each move with one or more representations of that move as strings. This data
structure will be a single point of truth, and it will ensure that Move.fromString and Move.toString cannot
possibly be inconsistent, even if you make a mistake in their implementations. To get full credit for this problem,
your code must provide this guarantee by ensuring there is a single point of truth.

j.

Using your data structure from the previous step, write Move.toString. This function must return a string of the
form ``Player... moves to ...'' which does not end in a newline. You can build your strings using concatenation (^)
and exported functions from other modules (e.g. Player.toString). To convert integer values to strings you
can use the function Int.toString.

k.

Write toString. You must return a simple ASCII representation of the state of the game configuration. The value
should end in a newline. Don't forget to include the player whose turn it is to move. Give us more than a simple list
of numbers. You can print a nice little ``ASCII graphics'' layout using only a few characters. To get you started, here
is some untested sample code to print a row; it has type player option list -> string:

<sample function rowString>=
local
 fun boxString (SOME p) = Player.toString p
 | boxString (NONE) = " "
in
 fun rowString [] = "|\n"
 | rowString (box :: boxes) = "| " ^ boxString box ^ " " ^ rowString boxes
end

Defines boxString, rowString (links are to index).

Move.toString and toString are not involved in the correctness of the AGS; they are used by the interactive
player to show you what's happening. The better your output, the more fun it will be to play. You can see a simple
sample by running /comp/105/bin/ttt.

l.

Write Move.prompt. It takes the player whose turn it is to move, and it returns a prompt message (without
newline) asking the specified player to give a move in the format we specified (naming the square).

m.

Write Move.fromString. This function should take a string (which is probably the reply given after a call to
Move.prompt, and it should return the move corresponding to that string. If there is no such move, it should raise
an exception.

You should try to write Move.fromString in such a way that Move.fromString and Move.toString
cannot possibly be inconsistent, even if you make a mistake. Because we give you a lot of freedom, it is hard to
specify precisely what it means to be consistent, but here is a rough specification:

n.

COMP 105 Homework: Standard ML Modules

Problem A: Implement Tic-Tac-Toe 9

For any move m, there should be an i and n such that m is equal to Move.fromString
(String.extract (Move.toString m, i, SOME n)).

Be sure to try your functions on simple configurations.

Hints: You may find it useful to define a structure Grid that you can use to represent a square or rectangular array of
values of type 'a. Defining suitable analogs of map and fold on the grid will help, as will functions to extract sub-grids
(rows and columns). If you then define reflection and rotation on grids, you can easily do the extra credit.

The most common mistake on this problem is to permit players to continue to move even when the game is over.

Bob Harper's code for Tic-Tac-Toe is 146 lines of Standard ML. I have a slicker version at only 87 lines—and it is four times
faster. It works by exploiting bit-level parallelism using the Word structure and by flagrantly disregarding most of the hints
given above.

Testing your code: using the AGS with Tic-Tac-Toe

To build a version of the AGS for ``Tic-Tac-Toe'' you must use the following command:

<example of creating a game-specific AGS>=
structure TTTAgs = AgsFun(structure Game = TTT)

Defines TTTAgs (links are to index).

Of course, I can't do any of this until I use the Moscow ML load function to get access to AgsFun and TTT. Here is an
example:

<transcript from an actual session>= [D->]
: nr@labrador 7147 ; mosml
Moscow ML version 2.10-2 (Tufts University, February 2011)
Enter `quit();' to quit.
- load "ags";
> val it = () : unit
- load "ttt";
> val it = () : unit
- structure TTTAgs = AgsFun(structure Game = TTT);
> structure TTTAgs :
 {structure Game :
 {structure Move :
 {type move = move,
 exn Move : exn,
 val fromString : string -> move,
 val prompt : player -> string,
 val toString : player -> move -> string},
 type config = config,
 val finished : config -> bool,
 val initial : player -> config,
 val makemove : config -> move -> config,
 val outcome : config -> outcome option,
 val possmoves : config -> move list,
 val toString : config -> string,
 val whoseturn : config -> player},
 val bestmove : config -> move option,
 val forecast : config -> outcome}
-

This functor application creates a structure that implements the AGS signature:

<ags-sig.sml>=
signature AGS = sig
 structure Game : GAME
 (* Given a configuration, returns the

COMP 105 Homework: Standard ML Modules

Testing your code: using the AGS with Tic-Tac-Toe 10

 * most beneficial move for the player
 * to move *)
 val bestmove : Game.config -> Game.Move.move option

 (* Given a configuration, returns the
 * best possible outcome for the player
 * whose turn it is, assuming opponent
 * plays optimally *)
 val forecast : Game.config -> Player.outcome
end

Defines AGS, bestmove, forecast, Game (links are to index).

The function bestmove returns the best move in a configuration, or NONE if no move is possible, i.e., the configuration is
final. The function forecast predicts the outcome from a configuration if both players make perfect moves.

These functions can be slow because the AGS tries all possible combinations of moves. Be patient.

We have also provided you an interactive player. It uses the AGS so you must instantiate it to the Tic-Tac-Toe AGS using the
following command:

<examples>= [D->]
structure P = PlayFun(structure Ags = TTTAgs);

Defines P (links are to index).

Again, to get PlayFun you will have to load the right module:

<transcript from an actual session>+= [<-D]
- load "play";
> val it = () : unit
- structure P = PlayFun(structure Ags = TTTAgs);
> structure P :
 {structure Game : ...
 exn Quit : exn,
 val getamove : player list -> config -> move,
 val play : (config -> move) -> config -> outcome}
-

The structure this application creates implements the following signature :

<play-sig.sml>=
signature PLAY = sig
 structure Game : GAME
 exception Quit
 val getamove : Player.player list -> Game.config -> Game.Move.move
 (* raises Quit if human player refuses to provide a move *)

 val play : (Game.config -> Game.Move.move) -> Game.config -> Player.outcome
end

Defines Game, getamove, PLAY, play, Quit (links are to index).

The function getamove expects a list of players for which the computer is supposed to play (the computer might play for X,
for O, for both or for none). The return value is a function which the interactive player will use to request a move given a
configuration. The idea is that the function returned will ask the AGS for a move if the computer is playing for the player to
move, or will prompt the user and convert the user's response into a move.

The function play expects an input function (one built by getamove) and a starting configuration. This function then starts
an interactive loop printing the intermediate configurations and prompting the users for moves (or asking the AGS where
appropriate). One example is :

COMP 105 Homework: Standard ML Modules

Testing your code: using the AGS with Tic-Tac-Toe 11

<examples>+= [<-D]
val computerxo = P.getamove [Player.X, Player.O]
 (*Computer plays for both X and O *)

val computero = P.getamove [Player.O]
 (*Computer plays only O *)

val cnfi = TTT.initial Player.X
 (* Empty configuration with X to start *)

val frustration = P.play computero
 (* We play against the computer *)

val _ = frustration cnfi
 (* A frustrating exercise *)

Defines cnfi, computero, computerxo, frustration (links are to index).

Problem B: Building an AGS

B.Implement an Abstract Game Solver (Difficulty ***). Given a configuration, an AGS should compute the benefits of all
possible moves and pick the best one. More precisely, given a configuration and a player, the AGS assigns a benefit to that
player of that configuration. A final configuration in which X has won should have maximum benefit to X and minimum
benefit to O, and vice versa. Ties should have intermediate and equal benefit to both players. We compute the benefit of an
intermediate configuration by looking at all possible moves and the benefits of the resulting configurations.

There are a variety of ways to view benefits; for example, we could assign larger benefits to winning quickly, and so on. For
this assignment, however, it will be sufficient to consider three levels of benefits:

Player to move can force a win•
Both players can force a tie•
Player to move can be forced to lose by his adversary•

For extra credit you can prove that one of these three situations must hold in any game described by the GAME signature,
provided that the game is deterministic and is guaranteed to terminate after finitely many moves.

Write an AGS using the following template:

<template for functor AgsFun>=
functor AgsFun (structure Game : GAME) :> AGS
 where type Game.Move.move = Game.Move.move
 and type Game.config = Game.config
= struct
 structure Game = Game

 fun bestresult conf = ...
 fun bestmove conf = ...
 fun forecast conf = ...
end

Defines AgsFun, bestmove, bestresult, forecast, Game (links are to index).

Note how annoying the where type declarations are: they look tautological, but they're not. Complain to Dave MacQueen
and Bob Harper.

We recommend you create a helper function bestresult with type

 val bestresult : Game.config -> Game.move option * result

COMP 105 Homework: Standard ML Modules

Problem B: Building an AGS 12

where result is a representation you choose.
The idea is that bestresult conf = (bestmove, whathappens) where

If the player can't move, bestmove is NONE.•
If the player can move, bestmove is SOME m, where m is the best possible Game.move for the player in this
configuration.

•

Value whathappens explains what the AGS predicts is the outcome of the game if both players play perfectly. It
suffices to use a result of type Player.outcome, but you can play around with this one some—for example, you
might want to return an outcome like ``Player X wins in 3 moves.'' This would help you build an aggressive AGS.

You might be tempted to use a ``relative'' outcome like ``Win, Lose, or Tie.'' This can be made to work, but it is
harder to get right, especially in games where players don't always take turns.

•

In order to make bestresult work, you'll need some recursive calls. You'll also want a helper function that lets you
compare the benefits of different outcomes, so bestresult can choose the most desirable outcome for the current player.

Hints:

To speed up the AGS, you may want to stop the search as soon as you find a forced win.•
Do not assume that players take turns, that the last player to move always wins, or any other properties of
Tic-Tac-Toe. Use whoseturn and outcome instead. We will test your AGS on games that are quite different
from Tic-Tac-Toe.

•

To test your AGS, you'll need to replace our ags.ui and ags.uo files with the ones you compile from your source code.
At this point you'll be able to run the same test cases you used earlier, as well as what's in part B.

My AGS takes about 40 lines of Standard ML.

A common mistake to avoid when debugging your AGS

If you build a simple AGS that fits in 40 lines of code, it is not going to try to fool you: if you can force a win, the AGS will
pick a move more or less arbitrarily. A simple AGS has no notion of ``better'' or ``worse'' moves; it knows only whether it
can force a win.

Here's the common mistake: you're playing against the AGS, and it makes a terrible move. You think it's broken. For
example, suppose you are playing X, the AGS is playing O, and you start play in this position:

 | | O | |

 | | X | |

 | | | |

You move in the upper left corner. The AGS does not move lower right to block you. Is it broken? No—the AGS
recognizes that you can force a win, and it just gives up.

If you want an AGS that won't give up, for extra credit you can implement an aggressive version that will delay the inevitable
as long as possible. An aggressive AGS searches more states so that it can (a) win as quickly as possible and (b) hold on in a
lost position as long as possible.

My aggressive AGS is under 60 lines of Standard ML code.

COMP 105 Homework: Standard ML Modules

A common mistake to avoid when debugging your AGS 13

Using your AGS to play other games

The code we supply includes a description of the game ``Nim''. The structure that implements ``Nim'' is called structure
Nim. After you create an AGS solver and an interactive player for ``Nim'' you can play Nim with the AGS. The commands to
instantiate AGS to ``Nim'' are:

<nim examples>=
structure NIMAgs = AgsFun(structure Game = Nim)
structure PN = PlayFun(structure Ags = NIMAgs)

Defines NIMAgs, PN (links are to index).

You play Nim by running /comp/105/bin/nim, but the user interface stinks.

We've also implemented a version of ``Connect 4'' that would be better called ``Connect 3'' (since 4 would be too slow). It is
in /comp/105/bin/four.

Descriptions of the games

Here are descriptions of 3 games: ``Tic-Tac-Toe'', ``Nim'' ``and ``Connect 4''. Do not worry if you haven't seen these games
before—you can learn by playing against a perfect or near-perfect player. (The Connect 4 player would be perfect if it were
faster.) For the purpose of this assignment you do not have to know any tricks of the games but only to understand their rules.

Tic Tac Toe

This is an adversary game played by two persons using a 3x3 square board. The players (traditionally called X and O) take
turns in placing X's or O's in the empty squares on the board (player X places only X's and O only O's). The board is empty in
the initial configuration.

The first player who managed to obtain a full line, column or diagonal marked with his name is the winner. The game can
also end in a tie. In the picture below the first configuration is a win for O, the next two are wins for X and the last one is a
tie.

------------- ------------- ------------- -------------
| X | | X | | | | X | | X | O | | | O | O | X |
------------- ------------- ------------- -------------
| | X | | | O | X | O | | X | O | | | X | X | O |
------------- ------------- ------------- -------------
| O | O | O | | X | | O | | X | | O | | O | X | O |
------------- ------------- ------------- -------------

In this game a player who plays perfectly cannot lose. All your base are belong to the AGS.

Nim

This is an adversary game played by two persons. The game is played with number of sticks arranged in 3 rows. In the initial
state the rows usually contain 3, 5 and 7 sticks respectively. The players take turns in removing sticks: each player can
remove 1, 2 or 3 adjacent sticks from one row. The one that removes the last stick is the loser. Or, stated differently the first
player who has no sticks to remove is the winner. Below were presented two configurations. The first one is the initial
configuration (for the 3, 5 and 7) case and the other one is the configuration obtained after a few moves. A possible sequence
of moves that might lead to this configuration is:

X removes sticks 0, 1 and 2 from row 11.
O removes stick 1 from row 02.
X removes stick 6 from row 23.
O removes sticks 3 and 4 from row 24.

COMP 105 Homework: Standard ML Modules

Using your AGS to play other games 14

Row 0: | | | | _ |

Row 1: | | | | | _ _ _ | |

Row 2: | | | | | | | | | | _ _ | _

We have represented a stick using a ``|''and a missing stick using a ``_''. It might be wise to play with a smaller configuration
(2, 3 and 4 for example) because otherwise the AGS will take too long to produce its answers.

For this game the first player can always win no matter what the other does. If you let the AGS start you have no chance. If
you play first you can beat the AGS, but you have to play well.

Connect 4

This is an adversary game played by two persons using 6 rods and 36 balls. Imagine the rods standing vertically, and each
ball has a hole in it, so you can drop a ball onto a rod. The balls are divided in two equal groups marked X and O. The players
take turns in making moves. A move for a player consists in sliding one of its own balls down a rod which is not full (the
capacity of a rod is 6). The purpose is to obtain 4 balls of the same type adjacent on a horizontal, vertical or diagonal line.
The game ends in a tie when all the rods are full and no player has won. We represent below the initial configuration of the
game and a final state where X has won.

					O					
					O	O				
					O X X X X					
----------- -----------

Our version uses 5 rods and connects 3, because otherwise the AGS takes too long.

Extra Credit

Symmetry. Speed up Tic-Tac-Toe by exploiting symmetry as described above.

Proof. Prove the ``forcing'' property of these simple games as described above above.

Four. Implement Connect 4.

Game. Suggest another simple adversary game, and (with the instructor's approval) implement it. The game should be small
with a small number of possible moves; otherwise the exhaustive search is infeasible.

Aggression. With the simple benefits outlined above, the AGS will ``give up'' if it can't beat a perfect player---all moves are
equally bad, and it apparently moves at random. What this scheme doesn't account for is that the other player might not be
perfect, so there is a reason to prefer the most distant loss. In the dual situation, when the AGS knows it can win no matter
what, it will pick a winning move at random instead of winning as quickly as possible. This behavior may lead you to
suspect bugs in your AGS. Don't be fooled.

Change your benefits so that the AGS prefers the closest win and the most distant loss. (This means you can only prune the
search if you find a win in one move.) If you are clever, you can encode all this information in one value of type real.

Learning. We can re-use the GAME signature for more than one purpose. Implement a ``matchbox'' learning engine in the
style explained by Martin Gardner's article on the reading list. You can use the SML/NJ library to store state with each
configuration, using the following signature:

signature ORDERED_GAME = sig
 include ORD_KEY
 include GAME

COMP 105 Homework: Standard ML Modules

Nim 15

 sharing type conf = ord_key
end;

You may have to modify the AGS to notify each player of the outcome of the game. See me for more help with details.

What to submit

For this assignment you should use the script submit105-sml to submit

Either README•
For problem 1, files key-sig.sml and dict.sml•
For problem 2, files first-error.sml, worst-error.sml, and all-errors.sml•
For problem 3, files heap-sig.sml and heapsort.sml•
For problem A, file ttt.sml•
For problem B, file ags.sml•

The ML files should contain all structure and function definitions that you write for this assignment (including any helper
functions that may be necessary), in the order they should be compiled. The files you submit must compile with Moscow
ML, using the compile script we give you. We will reject files with syntax or type errors. Your files should compile without
warning messages. If you must, you can include multiple structures in your files, but please don't make copies of the
structures and signatures above; we already have them.

Acknowledgments

This assignment is derived from one graciously provided by Bob Harper. George Necula, who was his teaching assistant at
the time (and is now a professor at Berkeley and is world famous as the inventor of proof-carrying code), did the bulk of the
work.

Appendix I: Two ways to compile Standard ML modules

Compiling Standard ML modules using Moscow ML

To compile an individual module using Moscow ML, you type

mosmlc -c -toplevel filename.sml

This puts compiler-interface information into filename.ui and implementation information into filename.uo.
Perhaps surprisingly, either a signature or a structure will produce both .ui and .uo files. This behavior is an artifact of the
way Moscow ML works; it should not alarm you.

If your module depends on another module, you will have to mention the .ui file on the command line as you compile. For
example your DictFn functor depends on both DICT and KEY signatures. If DictFn is defined in dict.sml, KEY is
defined in key-sig.sml, and DICT is defined in dict-sig.sml, then to compile DictFn you run

 mosmlc -toplevel -c dict-sig.ui key-sig.ui dict.sml

To talk about what happens after you compile, I'll use another example:

 mosmlc -c -toplevel game-sig.ui player.ui ttt.sml

This compilation produces two files:

ttt.ui, which can be used on the command line when compiling other units that depend on TTT.•
ttt.uo, which contains the compiled binary•

COMP 105 Homework: Standard ML Modules

Extra Credit 16

http://www.cs.cmu.edu/~rwh/
http://www.cs.berkeley.edu/~necula/

You can do two things with the .uo files:

When you are debugging, it is tremendously useful to get compiled modules into the interactive system. Load them
directly using load, e.g.,

: nr@labrador 2856 ; mosml
Moscow ML version 2.10-2 (Tufts University, February 2011)
Enter `quit();' to quit.
- load "ttt";
> val it = () : unit
- open TTT;
> structure Move :
 {type move = move,
 exn Move = Move : exn,
 ...}
 type config = config
 ...
 val finished = fn : config -> bool
 ...

Once you load a module, you cannot recompile it and reload it later. Loading it again has no effect, even if the
code has changed; you have to start Moscow ML over again.

•

You can use mosmlc to link a bunch of .uo files together to form an executable binary. To do anything interesting,
one of the source files should have a top-level call to play, forecast, or some other interesting function.

Here is an example of a command line I use on my system to build an interactive game player:

 mosmlc -toplevel -o games player-sig.uo player.uo game-sig.uo \
 ags-sig.uo play-sig.uo slickttt.uo ttt.uo \
 ags.uo aggress.uo nim.uo four.uo peg.uo mrun.uo

Order matters; for example, I have to put player.uo after player-sig.uo because the Player structure
defined in player.sml uses the PLAYER signature defined in player-sig.sml.

•

The git repository for this assignment includes a compile script that may help with compiling Moscow ML modules.

Compiling Standard ML to native machine code using MLton

If your games are running too slow, compile them with MLton. MLton is a whole-program compiler that produces optimized
native code. To use MLton, you list all your modules in an MLB file, and MLton compiles them at one go. We provide a
ttt.mlb file, so you can compile with, e.g.,

mlton -output ttt -verbose 1 ttt.mlb

Because MLton requires source code, you will be able to use it only once you have your own AGS. More information about
MLton is available on the man page and at www.mlton.org.

Appendix II: The code we give you and how to get it

In the git repository at /comp/105/git/ttt, you'll find sources for most of the signatures, structures, and functors in this
assignment. You'll also find an AGS in binary form only. And you'll find a compile script, which should compile your
code using the Moscow ML compiler, mosmlc, and a ttt.mlb file for MLton.

Appendix III: How your work will be evaluated

COMP 105 Homework: Standard ML Modules

Compiling Standard ML modules using Moscow ML 17

http://mlton.org/MLBasisSyntaxAndSemantics
http://www.mlton.org

Interface design and modular programming

Modules provide controlled information hiding. To use the power of modules effectively, design interfaces that are both
usable and abstract:

Enough types should be made manifest that the module can be used.•
No more types should be made manifest than is absolutely necessary.•

Here's an acid test:

If an interface exports an abstract type like heap or queue or dictionary or computation, it must be
possible to create a value of the abstract type using the functions exported by the interface. It must not be possible to
create a value of the abstract type without using the functions exported by the interface.

•

Other things being equal, hiding more information is better. When in doubt, make a type abstract.

Mutability

An abstract type, in any language, is always either mutable or immutable. The choice is made by the designer of the
interface, and the choice is available regardless of programming language.

Mutable abstractions have ``object identity:'' if you mutate x and you see the change when you look at y, then
x and y are the same object. For example, if sets of numbers are mutable abstractions, then just because x and y
both represent the empty set doesn't mean they are the same object.

•

Immutable abstractions lack object identity: if the result of observing a property of x is always identical to the result
of observing the same property of y, then they may or may not be the same object, but it doesn't matter, because no
program can tell the difference between them. For example, ``natural number'' is an immutable abstraction, and if
you have the natural number~7, it makes no sense to ask ``which 7 do I have,'' because they're all indistinguishable.

•

The interface for a mutable abstraction always provides at least one creator function which creates a new object that
is distinct from any other. The interface for an immutable abstraction doesn't require creators. For example, if you
implement mutable lists, you need a way to allocate a new, empty list. But if lists are immutable, you can just
provide one empty-list value and forget about it.

•

The interface for a mutable abstraction provides mutators that change the contents or value of an object. The return
type of a mutator typically does not include a value of the abstract type; instead of a returning a new value, the
mutator changes one of its arguments.

The interface for an immutable abstraction typically provides producers that take in an existing object and produce a
new object, which is returned. The return type of a producer always includes a value of the abstract type.

•

In a statically typed language like ML, it is usually not necessary to say explicitly whether an abstraction is mutable
or immutable—it should be obvious from the types.

•

The key takeaway here is that any abstraction you create should be either mutable or immutable, and the type of every
operation must be consistent with your decision.

Evaluation criteria

Interface design and documentation

We'll look most closely at the design and documentation of your interfaces.

Exemplary Satisfactory Must improve
Interface design • Signatures defined in the

program make types abstract
when possible but manifest when
necessary.

• A signature makes a type abstract
but provides so many operations
with such detailed contracts that
only one representation is possible,

• A signature makes a type manifest
that should be abstract.

COMP 105 Homework: Standard ML Modules

Interface design and modular programming 18

• In any signature, no type is
made manifest unless it is
absolutely necessary to expose
the type.

• Every signature that is used to
seal a module exposes a
combination of operations and
types so that the abstractions
described in the signature can be
used.

• If an interface exports an
abstract type, it is possible to
create a value of the type using
the functions exported by the
interface.

• If an interface exports an
abstract type, it is possible to
observe (or consume or query) a
value of the type using the
functions exported by the
interface.

• Every abstract type is supported
by enough functions that it is
possible to observe any property
that would be observable in the
world of ideas.

• Every signature that describes
an argument to a functor is as
small as possible, but no smaller.

• In every signature, every
abstract type is either clearly
mutable or clearly immutable.

• Every abstraction handles
polymorphism either through the
core language (using a type
parameter) or through the
module language (using a functor
parameter), never a mix of both.

and the representation might as
well be exposed.

• A type is exposed (made
manifest) unnecessarily, but the
value constructors are hidden, so
an adversary cannot forge a value
of the type.

• Some properties of an abstract
type are observable and some
aren't.

• A signature that describes an
argument to a functor contains
superfluous elements that are not
needed by the functor.

• A polymorphic abstraction uses a
type parameter to achieve
polymorphism, but the interface is
cluttered because one or more
operations on the abstract type
have to take an extra parameter
(for example, a comparison
function).

• A type is so exposed that an
adversary can create a value of the
type without using the functions in
the interface, possibly violating the
type's invariants.

• An abstract type named in a
signature can't be used because there
are no operations available to create
values of that type.

• An interface provides functions to
create a value of abstract type, but
afterward the value can't be
observed: there is nothing you can
do with it.

• A signature that describes an
argument to a functor is missing
elements that are required for the
functor to do its job.

• Some of the operations on an
abstract type have types which
suggest that the abstraction is
mutable; others suggest it is
immutable.

• An interface appears to provide a
polymorphic abstraction using a
core-language type parameter, but
closer inspection shows that the type
parameter performs no useful
function; the interface requires the
use of an abstract type also named in
the interface.

Interface
documentation

• In HEAP, every operation is
explicitly classified as a creator,
producer, observer, or mutator.

• Every signature documents
what its abstract types stand for
in the world of ideas.
(Sometimes the name of the type
is sufficient.)

• Heap operations are grouped by
classification, but the classification
is not explicit.

• A function raises an exception
and it's not documented explicitly,
but based on the name and type of
the function and the names of
exported exceptions, course staff
can make a reliable guess.

• Heap operations are not classified
as creators, producers, observers, or
mutators.

• A function raises an exception that
can't be caught, because the
exception isn't exported in the
interface.

COMP 105 Homework: Standard ML Modules

Interface design and documentation 19

• In every signature, the contract
of every function is either
implicit in its name and type, or
is stated explicitly. (Explicit
statements may refer to the world
of ideas or may be composed by
writing algebraic laws.)

• If an exported function can
raise an exception, this behavior
is documented as part of the
function's contract.

• Exceptions that might be raised
are either part of the interface or
are defined in the context
(usually the initial basis)

Program structure

We'll be looking for you to seal all your modules and to isolate the truth about Tic-tac-toe moves in just one point in your
code. We'll also be looking for the usual hallmarks of good ML structure.

Exemplary Satisfactory Must improve
Structure • All modules are sealed using

the opaque sealing operator :>

• There is exactly one place in
the Tic-tac-toe code where the
internal representation of each
move is related to its external
string representation(s)

• Code uses basis functions
effectively, especially
higher-order functions on list
and vector types.

• Code has no redundant case
analysis

• Code is no larger than is
necessary to solve the problem.

• Most modules are sealed using the
opaque sealing operator :>

• Internal representations and string
representations of Tic-tac-toe moves are
related in multiple places in the code, but
all relations are immediately adjacent to
their inverse relations.

• Code uses the familiar functions, but
misses opportunities to use unfamiliar
functions like Vector.tabulate.

• Code has one redundant case analysis

• Code is somewhat larger then necessary
to solve the problem.

• Only some or no modules are sealed
using the opaque sealing operator :>

• A module is defined without
ascribing any signature to it (unsealed)

• Conversion between internal
representations and string
representations of Tic-tac-toe moves is
done by separate functions which don't
share code or data structures but are
required to be inverses. Information is
duplicated.

• Code misses opportunities to use
map, fold, or other familiar HOFs.

• Code has more than one redundant
case analysis

• Code is almost twice as large as
necessary to solve the problem.

• Or, code contains near-duplicate
functions (most likely in AGS)

Performance and correctness

Finally, we'll look to be sure your code meets specifications, and that the performance of your AGS is as good as reasonably
possible.

COMP 105 Homework: Standard ML Modules

Program structure 20

http://www.cs.tufts.edu/comp/105/handouts/redundant-ml-cases.html
http://www.cs.tufts.edu/comp/105/handouts/redundant-ml-cases.html
http://www.cs.tufts.edu/comp/105/handouts/redundant-ml-cases.html
http://www.cs.tufts.edu/comp/105/handouts/redundant-ml-cases.html
http://www.cs.tufts.edu/comp/105/handouts/redundant-ml-cases.html

Exemplary Satisfactory Must improve
Correctness • The HEAP signature contains only

operations that are appropriate to a set
with a known minimum element.

• The HEAP signature exposes the total
order that exists on values of the element
type.

• Tic-tac-toe code fulfills the contracts
specified in the GAME and MOVE
signatures.

• AGS code makes no additional
assumptions about the implementations of
Player, Move, or Game.

• The HEAP signature contains
superfluous operations.

• Tic-tac-toe code fulfills the contracts
specified in the GAME and MOVE
signatures, except that it continues to
offer moves even after the game is over.

• The HEAP
signature contains
superfluous
operations that the
course staff believe
are intended to make
sorting easier.

• The HEAP
signature contains a
sort function
(serious fault).

• The HEAP
signature contains a
higher-order
function that visits
heap elements in
total order (serious
fault).

• The HEAP
signature does not
expose the total
order that exists on
values of the
element type.

• Tic-tac-toe code
violates one of its
contracts.

• AGS code assumes
that players take
turns.

Performance • The AGS implements its bestmove and
forecast functions using a single,
pruned search that stops once the best
move or outcome is known.

• Or, the AGS implements bestmove
and forecast by making just one search
through the state space of possible game
configurations.

• Function bestmove or forecast may
search the state space of possible
configurations more than once.

• Function
bestmove or
forecast may search
the state space of
possible
configurations more
than twice.

COMP 105 Homework: Standard ML Modules

Performance and correctness 21

	COMP 105 Homework: Standard ML Modules

