
COMP 105 Homework: Type Systems

Due Thursday, March 14, at 11:59 PM.

The purpose of this assignment is to help you learn about type systems.

Setup and Guidelines

Make a clone of the book code:

 git clone linux.cs.tufts.edu:/comp/105/book-code

You will need copies of book-code/bare/tuscheme/tuscheme.sml and
book-code/bare/timpcore/timpcore.sml.
The code for Typed µScheme has changed, so if you have an old clone, you will need to run git pull.

As in the ML homework, use function definition by pattern matching. In particular, do not use the functions null, hd, and
tl.

Two problems to do by yourself

1. Do Exercise 1 on page 274 of Ramsey: add lists to Typed Impcore. The exercises requires you to design new syntax and
to write type rules for lists. I expect your type rules to be deterministic. Turn in this exercise in PDF file lists.pdf.

I recommend that you do Exercise 2 first (with your partner). It will give you more of a feel for monomorphic type systems.

Hint: Exercise 1 is more difficult than it first appears. I encourage you to scrutinize the lecture notes for similar cases, and to
remember that you have to be able to type check every expression at compile time.

Here are some things to watch out for:

It's easy to conflate syntax, types, and values. In this respect, doing theory is significantly harder than doing
implementation, because there's no friendly ML compiler to tell you that you have a type clash among exp, tyex,
and value.

•

It's especially easy to get confused about cons. You need to create a new syntax for cons. This syntax needs to be
different from the PAIR constructor that is what cons evaluates to.

•

Dealing with the empty list presents a real challenge. Typed Impcore is monomorphic, which implies that any given
piece of syntax has at most one type. But you want to allow for empty lists of different types. The easy way out is to
design your syntax so that you have many different expressions, of different types, that all evaluate to empty lists.

•

A good mental test case is that if ns is a list of integers, then (car (reverse ns)) is an expression that
probably should have a type.

•

You might want to see what happens to an ML program when you try to type-check operations on empty and
nonempty lists. For this exercise to be helpful, you really have to understand the phase distinction between a
type-checking error and a run-time error.

•

It's easy to write a type system that requires nondeterminism to compute the type of any term involving the empty
list. But the problem requires a deterministic type system, because deterministic type systems are much easier to
implement. You might consider whether similar problems arise with other kinds of empty data structures or whether
lists are somehow unique.

•

11. Do Exercise 11 on page 275 of Ramsey: write exists? and all? in Typed uScheme. Turn in this exercise in file
11.scm.

COMP 105 Homework: Type Systems

COMP 105 Homework: Type Systems 1

Four problems to do with a partner

2. Do Exercise 2 on page 274 of Ramsey: finish the type checker for Typed Impcore by implementing the rules for arrays.
Turn in this exercise in file timpcore.sml.
My solution to this problem is 21 lines of ML.

15. Do Exercise 15 on page 276 of Ramsey: extend Typed uScheme with a type constructor for queues and with primitives
that operate on queues. As it says in the exercise, do not change the abstract syntax, the values, the eval function, or the
type checker. If you change any of these parts of the interpreter, your solution will earn No Credit.

I've made one change to the exercise: instead of implementing get, implement the two functions get-first and
get-rest. This change will save you from having to deal with pair types. The change is reflected in two updated pages
from the book.

I recommend that you represent each queue as a list. If you do this, you will be able to use the following primitive
implementation of put:

 let fun put (x, NIL) = PAIR (x, NIL)
 | put (x, PAIR (y, ys)) = PAIR (y, put (x, ys))
 | put (x, _) = raise BugInTypeChecking "non-queue passed to put"
 in put
 end

Turn in the code for this exercise in file tuscheme.sml, which should also include your solution to Exercise 13 below.
Please include the answers to parts (a) and(b) in your README file.

Hint: because empty-queue is not a function, you will have to modify the initialEnvs function on page 270b. The
updated pages from the book show two places you will update: the <primitive functions for Typed µScheme
::> and the <primitives that aren't functions, for Typed µScheme ::>.
My solution to this problem, including the implementation of put above, is under 20 lines of ML.

13. Do Exercise 13 on page 275 of Ramsey: write a type checker for Typed uScheme. Turn in this exercise in file
tuscheme.sml, which should also include your solution to Exercise 15 above. Don't worry about the quality of your error
messages, but do remember that your code must compile without errors or warnings.
My solution to this problem is about 120 lines of ML. It is very similar to the type checker for Typed Impcore that appears in
the book. If I had given worse error messages, it could have been a little shorter.

T. Create three test cases for Typed uScheme type checkers. In file type-tests.scm, please put three val bindings to
names e1, e2, and e3. (A val-rec binding is also acceptable.) After each binding, put in a comment the words "type is"
followed by the type you expect the name to have. If you expect a type error, instead put a comment saying "type error". Here
is an example (with more than three bindings):

(val e1 cons)
; type is (forall ('a) (function ('a (list 'a)) (list 'a)))

(val e2 (@ car int))
; type is (function ((list int)) int)

(val e3 (type-lambda ('a) (lambda (('a x)) x)))
; type is (forall ('a) (function ('a) 'a))

(val e4 (+ 1 #t)) ; extra example
; type error

(val e5 (lambda ((int x)) (cons x x))) ; another extra example
; type error

If you submit more than three bindings, we will use the first three.
Each binding must be completely independent of all the others. In particular, you cannot use values declared in earlier

COMP 105 Homework: Type Systems

Four problems to do with a partner 2

bindings as part of your later bindings.

How to build a type checker

For your type checker, it would be a grave error to copy and paste the Typed Impcore code into Typed uScheme. You are
much better off simply adding a brand new type checker to the tuscheme.sml interpreter. Use the techniques presented in
class, and start small.

The only really viable strategy for building the type checker is one piece at a time. Writing the whole type checker before
running any of it will make you miserable. Instead, start with small pieces similar to what we'll do in class:

It's OK to write out a complete case analysis of the syntax, but have every case raise the LeftAsExercise
exception. This trick will start to get you a useful scaffolding, in which you can gradually replace each exception
with real code. And of course you'll test each time.

1.

You can begin by type-checking literal numbers and Booleans.2.
Add IF-expressions as done in class.3.
Implement the VAL rule for definitions, and maybe also the EXP rule. Now you can test a few IF-expressions with
different types, but you'll need to disable the initial basis as shown below.

4.

Implement the rule for function application. You should be able to test all the arithmetic and comparisons from
class.

5.

Implement LET binding. The Scheme version is slightly more general than we covered in class. Be careful with
your contexts. Implement VAR.

6.

Once you've got LET working, LAMBDA should be quite similar. To create a function type, use the funtype
function in the book.

7.

Knock off SET, WHILE, BEGIN.8.
Because of the representation of types, function application is a bit tricky. Study the funtype function and make
sure you understand how to pattern match against its representation.

9.

There are a couple of different ways to handle LET-STAR. As usual, the simplest way is to treat it as syntactic sugar
for nested LETs.

10.

Knock off the definition forms VALREC and DEFINE. (Remember that DEFINE is syntactic sugar for VALREC.)11.
Save TYAPPLY and TYLAMBDA for after the last class lecture on the topic. (Those are the only parts that have to
wait until the last lecture; you can have your entire type checker, except for those two constructs, finished before the
last class.)

12.

Finally, don't overlook section 6.6.4 in the textbook. It is only a few pages, but it is chock full of useful functions and
representations that are already implemented for you.

Let me suggest that you replace the line in the source code

 val basis = (* ML representation of initial basis *)

with

 val basis_included = false
 val basis = if not basis_included then [] else

With luck this will enable you to test things.

Before submitting, turn the basis back on.

Other advice

Here's some generic advice for writing any of the type-checking code, but especially the queues:

Compile early.1.
Compile insanely often.2.

COMP 105 Homework: Type Systems

How to build a type checker 3

Use an editor that jumps straight to the location of the error.3.
Come up with examples in Typed uScheme.4.
Figure out how those examples are represented in ML.5.
Keep in mind the distinction between the term language (values of queue type, values of function type, values of list
type) and the type language (queue types, function types, list types).

6.

If you're talking about a thing in the term language, you should be able to give its type.7.
If you're talking about a thing in the type language, you should be able to give its kind.8.

Avoid common mistakes

Here are some common mistakes:

In Exercise 1, it's a relatively common mistake to try to create a type system that prevents programmers from
applying car or cdr to the empty list. Don't do this! It can be done, but by the standards of COMP 105, such type
systems are insanely complicated. As in ML, taking car or cdr of the empty list should be a well-typed term that
causes an error at run time.

•

In Exercise 1, it's quite common to write a nondeterministic type system by accident. The rules, typing context, and
syntax have to work together to determine the type of every expression. But you're free to choose whatever rules,
context, and syntax you want.

•

In Exercise 1, it's inexplicably common to forget to write a typing rule for the construct that tests to see if a list is
empty.

•

There are already interpreters on your PATH with the same name as the interpreters you are working on.
So remember to get the version from your current working directory, as in

 ledit ./timpcore

Just plain timpcore will get the system version.

•

ML equality is broken! The = sign gives equality of representation, which may or may not be what you want. For
example, in Typed uScheme, you must use the eqType function to see if two types are equal. If you use built-in
equality, you will get wrong answers.

•

The val-rec form requires an extra side condition; in

 (val-rec x e)

it is necessary to be sure that e can be evaluated without evaluating x. Many students forget this side condition,
which can be implemented very easily with the help of the function appearsUnprotectedIn, which should be
listed in the ``code index'' of your book.

•

It's a common mistake to call ListPair.foldr and ListPair.foldl when what was really meant was
ListPair.foldrEq or ListPair.foldlEq.

•

A few words about difficulty and time

In Exercise 1 on page 274, I am asking you to create new type rules on your own. Many students find this exercise easy, but
many find it very difficult. My sympathy is with the difficult camp; you haven't had much practice creating new rules on
your own.

Exercise 11, writing exists? and all? in Typed µScheme, requires that you really understand instantiation of
polymorphic values. Once you get that, the problem is not at all difficult, but the type checker is very, very persnickety.
A little of this kind of programming goes a long way.

Exercise 2, type-checking arrays in Typed Impcore, is probably the easiest exercise on this homework. You need to be able to
duplicate the kind of reasoning and programming that we did in class for the language of expressions with LET and VAR.

Exercise 15, adding queues to Typed µScheme, requires you to understand how primitive type constructors and values are
added to the initial basis. And it requires you to write ML code that manipulates µScheme representations. Study the way the
existing primitives are implemented!

COMP 105 Homework: Type Systems

Other advice 4

Exercise 13, the full type checker for Typed µScheme, presents two kinds of difficulty:

You really have to understand the connection between typing judgments, typing rules, and code.•
You have to understand a moderately sophisticated ML program (the interpreter) and then build a relatively big and
independent extension of it.

•

For the first item, we'll talk a lot in class about the concepts and the connection between type theory and type checking. For
the second item, it's not so difficult provided you remember what you've learned about building big software: don't write it
all in one go. Instead, start with a tiny language and grow it very slowly, testing at each step.

What to submit for your joint work with your partner

For your joint work with your partner, run submit105-typesys-pair from a directory that contains the following files:
timpcore.sml, tuscheme.sml, and type-tests.scm. In addition to your code, please provide a short README file
which describes, at a high level, the design and implementation of your solutions.

What to submit for your individual work

Provide another README file containing the following information:

Your name1.
The names of any collaborators2.
The number of hours you spent on the assignment3.

When you are ready, run submit105-typesys-solo to submit your work, which should include README,
lists.pdf and 11.scm. All files are mandatory.

How your work will be evaluated

Acute observers will have noticed that when it comes to writing detailed criteria for evaluation, I am falling behind. I am now
very behind. But watch this space.

COMP 105 Homework: Type Systems

A few words about difficulty and time 5

 For COMP 105, Tufts University, Spring 2013 only --- do not redistribute --

270 CHAPTER 6. TYPE SYSTEMS FOR IMPCORE AND µSCHEME

We have the same new handlers as in Typed Impcore.

270a 〈more read-eval-print handlers 270a〉≡ (269b 220b)

| TypeError msg => continue ("type error: " ^ msg)

| BugInTypeChecking msg => continue ("bug in type checking: " ^ msg)

Initializing the interpreter

To put everything together into a working interpreter, we need an initial kind environment
as well as a type environment and a value environment.

270b 〈initialization for Typed µScheme 270b〉≡ (271a) 270c ⊲

kinds : kind env

types : tyex env

values : value ref env

envs : env_bundle

val initialEnvs =

let fun addPrim ((name, prim, funty), (types, values)) =

(bind (name, funty, types)

, bind (name, ref (PRIMITIVE prim), values)

)

val (types, values) = foldl addPrim (emptyEnv, emptyEnv)

(〈primitive functions for Typed µScheme :: 676b〉 nil)

fun addVal ((name, v, ty), (types, values)) =

(bind (name, ty, types)

, bind (name, ref v, values)

)

val (types, values) = foldl addVal (types, values)

(〈primitives that aren’t functions, for Typed µScheme :: (automatically generated)〉 nil)

fun addKind ((name, kind), kinds) = bind (name, kind, kinds)

val kinds = foldl addKind emptyEnv

(〈primitive type constructors for Typed µScheme :: 254b〉 nil)

val envs = (kinds, types, values)

val basis = 〈ML representation of initial basis (automatically generated)〉
val reader =

defreader (false, stringsreader ("initial basis", basis), tuschemeSyntax)

in readCheckEvalPrint (reader, fn _ => (), fn _ => ()) envs

end

The code for the primitives appears in Appendix G. It is similar to the code in Chapter 5,
except that it supplies a type, not just a value, for each primitive.

The function runInterpreter takes one argument, which tells it whether to prompt.

270c 〈initialization for Typed µScheme 270b〉+≡ (271a) ⊳ 270b

fun runInterpreter noisy =

let fun writeln s = app print [s, "\n"]

fun errorln s = TextIO.output (TextIO.stdErr, s ^ "\n")

val reader =

defreader (noisy, filereader ("standard input", TextIO.stdIn), tuschemeSyntax)

in ignore (readCheckEvalPrint (reader, writeln, errorln) initialEnvs)

end

bind 212
BugInType-

Checking
269a

continue 269b
defreader 658b
emptyEnv 212
filereader 657a
PRIMITIVE 264a
readCheckEval-

Print
269b

stringsreader

657a
tuschemeSyntax

673b
TypeError 271a

 For COMP 105, Tufts University, Spring 2013 only --- do not redistribute --

6.10. EXERCISES 275

6.10.3 Learning about polymorphic type systems

13. Write a type checker for Typed µScheme. That is, implement elabdef in code
chunk 268a. Although you could write this checker by cloning and modifying the
type checker for Typed Impcore, you may have better luck building a checker from
scratch by following the type rules for Typed µScheme.

When you type-check val-rec(x, τ, e), be sure to check that x is not evaluated in e,
as described on page 267.

When you type-check literals, use the rules on page 265. Although these rules are
incomplete, they should suffice for anything the parser can produce. If a literal
PRIMITIVE or CLOSURE reaches your type checker, the impossible has happened, and
your code should raise an appropriate exception.

14. Suppose we get sick and tired of writing @ signs everywhere, so we decide to extend
Typed µScheme by making pair, fst, and snd abstract syntax instead of functions.

(a) What is the type of the following function?

(type-lambda (’a) (type-lambda (’b)

(lambda (((pair a b) p)) (pair (snd p) (fst p)))))

(b) Using the type rules from the chapter, give a derivation tree proving the correct-
ness of your answer to part 14a.

15. A great advantage of a polymorphic type system is that the language can be extended
without touching the abstract syntax, the values, the type checker, or the evaluator.
Without changing any of these parts of Typed µScheme, extend Typed µScheme with
a queue type constructor and the polymorphic values empty-queue, empty?, put,
get-first, and get-rest. (A more typical functional queue provides a single get

operation which returns a pair containing both the first element in the queue and any
remaining elements. If instead you write the two functions get-first and get-rest,
you won’t have to fool with pair types.)

(a) What is the kind of the type constructor queue? Add it to the initial ∆ for
Typed µScheme.

(b) What are the types of empty-queue, empty?, put, get-first, and get-rest?

(c) Add them to the initial Γ and ρ of Typed µScheme. You will need to write
implementations in ML.

16. Without changing the abstract syntax, values, type checker, or evaluator of
Typed µScheme, extend Typed µScheme with the pair type constructor and the poly-
morphic functions pair, fst, and snd.

(a) What is the kind of the type constructor pair? Add it to the initial ∆ for
Typed µScheme.

(b) What are the types of pair, fst, and snd?

(c) Add them to the initial Γ and ρ of Typed µScheme. As you add them to ρ, you
can use the same implementations that we use for cons, car, and cdr.

