Meanings of syntax

Norman Ramsey
Geoffrey Mainland

COMP 105—Programming Languages
Tufts University
January 23, 2013

Meanings, part I: Names

Environment associates each variable with one value Written $\rho=\left\{x_{1} \mapsto n_{1}, \ldots x_{k} \mapsto n_{k}\right\}$, associates variable x_{i} with value n_{i}. Environment is finite map, aka partial function

$$
\begin{array}{ll}
x \in \operatorname{dom} \rho & x \text { is defined in environment } \rho \\
\rho(x) & \text { the value of } x \text { in environment } \rho
\end{array}
$$

Environments in C, abstractly

An abstract type (like Table_T, but monomorphic):
typedef struct Valenv *Valenv;
Valenv mkValenv(Namelist vars, Valuelist vals); int isvalbound(Name name, Valenv env);
Value fetchval(Name name, Valenv env); void bindval(Name name, Value val, Valenv env);

Implementing environments

Uses pair of lists.
Example: after

Environment costs can drive language design (e.g., Exercise 20).

Concrete syntax for Impcore

Definitions and expressions, as strings

```
def ::= (val x exp)
    | exp
    | (define f (formals) e)
    | (use filename)
exp ::= integer-literal
    | variable-name
    | (set x exp)
    | (if exp1 exp2 exp3)
    | (while exp1 exp2)
    | (begin exp1 ... expn)
    | (op exp1 ... expn)
op ::= function-name | primitive-name
```


Abstract syntax for Impcore

Definitions and expressions as data structures

```
Exp = LITERAL (Value)
    | VAR (Name)
    | SET (Name name, Exp exp)
    | IFX (Exp cond, Exp true, Exp false)
    | WHILEX (Exp cond, Exp exp)
    | BEGIN (Explist)
    | APPLY (Name name, Explist actuals)
```

One kind of "application" for both user-defined and primitive functions.

Abstract syntax in C

```
typedef struct Exp *Exp;
typedef enum {
    LITERAL, VAR, SET, IFX, WHILEX, BEGIN, APPLY
} Expalt; /* which alternative is it? */
struct Exp { // only two fields: 'alt' and 'u'!
    Expalt alt;
    union {
        Value literal;
            Name var;
            struct { Name name; Exp exp; } set;
            struct { Exp cond; Exp true; Exp false; } ifx;
            struct { Exp cond; Exp exp; } whilex;
            Explist begin;
            struct { Name name; Explist actuals; } apply;
    } u;
};
```


Analysis and examples

Example AST for
(f x (* y 3))
(Example uses Explist)
Example Ast for
(define abs (x) (if (< x 0) (- 0 x) x))
(Example uses Namelist)

Syntax and environments combine to produce meaning

Trick question:
What's the value of (* y 3)?
OK, what's its meaning?

Meanings, part II: expressions

Expression evaluation

- Expressions are evaluated in an environment to produce values.
- An environment consists of formal, global, and function environments.

Heart of the interpreter

- structural recursion on Exps
- environment provides meanings of names

How do we explain evaluation?

Answer three questions
(1) What are the expressions?
(2) What are the values?
(3) What are the rules for turning expressions into values?

Combined: operational semantics

Operational semantics

Specify executions of programs on an abstract machine Typical uses

- Very concise and precise language definition
- Direct guide to implementor
- Prove things like "environments can be kept on a stack"

Operational Semantics

Loosely speaking, an interpreter
More precisely, formal rules for interpretation

- Set of expressions, also called terms
- Set of values
- Full state of abstract machine
(e.g., $\langle e, \xi, \phi, \rho\rangle, \equiv$ expression +3 environments)
- Well specified initial state
- Transition rules for the abstract machine
- Good programs end in an accepting state
- Bad programs get stuck (三 "go wrong")

Operational semantics for Impcore

You've seen expressions: ASTs
All values are integers.
State $\langle e, \xi, \phi, \rho\rangle$ is
e Expression being evaluated
ξ Values of global variables
ϕ Definitions of functions
ρ Values of formal parameters
Rules form a proof system for judgment:

$$
\langle e, \xi, \phi, \rho\rangle \Downarrow\left\langle v, \xi^{\prime}, \phi, \rho^{\prime}\right\rangle
$$

(This is a big-step judgment form.)

Impcore semantics: Literals

$\overline{\langle\operatorname{LiteraL}(v),} \xi, \phi, \rho\rangle \Downarrow\langle v, \xi, \phi, \rho\rangle \operatorname{LiteraL}$

Impcore semantics: Variables

Parameters hide global variables.

$$
\begin{aligned}
& \frac{x \in \operatorname{dom} \rho}{\langle\operatorname{vaR}(x), \xi, \phi, \rho\rangle \Downarrow\langle\rho(x), \xi, \phi, \rho\rangle} \text { FormalVaR } \\
& \frac{x \notin \operatorname{dom} \rho \quad x \in \operatorname{dom} \xi}{\langle\operatorname{VAR}(x), \xi, \phi, \rho\rangle \Downarrow\langle\xi(x), \xi, \phi, \rho\rangle} \operatorname{GLOBALVAR}
\end{aligned}
$$

Impcore semantics: Assignment

$$
\frac{x \in \operatorname{dom} \rho \quad\langle e, \xi, \phi, \rho\rangle \Downarrow\left\langle v, \xi^{\prime}, \phi, \rho^{\prime}\right\rangle}{\langle\operatorname{SET}(x, e), \xi, \phi, \rho\rangle \Downarrow\left\langle v, \xi^{\prime}, \phi, \rho^{\prime}\{x \mapsto v\}\right\rangle} \text { FormalAssign }
$$

$\frac{x \notin \operatorname{dom} \rho \quad x \in \operatorname{dom} \xi \quad\langle e, \xi, \phi, \rho\rangle \Downarrow\left\langle v, \xi^{\prime}, \phi, \rho^{\prime}\right\rangle}{\langle\operatorname{SET}(x, e), \xi, \phi, \rho\rangle \Downarrow\left\langle v, \xi^{\prime}\{x \mapsto v\}, \phi, \rho^{\prime}\right\rangle}$ GlobalAssign

Rules of semantics play two roles

- Code: Each rule implemented in interpreter
- Math: Compose rules to make proofs

Interpreter succeeds if and only if a proof exists

Code: Cases to implement evaluation rules

VAR find binding for variable and use value
SET rebind variable in formals or globals
IFX (recursively) evaluate condition, then t or f
WHILEX (recursively) evaluate condition, body
BEGIN (recursively) evaluate each Exp of body
APPLY look up function in functions
built-in PRIMITIVE - do by cases
USERDEF function - use arg values to build formals env, recursively evaluate fun body

Code to implement evaluation

```
Value eval(Exp *e, \xi, \phi, \rho) {
    switch(e->alt) {
    case LITERAL: return e->u.literal;
    case VAR: ... /* look up in }\rho\mathrm{ and }\xi*
    case SET: ... /* modify }\rho\mathrm{ or }\xi*
    case IFX: ...
    case WHILEX:
    case BEGIN: ...
    case APPLY: if (!isfunbound(e->u.apply.name, \phi))
                error("call to undefined function %n",
                                    e->u.apply.name);
                                f = fetchfun(e->u.apply.name, \phi);
                                ... /* user fun or primitive */
    }
}
```


Impcore semantics - Variables

$$
\begin{aligned}
& \frac{x \in \operatorname{dom} \rho}{\langle\operatorname{vaR}(x), \xi, \phi, \rho\rangle \Downarrow\langle\rho(x), \xi, \phi, \rho\rangle} \text { FormalVAR } \\
& \frac{x \notin \operatorname{dom} \rho \quad x \in \operatorname{dom} \xi}{\langle\operatorname{vaR}(x), \xi, \phi, \rho\rangle \Downarrow\langle\xi(x), \xi, \phi, \rho\rangle} \operatorname{GLOBALVAR}
\end{aligned}
$$

Evaluation - Variables

- To evaluate x, find x in ξ or ρ, get value
- Conceptually, one environment, composed of formals+globals
- Composition implemented in eval, not in Env type: case VAR:
if (isvalbound(e->u.var, formals))
return fetchval(e->u.var, formals);
else if (isvalbound(e->u.var, globals))
return fetchval(e->u.var, globals);
else
error("unbound variable \%n", e->u.var);

Impcore semantics - Assignment

$$
\frac{x \in \operatorname{dom} \rho \quad\langle e, \xi, \phi, \rho\rangle \Downarrow\left\langle v, \xi^{\prime}, \phi, \rho^{\prime}\right\rangle}{\langle\operatorname{SET}(x, e), \xi, \phi, \rho\rangle \Downarrow\left\langle v, \xi^{\prime}, \phi, \rho^{\prime}\{x \mapsto v\}\right\rangle} \text { FormalAssign }
$$

$\frac{x \notin \operatorname{dom} \rho \quad x \in \operatorname{dom} \xi \quad\langle e, \xi, \phi, \rho\rangle \Downarrow\left\langle v, \xi^{\prime}, \phi, \rho^{\prime}\right\rangle}{\langle\operatorname{SET}(x, e), \xi, \phi, \rho\rangle \Downarrow\left\langle v, \xi^{\prime}\{x \mapsto v\}, \phi, \rho^{\prime}\right\rangle}$ GlobalAssign

Evaluation - Assignment

(set x e) means change ρ or ξ, depending on where x is bound.
case SET: \{
Value v = eval(e->u.set.exp,globals,functions,formals);
if (isvalbound(e->u.set.name, formals))
bindval(e->u.set.name, v, formals);
else if(isvalbound(e->u.set.name, globals)) bindval(e->u.set.name, v, globals);
else error("set: unbound variable \%n", e->u.set.name);
return v; \}

Impcore semantics - Application

ApplyUser

$$
\begin{gathered}
\phi(f)=\operatorname{USER}\left(\left\langle x_{1}, \ldots, x_{n}\right\rangle, e\right) \\
x_{1}, \ldots, x_{n} \text { all distinct } \\
\left\langle e_{1}, \xi_{0}, \phi, \rho_{0}\right\rangle \Downarrow\left\langle v_{1}, \xi_{1}, \phi, \rho_{1}\right\rangle \\
\left\langle e_{2}, \xi_{1}, \phi, \rho_{1}\right\rangle \Downarrow\left\langle v_{2}, \xi_{2}, \phi, \rho_{2}\right\rangle
\end{gathered}
$$

$$
\begin{gathered}
\left\langle e_{n}, \xi_{n-1}, \phi, \rho_{n-1}\right\rangle \Downarrow\left\langle v_{n}, \xi_{n}, \phi, \rho_{n}\right\rangle \\
\frac{\left\langle e, \xi_{n}, \phi,\left\{x_{1} \mapsto v_{1}, \ldots, x_{n} \mapsto v_{n}\right\}\right\rangle \Downarrow\left\langle v, \xi^{\prime}, \phi, \rho^{\prime}\right\rangle}{\left\langle\operatorname{APPLY}\left(f, e_{1}, \ldots, e_{n}\right), \xi_{0}, \phi, \rho_{0}\right\rangle \Downarrow\left\langle v, \xi^{\prime}, \phi, \rho_{n}\right\rangle}
\end{gathered}
$$

Evaluation - Application

(1) Find function in old environment
f = fetchfun(e->u.apply.name, functions);
(2) Evaluate actuals to get list of values (also in old ρ) vl = evallist(e->u.apply.actuals, globals, functions, formals);
N.B. actuals evaluated in the current environment
(3) Make new env, binding formals to actuals new_formals = mkValenv(f.u.userdef.formals, vl);
(3) Evaluate body in new environment return eval(f.u.userdef.body, globals, functions, new_formals);

Application - binding parameters

Actuals evaluated in the current environment Result is Valuelist - "half of an environment" (reason why pair of lists, not list of pairs)

Formals are bound to actuals in a new environment mkValenv builds an environment from two lists

Return to math

Use rules to create syntactic proofs
Valid proof is a derivation \mathcal{D}
Compositionality again:

- Rule with no premises above the line?

A derivation by itself

- Rule with premises?

Build derivations from smaller derivations

Build derivation from conclusion up, left to right

In Impcore, (+ 2 2) evaluates to 4 in an environment where $\phi(+)=\operatorname{PRIMITIVE}(+)$.

To construct the derivation:
(1) Start with 〈APPLY(+, Literal(2), imiteral(2)), $\xi, \phi, \rho\rangle$ on left side of bottom
(2) Find applicable rule Apply Add and work up
© Construct derivations for Literal(2) and Literal(2) recursively (Notice that ξ and ρ don't change.)
(1) Finish with $\langle 4, \xi, \phi, \rho\rangle$ on right side of bottom

Build derivation from conclusion up, left to right

In Impcore, (+ 2 2) evaluates to 4 in an environment where $\phi(+)=\operatorname{PRIMITIVE}(+)$.

To construct the derivation:
(1) Start with $\langle\operatorname{Apply}(+, \operatorname{LiteraL}(2), \operatorname{Literal}(2)), \xi, \phi, \rho\rangle$ on left side of bottom
(2) Find applicable rule Apply ADD and work up
(3) Construct derivations for Literal(2) and Literal(2) recursively (Notice that ξ and ρ don't change.)
(1) Finish with $\langle 4, \xi, \phi, \rho\rangle$ on right side of bottom

Build derivation from conclusion up, left to right

In Impcore, (+ 2 2) evaluates to 4 in an environment where $\phi(+)=\operatorname{PRIMITIVE}(+)$.

To construct the derivation:
(1) Start with $\langle\operatorname{ApPly}(+, \operatorname{Literal}(2), \operatorname{Literal}(2)), \xi, \phi, \rho\rangle$ on left side of bottom
(2) Find applicable rule ApplyAdd and work up
\square
(1) Finish with $\langle 4, \xi, \phi, \rho\rangle$ on right side of bottom

Build derivation from conclusion up, left to right

In Impcore, (+ 2 2) evaluates to 4 in an environment where $\phi(+)=$ PRIMITIVE $(+)$.

To construct the derivation:
(1) Start with $\langle\operatorname{Apply}(+, \operatorname{literal}(2), \operatorname{literal}(2)), \xi, \phi, \rho\rangle$ on left side of bottom
(2) Find applicable rule ApplyAdD and work up
(3) Construct derivations for Literal(2) and Literal(2) recursively (Notice that ξ and ρ don't change.)

Build derivation from conclusion up, left to right

In Impcore, (+ 2 2) evaluates to 4 in an environment where $\phi(+)=$ PRIMITIVE $(+)$.

To construct the derivation:
(1) Start with $\langle\operatorname{Apply}(+, \operatorname{literal}(2), \operatorname{Literal}(2)), \xi, \phi, \rho\rangle$ on left side of bottom
(2) Find applicable rule ApplyAdD and work up
(3) Construct derivations for Literal(2) and Literal(2) recursively (Notice that ξ and ρ don't change.)
(9) Finish with $\langle 4, \xi, \phi, \rho\rangle$ on right side of bottom

Build derivation from conclusion up, left to right

In Impcore, (+ 2 2) evaluates to 4 in an environment where $\phi(+)=\operatorname{PRIMITIVE}(+)$.

To construct the derivation:
(1) Start with $\langle\operatorname{ApPly}(+, \operatorname{Literal}(2)$, Literal(2)) $, \xi, \phi, \rho\rangle$ on left side of bottom
(2) Find applicable rule ApplyAdD and work up
(3) Construct derivations for Literal(2) and Literal(2) recursively (Notice that ξ and ρ don't change.)
(9) Finish with $\langle 4, \xi, \phi, \rho\rangle$ on right side of bottom

A syntactic proof (derivation) is a data structure

Things to notice about Impcore

Lots of environments:
global variables
functions
parameters
local variables?
More environments $=$ more name spaces
\Rightarrow more complexity
Typical of many programming languages.

Questions to remember

Abstract syntax: what are the terms?
Values: what do terms evaluate to?
Environments: what can names stand for?
Evaluation rules: how to evaluate terms?
Initial basis (primitives+): what's built in?

