
Meanings of syntax

Norman Ramsey
Geoffrey Mainland

COMP 105—Programming Languages
Tufts University

January 23, 2013

N Ramsey & G Mainland (COMP 105) Meanings of syntax January 23, 2013 1 / 31



Meanings, part I: Names

Environment associates each variable with one value
Written ρ = {x1 7→ n1, . . . xk 7→ nk}, associates variable xi with value ni .
Environment is finite map, aka partial function

x ∈ dom ρ x is defined in environment ρ
ρ(x) the value of x in environment ρ

N Ramsey & G Mainland (COMP 105) Meanings of syntax January 23, 2013 2 / 31



Environments in C, abstractly

An abstract type (like Table_T, but monomorphic):

typedef struct Valenv *Valenv;

Valenv mkValenv(Namelist vars, Valuelist vals);

int isvalbound(Name name, Valenv env);

Value fetchval(Name name, Valenv env);

void bindval(Name name, Value val, Valenv env);

N Ramsey & G Mainland (COMP 105) Meanings of syntax January 23, 2013 3 / 31



Implementing environments

Uses pair of lists.
Example: after

(val x 1)

(val y 2)

(val z 3)

global environment:

globals

vars

vals 3

 

z

 

2

 
1

 

y

 
x

 

Environment costs can drive language design (e.g., Exercise 20).

N Ramsey & G Mainland (COMP 105) Meanings of syntax January 23, 2013 4 / 31



Concrete syntax for Impcore

Definitions and expressions, as strings

def ::= (val x exp)

| exp

| (define f (formals) e)

| (use filename)

exp ::= integer-literal

| variable-name

| (set x exp)

| (if exp1 exp2 exp3)

| (while exp1 exp2)

| (begin exp1 ... expn)

| (op exp1 ... expn)

op ::= function-name | primitive-name

N Ramsey & G Mainland (COMP 105) Meanings of syntax January 23, 2013 5 / 31



Abstract syntax for Impcore

Definitions and expressions as data structures

Exp = LITERAL (Value)

| VAR (Name)

| SET (Name name, Exp exp)

| IFX (Exp cond, Exp true, Exp false)

| WHILEX (Exp cond, Exp exp)

| BEGIN (Explist)

| APPLY (Name name, Explist actuals)

One kind of ”application” for both user-defined and primitive functions.

N Ramsey & G Mainland (COMP 105) Meanings of syntax January 23, 2013 6 / 31



Abstract syntax in C

typedef struct Exp *Exp;

typedef enum {

LITERAL, VAR, SET, IFX, WHILEX, BEGIN, APPLY

} Expalt; /* which alternative is it? */

struct Exp { // only two fields: ’alt’ and ’u’!

Expalt alt;

union {

Value literal;

Name var;

struct { Name name; Exp exp; } set;

struct { Exp cond; Exp true; Exp false; } ifx;

struct { Exp cond; Exp exp; } whilex;

Explist begin;

struct { Name name; Explist actuals; } apply;

} u;

};

N Ramsey & G Mainland (COMP 105) Meanings of syntax January 23, 2013 7 / 31



Analysis and examples

Example AST for

(f x (* y 3))

(Example uses Explist)

Example Ast for

(define abs (x) (if (< x 0) (- 0 x) x))

(Example uses Namelist)

N Ramsey & G Mainland (COMP 105) Meanings of syntax January 23, 2013 8 / 31



Syntax and environments combine to produce meaning

Trick question:

What’s the value of (* y 3)?

OK, what’s its meaning?

N Ramsey & G Mainland (COMP 105) Meanings of syntax January 23, 2013 9 / 31



Meanings, part II: expressions

Expression evaluation

Expressions are evaluated in an environment to produce values.

An environment consists of formal, global, and function environments.

Heart of the interpreter

structural recursion on Exps

environment provides meanings of names

N Ramsey & G Mainland (COMP 105) Meanings of syntax January 23, 2013 10 / 31



How do we explain evaluation?

Answer three questions

1 What are the expressions?

2 What are the values?

3 What are the rules for turning expressions into values?

Combined: operational semantics

N Ramsey & G Mainland (COMP 105) Meanings of syntax January 23, 2013 11 / 31



Operational semantics

Specify executions of programs on an abstract machine
Typical uses

Very concise and precise language definition

Direct guide to implementor

Prove things like “environments can be kept on a stack”

N Ramsey & G Mainland (COMP 105) Meanings of syntax January 23, 2013 12 / 31



Operational Semantics

Loosely speaking, an interpreter
More precisely, formal rules for interpretation

Set of expressions, also called terms

Set of values

Full state of abstract machine
(e.g., 〈e, ξ, φ, ρ〉, ≡ expression + 3 environments)

Well specified initial state

Transition rules for the abstract machine
◮ Good programs end in an accepting state
◮ Bad programs get stuck (≡ “go wrong”)

N Ramsey & G Mainland (COMP 105) Meanings of syntax January 23, 2013 13 / 31



Operational semantics for Impcore

You’ve seen expressions: ASTs
All values are integers.
State 〈e, ξ, φ, ρ〉 is
e Expression being evaluated
ξ Values of global variables
φ Definitions of functions
ρ Values of formal parameters

Rules form a proof system for judgment:

〈e, ξ, φ, ρ〉 ⇓ 〈v , ξ′, φ, ρ′〉

(This is a big-step judgment form.)

N Ramsey & G Mainland (COMP 105) Meanings of syntax January 23, 2013 14 / 31



Impcore semantics: Literals

〈literal(v), ξ, φ, ρ〉 ⇓ 〈v , ξ, φ, ρ〉
Literal

N Ramsey & G Mainland (COMP 105) Meanings of syntax January 23, 2013 15 / 31



Impcore semantics: Variables

Parameters hide global variables.

x ∈ dom ρ

〈var(x), ξ, φ, ρ〉 ⇓ 〈ρ(x), ξ, φ, ρ〉
FormalVar

x /∈ dom ρ x ∈ dom ξ

〈var(x), ξ, φ, ρ〉 ⇓ 〈ξ(x), ξ, φ, ρ〉
GlobalVar

N Ramsey & G Mainland (COMP 105) Meanings of syntax January 23, 2013 16 / 31



Impcore semantics: Assignment

x ∈ dom ρ 〈e, ξ, φ, ρ〉 ⇓ 〈v , ξ′, φ, ρ′〉

〈set(x , e), ξ, φ, ρ〉 ⇓ 〈v , ξ′, φ, ρ′{x 7→ v}〉
FormalAssign

x /∈ dom ρ x ∈ dom ξ 〈e, ξ, φ, ρ〉 ⇓ 〈v , ξ′, φ, ρ′〉

〈set(x , e), ξ, φ, ρ〉 ⇓ 〈v , ξ′{x 7→ v}, φ, ρ′〉
GlobalAssign

N Ramsey & G Mainland (COMP 105) Meanings of syntax January 23, 2013 17 / 31



Rules of semantics play two roles

Code: Each rule implemented in interpreter

Math: Compose rules to make proofs

Interpreter succeeds if and only if a proof exists

N Ramsey & G Mainland (COMP 105) Meanings of syntax January 23, 2013 18 / 31



Code: Cases to implement evaluation rules

VAR find binding for variable and use value
SET rebind variable in formals or globals
IFX (recursively) evaluate condition, then t or f
WHILEX (recursively) evaluate condition, body
BEGIN (recursively) evaluate each Exp of body
APPLY look up function in functions

built-in PRIMITIVE — do by cases
USERDEF function — use arg values to build formals env,
recursively evaluate fun body

N Ramsey & G Mainland (COMP 105) Meanings of syntax January 23, 2013 19 / 31



Code to implement evaluation

Value eval(Exp *e, ξ, φ, ρ) {

switch(e->alt) {

case LITERAL: return e->u.literal;

case VAR: ... /* look up in ρ and ξ */

case SET: ... /* modify ρ or ξ */

case IFX: ...

case WHILEX: ...

case BEGIN: ...

case APPLY: if (!isfunbound(e->u.apply.name, φ))
error("call to undefined function %n",

e->u.apply.name);

f = fetchfun(e->u.apply.name, φ);
... /* user fun or primitive */

}

}

N Ramsey & G Mainland (COMP 105) Meanings of syntax January 23, 2013 20 / 31



Impcore semantics – Variables

x ∈ dom ρ

〈var(x), ξ, φ, ρ〉 ⇓ 〈ρ(x), ξ, φ, ρ〉
FormalVar

x /∈ dom ρ x ∈ dom ξ

〈var(x), ξ, φ, ρ〉 ⇓ 〈ξ(x), ξ, φ, ρ〉
GlobalVar

N Ramsey & G Mainland (COMP 105) Meanings of syntax January 23, 2013 21 / 31



Evaluation — Variables

To evaluate x , find x in ξ or ρ, get value

Conceptually, one environment, composed of formals+globals

Composition implemented in eval, not in Env type:

case VAR:

if (isvalbound(e->u.var, formals))

return fetchval(e->u.var, formals);

else if (isvalbound(e->u.var, globals))

return fetchval(e->u.var, globals);

else

error("unbound variable %n", e->u.var);

N Ramsey & G Mainland (COMP 105) Meanings of syntax January 23, 2013 22 / 31



Impcore semantics – Assignment

x ∈ dom ρ 〈e, ξ, φ, ρ〉 ⇓ 〈v , ξ′, φ, ρ′〉

〈set(x , e), ξ, φ, ρ〉 ⇓ 〈v , ξ′, φ, ρ′{x 7→ v}〉
FormalAssign

x /∈ dom ρ x ∈ dom ξ 〈e, ξ, φ, ρ〉 ⇓ 〈v , ξ′, φ, ρ′〉

〈set(x , e), ξ, φ, ρ〉 ⇓ 〈v , ξ′{x 7→ v}, φ, ρ′〉
GlobalAssign

N Ramsey & G Mainland (COMP 105) Meanings of syntax January 23, 2013 23 / 31



Evaluation — Assignment

(set x e) means change ρ or ξ, depending on where x is bound.

case SET: {

Value v = eval(e->u.set.exp,globals,functions,formals);

if(isvalbound(e->u.set.name, formals))

bindval(e->u.set.name, v, formals);

else if(isvalbound(e->u.set.name, globals))

bindval(e->u.set.name, v, globals);

else

error("set: unbound variable %n", e->u.set.name);

return v; }

N Ramsey & G Mainland (COMP 105) Meanings of syntax January 23, 2013 24 / 31



Impcore semantics – Application

ApplyUser

φ(f ) = user(〈x1, . . . , xn〉, e)
x1, . . . , xn all distinct

〈e1, ξ0, φ, ρ0〉 ⇓ 〈v1, ξ1, φ, ρ1〉
〈e2, ξ1, φ, ρ1〉 ⇓ 〈v2, ξ2, φ, ρ2〉

...
〈en, ξn−1, φ, ρn−1〉 ⇓ 〈vn, ξn, φ, ρn〉

〈e, ξn, φ, {x1 7→ v1, . . . , xn 7→ vn}〉 ⇓ 〈v , ξ′, φ, ρ′〉

〈apply(f , e1, . . . , en), ξ0, φ, ρ0〉 ⇓ 〈v , ξ′, φ, ρn〉

N Ramsey & G Mainland (COMP 105) Meanings of syntax January 23, 2013 25 / 31



Evaluation — Application

1 Find function in old environment

f = fetchfun(e->u.apply.name, functions);

2 Evaluate actuals to get list of values (also in old ρ)

vl = evallist(e->u.apply.actuals, globals, functions,

formals);

N.B. actuals evaluated in the current environment

3 Make new env, binding formals to actuals

new_formals = mkValenv(f.u.userdef.formals, vl);

4 Evaluate body in new environment

return eval(f.u.userdef.body, globals, functions,

new_formals);

N Ramsey & G Mainland (COMP 105) Meanings of syntax January 23, 2013 26 / 31



Application — binding parameters

Actuals evaluated in the current environment
Result is Valuelist — “half of an environment”

(reason why pair of lists, not list of pairs)

Formals are bound to actuals in a new environment

mkValenv builds an environment from two lists

N Ramsey & G Mainland (COMP 105) Meanings of syntax January 23, 2013 27 / 31



Return to math

Use rules to create syntactic proofs
Valid proof is a derivation D
Compositionality again:

Rule with no premises above the line?
A derivation by itself

Rule with premises?
Build derivations from smaller derivations

N Ramsey & G Mainland (COMP 105) Meanings of syntax January 23, 2013 28 / 31



Build derivation from conclusion up, left to right

In Impcore, (+ 2 2) evaluates to 4 in an environment where
φ(+) = primitive(+).

To construct the derivation:

1 Start with 〈apply(+, literal(2), literal(2)), ξ, φ, ρ〉 on left side
of bottom

2 Find applicable rule ApplyAdd and work up

3 Construct derivations for literal(2) and literal(2) recursively
(Notice that ξ and ρ don’t change.)

4 Finish with 〈4, ξ, φ, ρ〉 on right side of bottom

N Ramsey & G Mainland (COMP 105) Meanings of syntax January 23, 2013 29 / 31



Build derivation from conclusion up, left to right

In Impcore, (+ 2 2) evaluates to 4 in an environment where
φ(+) = primitive(+).

ApplyAdd

Literal
〈literal(2), ξ, φ, ρ〉 ⇓ 〈2, ξ, φ, ρ〉 〈literal(2), ξ, φ, ρ〉 ⇓ 〈2, ξ, φ, ρ〉

Literal

〈apply(+, literal(2), literal(2)), ξ, φ, ρ〉 ⇓ 〈4, ξ, φ, ρ〉

To construct the derivation:

1 Start with 〈apply(+, literal(2), literal(2)), ξ, φ, ρ〉 on left side
of bottom

2 Find applicable rule ApplyAdd and work up

3 Construct derivations for literal(2) and literal(2) recursively
(Notice that ξ and ρ don’t change.)

4 Finish with 〈4, ξ, φ, ρ〉 on right side of bottom

N Ramsey & G Mainland (COMP 105) Meanings of syntax January 23, 2013 29 / 31



Build derivation from conclusion up, left to right

In Impcore, (+ 2 2) evaluates to 4 in an environment where
φ(+) = primitive(+).

ApplyAdd

Literal
〈literal(2), ξ, φ, ρ〉 ⇓ 〈2, ξ, φ, ρ〉 〈literal(2), ξ, φ, ρ〉 ⇓ 〈2, ξ, φ, ρ〉

Literal

〈apply(+, literal(2), literal(2)), ξ, φ, ρ〉 ⇓ 〈4, ξ, φ, ρ〉

To construct the derivation:

1 Start with 〈apply(+, literal(2), literal(2)), ξ, φ, ρ〉 on left side
of bottom

2 Find applicable rule ApplyAdd and work up

3 Construct derivations for literal(2) and literal(2) recursively
(Notice that ξ and ρ don’t change.)

4 Finish with 〈4, ξ, φ, ρ〉 on right side of bottom

N Ramsey & G Mainland (COMP 105) Meanings of syntax January 23, 2013 29 / 31



Build derivation from conclusion up, left to right

In Impcore, (+ 2 2) evaluates to 4 in an environment where
φ(+) = primitive(+).

ApplyAdd

Literal
〈literal(2), ξ, φ, ρ〉 ⇓ 〈2, ξ, φ, ρ〉 〈literal(2), ξ, φ, ρ〉 ⇓ 〈2, ξ, φ, ρ〉

Literal

〈apply(+, literal(2), literal(2)), ξ, φ, ρ〉 ⇓ 〈4, ξ, φ, ρ〉

To construct the derivation:

1 Start with 〈apply(+, literal(2), literal(2)), ξ, φ, ρ〉 on left side
of bottom

2 Find applicable rule ApplyAdd and work up

3 Construct derivations for literal(2) and literal(2) recursively
(Notice that ξ and ρ don’t change.)

4 Finish with 〈4, ξ, φ, ρ〉 on right side of bottom

N Ramsey & G Mainland (COMP 105) Meanings of syntax January 23, 2013 29 / 31



Build derivation from conclusion up, left to right

In Impcore, (+ 2 2) evaluates to 4 in an environment where
φ(+) = primitive(+).

ApplyAdd

Literal
〈literal(2), ξ, φ, ρ〉 ⇓ 〈2, ξ, φ, ρ〉 〈literal(2), ξ, φ, ρ〉 ⇓ 〈2, ξ, φ, ρ〉

Literal

〈apply(+, literal(2), literal(2)), ξ, φ, ρ〉 ⇓ 〈4, ξ, φ, ρ〉

To construct the derivation:

1 Start with 〈apply(+, literal(2), literal(2)), ξ, φ, ρ〉 on left side
of bottom

2 Find applicable rule ApplyAdd and work up

3 Construct derivations for literal(2) and literal(2) recursively
(Notice that ξ and ρ don’t change.)

4 Finish with 〈4, ξ, φ, ρ〉 on right side of bottom

N Ramsey & G Mainland (COMP 105) Meanings of syntax January 23, 2013 29 / 31



Build derivation from conclusion up, left to right

In Impcore, (+ 2 2) evaluates to 4 in an environment where
φ(+) = primitive(+).

ApplyAdd

Literal
〈literal(2), ξ, φ, ρ〉 ⇓ 〈2, ξ, φ, ρ〉 〈literal(2), ξ, φ, ρ〉 ⇓ 〈2, ξ, φ, ρ〉

Literal

〈apply(+, literal(2), literal(2)), ξ, φ, ρ〉 ⇓ 〈4, ξ, φ, ρ〉

To construct the derivation:

1 Start with 〈apply(+, literal(2), literal(2)), ξ, φ, ρ〉 on left side
of bottom

2 Find applicable rule ApplyAdd and work up

3 Construct derivations for literal(2) and literal(2) recursively
(Notice that ξ and ρ don’t change.)

4 Finish with 〈4, ξ, φ, ρ〉 on right side of bottom

A syntactic proof (derivation) is a data structure

N Ramsey & G Mainland (COMP 105) Meanings of syntax January 23, 2013 29 / 31



Things to notice about Impcore

Lots of environments:

global variables
functions
parameters
local variables?

More environments = more name spaces
⇒ more complexity
Typical of many programming languages.

N Ramsey & G Mainland (COMP 105) Meanings of syntax January 23, 2013 30 / 31



Questions to remember

Abstract syntax: what are the terms?
Values: what do terms evaluate to?
Environments: what can names stand for?
Evaluation rules: how to evaluate terms?
Initial basis (primitives+): what’s built in?

N Ramsey & G Mainland (COMP 105) Meanings of syntax January 23, 2013 31 / 31


