
Implementing Bignums in µSmalltalk

comp105-staff@cs.tufts.edu

Spring 2016

1 Approach

The pair portion of the µSmalltalk assignment is to implement arbitrary-
precision arithmetic (Bignums). In completing this part of the assignment,
particularly in writing your Natural class, you are faced with a great number
of methods to implement. To help you organize this task, we suggest which
methods to implement in what order, and we sketch how implementations
of some methods may depend on other methods.

The diagram below shows what the class hierarchy will look like once
you finish implementing bignums. The unboxed classes are from the initial
basis of µSmalltalk. The boxed classes are new classes you will write for this
assignment. Each class that is followed by a number is from the Exercise
with that number.

Object

Magnitude

Number

Fraction Float Integer

SmallInteger (original)

SmallInteger (redefined) (33)

LargeInteger (32)

LargePositiveInteger (32) LargeNegativeInteger (32)

Natural (31)

2 Class Natural

We suggest you implement class Natural in three stages, testing extensively
at the end of each stage.

1



Stage I — Basics

1. Methods digit:, digit:put:, and makeEmpty: manipulate the array
of digits that represent the number. Implement these methods first.

Remember that digit: should work with any nonnegative argument,
no matter how large.

Arrays in µSmalltalk are 1-based not 0-based: the first element is
at position 1, not position 0. The mismatch between µSmalltalk’s 1-
based arrays and the 0-based abstraction you are using for polynomials
is tedious. You should use the digit: and digit:put: methods to
hide the 1-based nature of the underlying representation.

If you use the digit: method carefully, you’ll have to worry about
sizes only when you allocate new results.

2. Method doDigits: has to do with indexes, not with digits themselves.
This way it can be used for mutation, something you should test.

3. Once you have access to the digits, you can define trim, which removes
unneeded leading zeroes.

4. Once trim is written, you can write digits:, to initialize a newly
allocated bignum.

5. Now you can define the class method new:, which is your first public
method—it creates a new bignum.

Stage II — Simple functions

6. Method decimal can be very simple if you use base b = 10. If you use
a larger base, there will be some complexity here.

7. Once you have decimal, print is easy. Now you can debug!

8. Method isZero should be straightforward at this point.

9. With access to the digits, you can write =. You will find iteration
over digits (doDigits:) to be helpful, and you will need to be careful
when comparing bignums of different degree. (There is a very simple,
elegant solution to the degree problem; try to find it!)

2



Stage III — Arithmetic

10. The heart of your arithmetic implementation will be the two meth-
ods set:plus: and set:minus:. They depend on the digit methods
above. A loop driven by doDigits: may be helpful.

11. You can now implement addition with method +. In addition to
set:plus:, you may find it useful to use trim and makeEmpty:.

12. Subtraction is more complicated because it can fail: the difference of
two natural numbers is not always a natural number. But building
subtract:withDifference:ifNegative: on top of set:minus: is
otherwise analogous to your construction of +.

13. With natural-number subtraction in hand, you can now implement the
standard methods - and <. You should be able to get everything you
need from subtract:withDifference:ifNegative:, without having
to use lower-level methods of class Natural.

14. Multiplication is the most complicated of all. You will want to allocate
a new number with makeEmpty: and initialize it to zero. Then, as
suggested in the book, you’ll need a double sum to add in all the
partial products. A doubly nested doDigits: loop will help. To
manipulate the partial products, digit: and digit:put: will be
essential. Finally, use trim to control the growth of your bignums.

3 LargePositiveInteger and LargeNegativeInteger

Once you’ve gotten this far, LargePositiveInteger and LargeNegativeInteger
will be relatively straightforward. The list of methods and hints given in
the book should get you through. You will lean heavily on your Natural

methods, but only the public methods. These are the methods of class
Magnitude, together with the methods listed in the box on page 980.

You will also want to reuse the LargeInteger methods as much as you
can. The really interesting part of this problem is the technique of dou-
ble dispatch. This technique will require that you add such methods as
addLargePositiveIntegerTo:. You’ll then use these to rewrite the basic
arithmetic methods on integers.

3


