
Notes on the Lambda-CalculusCS 524 Winter 1995Prakash PanangadenSchool of Computer Science, McGill UniversitySeptember 20, 19951 The �-CalculusThe �-calculus is a formalism for studying ways in which functions can be formed, combinedand used for computation. Unlike set-theoretic accounts of functions, the �-calculus takes anintensional view of functions1 in that functions are \rules" for establishing a correspondencebetween an object, the argument to the function, and another object, the value or result. Theprocess of using the \rule" to obtain the correspondence is called function application. In the�-calculus the basic objects available are called �-terms. The notation for �-terms re
ectsthe viewpoint alluded to above. In the subsequent discussion lowercase letters, x; y; : : : willrepresent variables in the �-calculus while uppercase letters M;N; : : :will (usually) representmeta-variables which stand for generic �-terms. In the present discussion we shall try tounderstand �-terms through rules for building and manipulating them. Only much later willwe study a formal interpretation of the �-calculus.We begin by assuming that there is a (countable) set of symbols called variables.De�nition 1.1. The set of �-terms is de�ned inductively by the following clauses:1. All variables are �-terms2. If M is a �-term and x is a variable then so is �x:M3. If M and N are �-terms then so is MN4. If M is a �-term then so is (M).In a term of the form �x:M the x is the formal argument to the function and theM representsthe body of the function. Note that the functions de�ned in the �-calculus are all one-placefunctions. This is not really a restriction because functions which take several argumentscan be expressed in terms of functions of a single argument. This is done as follows: supposef is a function of two arguments x and y, then we may think of f as a function that takesa single argument and returns a function that takes a single argument. Thus, for example,1Extensionality can be treated within the �-calculus as an added axiom.1



suppose f is the function plus of ordinary arithmetic. Normally, we think of plus as takingtwo arguments. We could think of plus as a function which takes as argument an integern and returns a function, the latter function takes as argument an integer m and returnsn+m. This generalizes in the obvious way to functions of several arguments. The process ofviewing functions with several arguments as functions of a single argument is called currying.In the �-calculus all functions are written in curried form.Example 1.1. Here are some examples of simple �-terms.xy�x:x�x:xx�x:�y:xy�x:�y:�z:(xz)(yz)�x:yx(�x:xz)yA sequence of applications is assumed to associate to the left. Thus a term of the formMNPQ represents (((MN)P )Q). Often a sequence of �s is abbreviated with a single �.Thus, for example, the �-term �x:�y:�z:xyz is often written �xyz:xyz. In parsing compli-cated �-terms the following convention is used: If �x:M occurs within a larger expressionwe assume that M extends as far to the right as possible; i.e. until the �rst unmatched rightparenthesis or the end of the expression whichever occurs �rst.Example 1.2. The �-term �x:�y:yxxcontains �y:yxx as a sub-term whereas the �-term�x:(�y:yx)xcontains �y:yx as a sub-term but does not contain �y:yxx as a sub-term.To use the �-calculus as a computational formalism we need to describe what happenswhen a �-term is applied to an argument. Roughly speaking, when the �-term �x:M isapplied to an argument N the occurrences of x in M are replaced by N . To make thisstatement more precise we need to de�ne the concept of free and bound variables.De�nition 1.2. Free and bound variables are de�ned by the following rules:1. In x, x occurs free, no other variables occur at all2. If x occurs free in M then all these free occurrences of x are bound in �x:M , if y is avariable di�erent from x then all free occurrences of y in M remain free in �x:M3. Any variable which occurs free in M or N occurs free in MN .2



A term which has no free variables is called a closed term or combinator. Note that a variablemay occur both bound and free in a given �-term. For example, in �x:y(�y:xy) the �rstoccurrence of y is free while the second occurrence of y is bound.Bound variables are present to establish a correspondence between the argument to afunction and positions within the body of a �-term where the argument is to be substituted.The actual symbol used as a bound variable is irrelevant. This notion of bound variableclosely corresponds to the notion of bound variable in the predicate calculus or to parametersappearing in function declarations in programming languages like Pascal. Typically, freevariables only arise in sub-terms of some larger �-term. The following diagram illustratesthe concept of free and bound variables in a �-term.�x: �y: y freez }| {(�z:xyz)y| {z }y boundThe process of substitution of terms for variables is the key computational mechanism ofthe �-calculus. The notation is M [x 7! N ] and means \replace all free occurrences of x inM by N". The formal de�nition of substitution is:De�nition 1.3. Substitution is de�ned by the following clauses where the symbol � standsfor identity of �-terms.1. x[x 7! N ] � N2. y[x 7! N ] � y where x 6� y3. MM 0[x 7! N ] �M [x 7! N ]M 0[x 7! N ]4. (�x:M)[x 7! N ] � �x:M5. (�y:M)[x 7! N ] � �y:(M [x 7! N ]) where x 6� y and y does not appear free in N or xdoes not appear free in M6. (�y:M)[x 7! N ] � �z:(M [y 7! z])[x 7! N ] where x 6� y, z is a variable di�erent fromboth x and y not occurring in eitherM or N , x does occur free in M and y does occurfree in N .The reason that the last clause is so complicated is that we need to be careful, when substi-tuting a �-term for a variable, that a free variable does not become a bound variable. Thisphenomenon is called capture. Consider the �-term �y:x, this is the function that returns xwhen applied to any �-term. Now suppose we performed the substitution (�y:x)[x 7! w]. Ifw 6� y clause �ve above would apply and we would get �y:w as expected. If, however, w � yand clause six, above, were not included in the de�nition of substitution, we would get �y:yif we attempted to use clause �ve. Using clause six we get �z:y which is exactly what weshould expect.2The trick of renaming a bound variable to avoid the capture of free variables is su�cientlyuseful to deserve its own formal de�nition:2Some authors (Church, for example) leave the last case unde�ned.3



De�nition 1.4. A change of bound variables in a �-termM is the replacement of a subtermof the form �x:N with x not bound in N by a term of the form �v:N [x 7! v] where v is avariable that does not occur (either free or bound) in N . A �-term X is said to be congruentto another �-term Y if Y is the result of applying a series of changes of bound variables toX.Why should we demand that v does not occur either free or bound in N? Consider thefollowing example. Suppose that we have the �-term �y:�v:vy and we wish to rename thebound variable y to v. Note that v only occurs bound in the body of the �-term. If wecarried out the renaming of y to v we would get the �-term �v:�v:vv, now we can no longertell that one of the vs should be bound to the outer � and the other one should be boundto the inner �. For all practical purposes congruent terms are regarded as being the same.We shall often say \identical" when we should be saying \congruent" if the di�erence is notimportant. A change of bound variables is often called �-conversion or �-reduction.We are now ready to de�ne the all important concept of reduction. This formalizes theprocess of \computing with �-terms". The symbol) is used to represent logical implication.De�nition 1.5. Reduction is a binary relation, written !, between �-terms de�ned by thefollowing rules:� �y:M ! �v:(M [y 7! v]) where v does not occur free or bound in M� (�y:M)N ! M [y 7! N ] (all the caveats about avoiding capture are hidden in the de�ni-tion of substitution)� M !M� M ! N ) PM ! PN� M ! N )MP ! NP� M ! N ) �x:M ! �x:N3� M ! N and N ! P )M ! PThe rule � above is the rule with non-trivial computational content.Example 1.3. Reducing a �-term:(�x:�y:�z:x(yz))fg! (�y:�z:f(yz))g! �z:f(gz)3Note that capture can occur while using this rule, indeed it should occur if this rule is to make anynon-trivial statement. 4



The original �-term above performs function composition.In any computational system the basic expectation is that the computational processproceeds by \simplifying" a term and producing another term of \equal" value. In oursystem, we have de�ned the computational process, namely reduction, but we have notde�ned a notion of equality. The relation of identity or congruence will not serve since theyare not preserved by �-reduction. The relation of equality that we shall use is de�ned interms of the reduction relation.De�nition 1.6. Equality of �-terms, written =, is de�ned by replacing ! by = in thede�nition of reduction given above and adding the following rule:� M = N ) N = MEquality is often called convertibility. We shall say two �-terms are equal if we can prove thatthey are equal using the above rules. It is important to understand the di�erence betweenequality and reduction. If M reduces to N then M is equal to N and by the rule � N isequal to M . On the other hand N does not reduce to M . Reduction is thus one way whileequality is symmetric.Example 1.4. Consider the �-terms (�x:(�y:y)x)z and (�x:z)y. Neither one reduces to theother but they are equal since each of them reduces to z.How do we establish that two terms are not equal? We do not yet have the machineryto do this properly. However, we can temporarily adopt the following approach. First, notethat we would like our theory to have more than one function de�nable in it. Now if we aretrying to establish that two �-terms M and N are not equal we can try to show that byassumingM = N we can apply the rules for deducing equality and conclude that all �-termsare equal. To illustrate this approach, consider the �-terms �x:�y:x and �x:�y:y. We shallcall them T and F respectively. What happens if we assume T = F ? The following proofshows that any pair of �-terms, M;N can be proven equal.T = F assumptionTM = FM using �TMN = FMN using �TMN = M using �FMN = N using �M = N using � and � appropriately.Thus we could \prove" two terms unequal if we can show that assuming that they were equalled to the equation T = F .So far we have shown how the steps of a computation in the �-calculus proceed. Normallywe think of computation as proceeding until a \result" is obtained. What is the result of acomputation in the �-calculus? Put another way, how do we know when to stop the reductionprocess. This latter question has a straightforward answer, \stop when no more reduction ispossible". These considerations lead us to single out a special class of �-terms which serveas the results of computations in the �-calculus.5



De�nition 1.7. A term of the form (�x:M)N is called a redex and M [x 7! N ] is called itscontractum.De�nition 1.8. A term is said to be in normal form if it contains no redices. If M ! Nand N is in normal form then N is said to be a normal form of M and M is said to normalizeto N .Notice the de�nition of redex refers to the possibility of �-reduction only; clearly we couldperform �-reductions inde�nitely if we wished. The appearance of a normal form in asequence of reductions signals the end of our computation.The de�nition of normal form raises some interesting questions. Does every term havea normal form? Clearly not, consider (�x:xx)�x:xx. There is exactly one opportunity for�-reduction. If we carry out this reduction we get exactly the same term back and henceagain have an opportunity for �-reduction. Terms without normal forms are the �-calculusanalogues of non-terminating programs. If a �-term does have a normal form does any choiceof reductions lead to that normal form? Again the answer is \no" as the following exampleillustrates.Example 1.5. Let W stand for the �-term �x:xxx. It is easy to see thatWW ! WWW !WWWW : : :. Let I stand for the �-term �x:x, the identity function. Let F be the �-termintroduced in the previous example. Now consider F (WW )I. There are two opportuni-ties for �-reduction. We could do the leftmost reduction �rst getting I as the result im-mediately. We could choose to reduce the sub-term WW �rst, getting F (WWW )I, andthen reduce by applying F giving I again. Thus there are in�nitely many sequences ofreductions starting from F (WW )I and ending in I. There is also the (in�nite) sequenceF (WW )I ! F (WWW )I ! F (WWWW )I : : : which never reaches normal form.How do we know that we will �nd the normal form if there is one? This is a fairly subtlequestion and I will not try to justify the answer formally. If you always perform the leftmostreduction then you will �nd the normal form if one exists. Thus in the example above,the leftmost reduction possible involves applying F , whenever we did this we immediatelyreached the normal form. Intuitively, the reason this works is that a term which does havea normal form may have a sub-term which does not have a normal form. However, thesub-term which does not have a normal form may never be needed so we should apply the\outermost" function to see if a particular sub-term is actually needed before trying to reducepotentially non-terminating subterms. This particular reduction strategy is called normalorder reduction and is the �-calculus analogue of \call-by-need" evaluation.4 There is ofcourse no way of looking at a generic �-term and deciding whether a normal form does exist(why not?).2 Computing with �-CalculusSo far we have seen the �-calculus as a purely formal system. Two pressing questionsremain, how do we compute with it? and why would we want to? The answer to the second4If you have never heard of this before ignore this remark for now.6



question is simple; the �-calculus has very few constructs and it is thus very easy to provetheorems about it. Furthermore, the �-calculus, though simple, is rich enough to expressall the computable functions. This means that all programming languages that we may beinterested in can be expressed in terms of the �-calculus. Indeed, we shall do just that soon.The simplicity of the �-calculus is precisely what makes it awkward to work with asa programming language. The answer to the �rst question will therefore involve a fairlylengthy demonstration of how to encode ordinary computational constructs in the �-calculus.Recall that the �-calculus is a formalism where computation is expressed via the successiveapplication of the reduction rules. Thus expressing computations involves taking terms thatmimic familiar constructs and reducing them to normal form. The rest of this section isdevoted to examining a variety of special �-terms and seeing how they express familiarcomputational constructs.The pure �-calculus provides only one mechanism for making \programs" and \data"5interact, namely application. Quite frequently, however, we would like to have a part ofa program execute only if certain conditions are met, in short we would like to have aconditional construct. What do conditionals look like? First, we would like to have a notionof \boolean" expression which can evaluate to \true" or \false". Second we would like aconstruct that takes a boolean expression and two other expressions as arguments, evaluatesthe boolean expression and depending on whether the result is true or false evaluates eitherthe �rst or the second expression. The combinators6 T and F introduced previously performthis function very handily. Their de�nitions are �x:�y:x and �x:�y:y respectively. Nowconsider the �-term BMN where B is some �-term that reduces to either T or F . If Bevaluates to T then BMN reduces to M , if B evaluates to F then BMN reduces to N .Thus BMN can be viewed as encoding the construct \if B is true then reduce M otherwiseif B is false reduce N".What else would we like in a programming language? We would certainly like tohave some kind of \data structure". This is achieved by the combinator D de�ned by�y:�z:�x:xyz. This forms \pairs" when applied to two terms;DMN ! �x:xMN . For this toreally qualify as a data structure we need to have a means of recovering the original termsMand N from the pair. This is provided by the �-terms first � �w:wT and second � �w:wF .It is easy to see by applying the rule for �-reduction that first(DMN) !M and similarlyfor second.We now have the skeleton of a reasonable programming language but we would stilllike to operate on familiar data like the integers. To do this we must choose a sequenceof �-terms to represent the integers and we must represent familiar arithmetic operationson these �-terms. There are many choices possible. We shall use a representation dueto Church. Other systems for encoding the integers are due to Curry, Barendregt, Scottand Wadsworth. We shall use the following notational convention. Actual numbers willbe written n;m; : : : whereas the �-terms used to represent the numbers will written withan underline thus n;m; : : :. The basic idea is to represent n by a �-term which takes twoarguments and applies the �rst argument to the second argument n times. In symbols, n is5Note that both programs and data are represented by �-terms.6A combinator is a �-term with no free variables 7



represented by the �-term �f:�x: f(f(: : : f| {z }n times x) : : :). In particular, 0 is represented by �f:�x:x,1 is represented by �f:�x:fx and 2 is represented by the �-term �f:�x:(f(fx)). Note thatthe associativity is the opposite to what we would have if we left out the parentheses in thede�nitions. These �-terms are called the Church numerals or simply numerals.As an exercise in �-gymnastics let us argue that if n 6= m then n 6= m. Without loss ofgenerality we may assume that n < m. Now consider the �-termQ � DN0(DN1(: : :DNmM) : : :).This is a nested sequence of paired terms which we could write more picturesquely (but infor-mally!) as [N0; [N1; [: : : [Nm;M ] : : :]| {z }m+1 times. Now consider the �-term first(n second Q). The�-term n causes second to be applied n times to Q thus stripping o� the �rst n applicationsof the pairing construct. The outermost first then picks out the �rst member of the re-maining outermost pair, in other words Nn. Similarly we can show that first(m second Q)reduces to Nm. If we assume that n = m where n and m are di�erent it follows thatfirst(m second Q) = first(n second Q) (why?). But, since n and m are di�erent we caneasily construct Q so that Nn and Nm are any two terms we choose. Thus we have shown thatany two �-terms can be proven equal if we assume that any two distinct Church numeralsare equal.Now we are ready to do some basic arithmetic within the �-calculus. The very �rst thingwe would like to have is the successor function. To simplify the notation let us agree thatfnx shall mean f applied to x n times. Thus, for example, the Church numeral for n can bewritten as �f:�x:fnx. The successor function is just �y:�f:�x:yf(fx). This is easy to checkdirectly as the following little calculation shows.(�y:�f:�x:yf(fx))(�g:�u:gnu)! �f:�x:(�g:�u:gnu)f(fx)! �f:�x:(�u:fnu)(fx)! �f:�x:fn(fx)! �f:�x:fn+1xThe predecessor function can also be encoded but this is a rather complicated exercise.The other basic arithmetic functions can be encoded fairly easily once we recognise that theChurch numeral for n applied to a pair of arguments applies the �rst argument n times tothe second argument. The function for plus is the �-term �u:�v:�f:�x:uf(vfx). This canalso be checked directly. To simplify the notation further we shall write �xyz: : : : instead of�x:�y:�z: : : :. (�uvfx:uf(vfx))nm! �fx:nf(mfx) two steps! �fx:nf(fmx)! �fx:fn(fmx)! �fx:fn+mx this is n +mIt is now an easy exercise to see that multiplication of two Church numerals is de�nedby the �-term �uvfx:u(vf)x and that exponentiation is de�ned by �uvfx:uvfx.8



If we want to write more complicated \programs" involving the Church numerals we needto be able to test for whether a particular numeral represents zero or not. In other words weshould have a combinator that returns T if the argument to it is 0 and F if the argument to itis a numeral di�erent from zero. This is achieved by the following combinator �v:v(�u:F )T .To complete the discussion of numbers in the �-calculus we shall look at the predecessorfunction. This function takes a Church numeral as argument and returns the precedingChurch numeral if the original Church numeral is not 0 and returns 0 if the original Churchnumeral is 0. A �-term which does this for the Church numerals is�x:second(x(�y:D succ((first y)(second y)))(D(�z:0)0))Fixed Point CombinatorsWe need a way of expressing recursion within the �-calculus. Informally, we would expressrecursive de�nitions via equations of the form f = : : : f : : : In the �-calculus such an equationdoes not de�ne a term, the equation merely states a condition that the term must satisfy.How do we know that we will �nd any term satisfying the equation? Fortunately it is easyto �nd a term satisfying any recursive equation. Furthermore, such terms can be foundby simply applying a particular combinator to a term constructed from the given recursiveequation. Such combinators are called �xed point combinators.Let us look at the above equation scheme more closely. We are trying to \solve" anequation of the form f = M where M is a term containing free occurrences of f within it.This equation can be rewritten f = (�x:M [f 7! x])f or f = M 0f where M 0 = (�x:M [f 7!x]). Thus we are looking for a �xed point of M 0. A �xed point combinator does exactly this.De�nition 2.1. A �xed point combinator is a term R such that 8F;RF = F (RF ).Example 2.1. The most commonly used �xed point combinator is�f:(�x:f(xx))(�x:f(xx))often written just Y . The following calculation shows that Y is a �xed point combinator.Let A stand for �x:F (xx)Y F= (�f:(�x:f(xx))(�x:f(xx)))F! AA= (�x:F (xx))A using the def of A! F (AA)= F (Y F )It is important to note that Y F does not �-reduce to F (Y F ). We have merely provenequality of these two terms. A �xed point combinator that when applied to a �-term actually�-reduces to the �xed point of the �-term is �� where � = �xy:y(xxy).��F� (�xy:y(xxy))�F! F (��F )With the aid of a �xed point combinator it is easy to solve recursive equations.9



Example 2.2. Suppose we wish to solve the equation Fxy = FyxF . It is easy to seethat we can solve this equation if F = �xy:FyxF . To solve the latter equation we needa �xed point of �fxy:fyxf . Using a �xed point combinator, for example Y , we obtainF = Y (�fxy:fyxf).We can de�ne recursively de�ned numeric functions in the �-calculus using the combina-tors de�ned so far.Example 2.3. The factorial function satis�es the equationfact = �x:(iszero x)(1)(mult n (fact(pred n))):If we de�ne H to be the �-term�f:�x:(iszero x)(1)(mult n (f(pred n)))then the �-term for fact is just the �xed point of H. So we can write Y H for fact.We have not formally proven that all the computable functions are de�nable in the �-calculus but we have provided a fairly rich collection of combinators which provide many ofthe facilities which one normally sees in programming languages. In fact it can be formallyshown that all the partial recursive functions can be de�ned in the �-calculus. An even moreremarkable fact, due to Curry, is that the two combinators K and S, de�ned by �xy:x and�xyz:(xz)(yz) respectively, su�ce to express all the combinators.
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