
30 COMMUNICATIONS OF THE ACM | MAY 2015 | VOL. 58 | NO. 5

V viewpoints

I
M

A
G

E
 B

Y
 J

A
N

E
 K

E
L

LY

DOI:10.1145/2663342 Thomas Ball and Benjamin Zorn

Viewpoint
Teach Foundational
Language Principles
Industry is ready and waiting for more graduates
educated in the principles of programming languages.

to companies and society of building
fundamental infrastructure in dated
programming languages with weak type
systems (the C language in this case)
that do not protect their abstractions.
Several companies have developed new
safe systems programming languages
to address the challenge of program-
ming scalable and reliable systems. Ex-
amples include the Go language from
Google (http://golang.org/), the Rust
language from Mozilla (http://www.rust-
lang.org/), and the Sing# language from
Microsoft (http://singularity.codeplex.
com/). Such languages raise the level
of programming via new type systems
that provide more guarantees about the
safety of program execution.

Domain-specific languages (DSLs)
go further by restricting expressive
power to achieve higher-level guaran-
tees about behavior than would be pos-
sible with general-purpose languages.
The SQL database query language is
a classic example, based on the rela-
tional algebra,2 which enables sophis-
ticated query optimization.

DSLs continue to find application
in industry. Google’s Map/Reduce data
parallel execution model3 gave rise to a
number of SQL-inspired DSLs, includ-
ing Pig (http://pig.apache.org/) from
Yahoo. The Spiral system from ETH Zu-
rich (http://www.spiral.net/) generates
very efficient platform-specific code for
digital signal processing from declara-
tive specifications of mathematical
functions and optimization rules. Intel
makes Spiral-generated code available

THE NEED FOR more people to
learn to program has re-
ceived widespread attention
recently (see, for example,
www.code.org and its recent

“Hour of Code” held during CS Edu-
cation week in December of 2013 and
2014). While the ability to program has
tremendous potential to support and
channel the creative power of people,
we should remember that program-
ming languages continuously arise as
the need to solve new problems emerg-
es and that it is language principles that
are lasting. As we discuss in this View-
point, language foundations serve an
increasingly important and necessary
role in the design and implementation
of complex software systems in use by
industry. Industry needs more people
educated in language principles to
help it deliver reliable and efficient
software solutions to its customers.

Historically, many important prin-
ciples of languages have arisen in re-
sponse to the difficulties of designing
and implementing complex systems.
Garbage collection, introduced by John
McCarthy around 1959 for the Lisp lan-
guage, is now commonplace in modern
programming languages such as Java
and C#, as well as popular scripting lan-
guages such as Python and JavaScript.8
Dijkstra’s “Go To Statement Considered
Harmful” Communications Letter to the
Editor advocated the use of structured
programming, which is enshrined in all
modern programming languages.5 Type
systems classify program expressions by

the kind of values they compute,12 en-
abling compilers to prove the absence
of certain kinds of errors and optimize
code more effectively. Hoare’s assertion-
al method provides a framework for es-
tablishing the correctness of programs.6

As the complexity of the systems we
desire to build increases, new mecha-
nisms to express programmer intent at a
higher level are required in order to deliv-
er reliable systems in a predictable man-
ner. The design of new programming
languages is driven by new classes of sys-
tems and the desire to make program-
ming such systems within the reach of
more people. New methods for express-
ing programmer intent take many forms
including features of general-purpose
languages, domain-specific languages,
and formal specification languages used
to verify properties of high-level designs.

Experiences with bugs like the recent
TLS heartbeat buffer read overrun in
OpenSSL (Heartbleed)10 show the cost

V viewpoints

http://dx.doi.org/10.1145/2663342

MAY 2015 | VOL. 58 | NO. 5 | COMMUNICATIONS OF THE ACM 31

viewpointsV viewpoints
Conclusion
Future applications and systems will
increasingly rely on principled and
formal language-based approaches
to software development to increase
programmers’ productivity as well as
the performance and reliability of the
systems themselves. Software develop-
ers will need a solid understanding of
language principles to be effective in
this new world and increased empha-
sis on these principles in computer
science education is required. For
readers interested in the topic of pro-
gramming languages in education, we
strongly urge consulting the work of
the SIGPLAN Education Board (http://
wp.acm.org/sigplaneducationboard/),
which rewrote from scratch the
“Knowledge Area” of “Programming
Languages,” contained in the first pub-
lic draft of the 2013 Computer Science
Curricula Report (http://cs2013.org).

References
1. Clarke, E.M., Grumberg, O., and Peled, D. Model

Checking. MIT Press, 2001, I–XIV, 1–314.
2. Codd, E.F. A relational model of data for large shared

data banks. Commun. ACM 13, 6 (June 1970),
377–387.

3. Dean, J. and Ghemawat, S. MapReduce: A flexible
data processing tool. Commun. ACM 53, 1 (Jan. 2010),
72–77.

4. Desai, A. et al. P: Safe asynchronous event-driven
programming. In Proceedings of the 2013 ACM
SIGPLAN Conference on Programming Language
Design and Implementation, 2013.

5. Dijkstra, E.W. Letters to the editor: Go To statement
considered harmful. Commun. ACM 11, 13 (Mar. 1968),
147–148.

6. Hoare, C.A.R. An axiomatic basis for computer
programming. Commun. ACM 12, vol. 10 (Oct. 1969),
576–580.

7. Jackson, D. Software Abstractions: Logic, Language,
and Analysis. MIT Press, Cambridge, MA, 2012.

8. Jones, R. The Garbage Collection Handbook: The Art
of Automatic Memory Management. Chapman and
Hall, 2012.

9. Lamport, L. Why we should build software like we
build houses. Wired 25 (Jan. 2013).

10. OpenSSL Project. OpenSSL Security Advisory [07 Apr
2014]. (Apr. 7, 2014); http://www.openssl.org/news/
secadv_20140407.txt.

11. Pfenning, F. Specification and verification in
introductory computer science. Carnegie Mellon
University; http://c0.typesafety.net/.

12. Pierce, B.C. Types and Programming Languages. MIT
Press, 2002, I–XXI, 1–623.

13. Torlak, E., Vaziri, M. and Dolby, J. MemSAT:
Checking axiomatic specifications of memory
models. In Proceedings of the 2010 ACM SIGPLAN
Conference on Programming Language Design and
Implementation, 2010.

14. Zave, P. Using lightweight modeling to understand
Chord. SIGCOMM Comput. Commun. Rev. 42 (Mar.
2012), 49–57.

Thomas Ball (tball@microsoft.com) is a principal researcher
and co-manager of the Research in Software Engineering
(RiSE) group at Microsoft Research, Redmond, WA.

Benjamin Zorn (zorn@microsoft.com) is a principal
researcher and co-manager of the Research in Software
Engineering (RiSE) group at Microsoft Research, Redmond, WA.

Copyright held by authors.

as part of its Integrated Performance
Primitives library. Colleagues at Micro-
soft recently developed a DSL called P
for programming asynchronous event-
driven systems4 that allows a design to
be checked for responsiveness—the
ability to handle every event in a timely
manner—using model checking.1 Core
components of the Windows 8 USB 3.0
device driver stack were implemented
and verified using P.

Another important class of languag-
es are specification languages, which
allow the designers of systems and al-
gorithms to gain more confidence in
their design before encoding them in
programs where it is more difficult to
find and fix design mistakes. Recently,
Pamela Zave of AT&T Labs showed the
protocol underlying the Chord distrib-
uted hash table is flawed14; she mod-
eled the protocol in the Alloy language7
and used the Alloy Analyzer tool to
show that “under the same assump-
tions about failure behavior as made
in the Chord papers, no published ver-
sion of Chord is correct.” Emina Torlak
and colleagues used a similar model-
ing approach to analyze various speci-
fications of the Java Memory Model
(JMM) against their published test cas-
es,13 revealing numerous inconsisten-
cies among the specifications and the
results of the test cases.

Our recommendations are three-
fold, visiting the three topics discussed
in this Viewpoint in reverse order (for-
mal design languages, domain-specific
languages, and new general-purpose
programming languages). First, com-
puter science majors, many of whom
will be the designers and implement-
ers of next-generation systems, should
get a grounding in logic, its application
in design formalisms, and experience
the creation and debugging of formal
specifications with automated tools
such as Alloy or TLA+. As Leslie Lamp-
ort says, “To designers of complex sys-
tems, the need for formal specs should
be as obvious as the need for blue-
prints of a skyscraper.”9 The methods,
tools, and materials for educating stu-
dents about “formal specs” are ready
for prime time. Mechanisms such as
“design by contract,” now available in
mainstream programming languages,
should be taught as part of introduc-
tory programming, as is done in the
introductory programming language

sequence at Carnegie Mellon Univer-
sity.11 Students who learn the benefits
of principled thinking and see the value
of the related tools will retain these les-
sons throughout their careers. We are
failing our computer science majors if
we do not teach them about the value of
formal specifications.

Second, would-be programmers (CS
majors or non-majors) should be ex-
posed as early as possible to functional
programming languages to gain experi-
ence in the declarative programming
paradigm. The value of functional/de-
clarative language abstractions is clear:
they allow programmers to do more
with less and enable compilation to
more efficient code across a wide range
of runtime targets. We have seen such
abstractions gain prominence in DSLs,
as well as in imperative languages such
as C#, Java, and Scala, not to mention
modern functional languages such as
F# and Haskell.

Third, anyone who has a desire to
design a new programming language
should study type systems in detail;
B.C. Pierce’s Types and Programming
Languages12 is a very good starting
point. The fact that companies such
as Microsoft, Google, and Mozilla are
investing heavily in systems program-
ming languages with stronger type sys-
tems is not accidental—it is the result
of decades of experience building and
deploying complex systems written
in languages with weak type systems.
To move our industry forward, we very
much need language designers who
come to the table educated in the for-
mal foundations of safe programming
languages—type systems.

Many important
principles of
languages have
arisen in response
to the difficulties
of designing and
implementing
complex systems.

