
 For COMP 105, Tufts University, Spring 2017 only --- do not redistribute --

1.9. EXERCISES 77

〈literal(v), ξ, φ, ρ〉 ⇓ 〈v, ξ, φ, ρ〉
(Literal)

x ∈ domρ

〈var(x), ξ, φ, ρ〉 ⇓ 〈ρ(x), ξ, φ, ρ〉
(FormalVar)

x /∈ domρ x ∈ dom ξ

〈var(x), ξ, φ, ρ〉 ⇓ 〈ξ(x), ξ, φ, ρ〉
(GlobalVar)

x ∈ dom ρ 〈e, ξ, φ, ρ〉 ⇓ 〈v, ξ′, φ, ρ′〉

〈set(x, e), ξ, φ, ρ〉 ⇓ 〈v, ξ′, φ, ρ′{x 7→ v}〉
(FormalAssign)

x /∈ domρ x ∈ dom ξ 〈e, ξ, φ, ρ〉 ⇓ 〈v, ξ′, φ, ρ′〉

〈set(x, e), ξ, φ, ρ〉 ⇓ 〈v, ξ′{x 7→ v}, φ, ρ′〉
(GlobalAssign)

〈e1, ξ, φ, ρ〉 ⇓ 〈v1, ξ
′, φ, ρ′〉 v1 6= 0 〈e2, ξ

′, φ, ρ′〉 ⇓ 〈v2, ξ
′′, φ, ρ′′〉

〈if(e1, e2, e3), ξ, φ, ρ〉 ⇓ 〈v2, ξ′′, φ, ρ′′〉
(IfTrue)

〈e1, ξ, φ, ρ〉 ⇓ 〈v1, ξ
′, φ, ρ′〉 v1 = 0 〈e3, ξ

′, φ, ρ′〉 ⇓ 〈v3, ξ
′′, φ, ρ′′〉

〈if(e1, e2, e3), ξ, φ, ρ〉 ⇓ 〈v3, ξ′′, φ, ρ′′〉
(IfFalse)

〈e1, ξ, φ, ρ〉 ⇓ 〈v1, ξ
′, φ, ρ′〉 v1 6= 0

〈e2, ξ′, φ, ρ′〉 ⇓ 〈v2, ξ′′, φ, ρ′′〉 〈while(e1, e2), ξ′′, φ, ρ′′〉 ⇓ 〈v3, ξ′′′, φ, ρ′′′〉

〈while(e1, e2), ξ, φ, ρ〉 ⇓ 〈v3, ξ′′′, φ, ρ′′′〉
(WhileIterate)

〈e1, ξ, φ, ρ〉 ⇓ 〈v1, ξ
′, φ, ρ′〉 v1 = 0

〈while(e1, e2), ξ, φ, ρ〉 ⇓ 〈0, ξ′, φ, ρ′〉
(WhileEnd)

〈begin(), ξ, φ, ρ〉 ⇓ 〈0, ξ, φ, ρ〉
(EmptyBegin)

〈e1, ξ0, φ, ρ0〉 ⇓ 〈v1, ξ1, φ, ρ1〉

〈e2, ξ1, φ, ρ1〉 ⇓ 〈v2, ξ2, φ, ρ2〉
...

〈en, ξn−1, φ, ρn−1〉 ⇓ 〈vn, ξn, φ, ρn〉

〈begin(e1, e2, . . . , en), ξ0, φ, ρ0〉 ⇓ 〈vn, ξn, φ, ρn〉
(Begin)

φ(f) = user(〈x1, . . . , xn〉, e)

x1, . . . , xn all distinct
〈e1, ξ0, φ, ρ0〉 ⇓ 〈v1, ξ1, φ, ρ1〉

...
〈en, ξn−1, φ, ρn−1〉 ⇓ 〈vn, ξn, φ, ρn〉

〈e, ξn, φ, {x1 7→ v1, . . . , xn 7→ vn}〉 ⇓ 〈v, ξ′, φ, ρ′〉

〈apply(f, e1, . . . , en), ξ0, φ, ρ0〉 ⇓ 〈v, ξ′, φ, ρn〉
(ApplyUser)

Figure 1.4: Summary of operational semantics (expressions)

	Preface
	What you will learn and how
	The parts of the book
	Foundations
	The Big Three
	Bonus features

	What else you will find
	Thematic threads
	The scope of this book
	What to expect in each chapter
	Software infrastructure

	How realistic are the bridge languages?
	Designing a course to use this book
	Using the exercises

	Acknowledgments

	Tables of judgment forms and important functions
	Symbols and notation
	I Foundations
	An imperative core
	The Impcore language
	Abstract syntax
	Environments
	Operational semantics
	The interpreter
	Operational semantics revisited: Proofs
	Extending Impcore
	Summary
	Exercises

	Scheme, S-expressions, and first-class functions
	Overview of uScheme
	Language I: S-expressions and list primitives
	Practice I: Recursive functions on lists
	Basics
	List reversal and the method of accumulating parameters
	Prime numbers
	Sorting
	Sets
	Association lists and property lists

	Interlude: Laws of applicative programming
	List laws
	Classifying operations
	Boolean laws
	More functions, more laws
	Proving properties of programs

	Language II: Local variables and let
	Practice II: Recursive functions on binary trees
	Language III: First-class functions
	Closures
	Useful higher-order functions

	Practice III: Higher-order functions on lists
	Standard higher-order functions
	Visualizing standard list functions
	Implementing standard list functions

	Practice IV: Higher-order functions for polymorphism
	Approaches to polymorphism
	Polymorphic, higher-order sort

	Practice V: Continuation-passing style
	Continuation-passing for backtracking

	Syntax and values of uScheme
	Concrete syntax
	Abstract syntax
	Values

	Operational semantics
	Variables and functions
	Rules for other expressions
	Rules for evaluating definitions

	The initial basis
	The interpreter
	Interfaces
	Implementation of the evaluator
	Evaluating definitions
	Implementations of primitives
	The main procedure
	Memory allocation

	Large example: A metacircular evaluator
	The environment and value store
	Representations of values
	The initial environment & store
	The evaluator
	Evaluating definitions
	The read-eval-print loop
	Tests

	Extending (and contracting) uScheme
	Syntactic sugar for let forms
	Syntactic sugar for Lisp's original conditional form
	Syntactic sugar for conditional operators: variable capture and hygiene
	Making syntactic sugar precise: substitution
	Syntactic sugar for begin
	Syntactic sugar for record definitions

	Scheme as it really is
	Language differences
	Proper tail calls
	Data types
	From syntactic sugar to syntactic abstraction: Macros
	call/cc

	Summary
	Key words and phrases
	Further reading

	Exercises
	Functions that take lists, S-expressions, numerals, and trees
	Writing and using higher-order functions
	Functional data structures
	Working with the metacircular evaluator
	Digging into the language design
	Reasoning equationally
	Using the operational semantics
	Digging into the interpreter—extending & contracting uScheme
	Functional programming with mutation
	Getting the interpreter to do more, better

	Control operators and reduction semantics
	The uScheme+ language
	Imperative programming with control operators
	Programming with break, continue, and return
	Programming with try-catch and throw

	Preparing for control operators: evaluation using a stack
	Operational Semantics for uScheme+
	Organizing a small-step reduction semantics
	Forms that don't change the stack
	Forms that push a single evaluation context onto the stack
	Forms that evaluate expressions in sequence
	The while loop
	Forms that inspect the stack
	Small-step rules for evaluating definitions

	The interpreter
	Interfaces
	Abstract syntax
	Structure and invariants of the evaluator
	Interpreting forms that don't change the stack
	Memory management for evaluation contexts
	Interpreting forms that push a single evaluation context
	Updating lists of expressions within contexts
	Interpreting forms that evaluate expressions in sequence
	Interpreting the while loop
	Interpreting control operators
	Implementing proper tail calls

	Extending uScheme+ with syntactic sugar
	Control operators & semantics as they really are
	Control operators
	Continuations
	Small-step semantics

	Summary
	Key words and phrases
	Further reading

	Exercises

	Automatic memory management
	What garbage is and where it comes from
	Garbage-collection basics
	Performance
	Reachability and roots
	Heap growth

	The managed heap in uScheme+
	Where are Value objects stored?
	Reachability of locations
	Interface to the managed heap: roots, allocator, initialization
	Using the heap interface: uScheme allocation

	Mark-and-sweep garbage collection
	Prototype mark-and-sweep allocator for uScheme
	Marking heap objects in uScheme
	Performance

	Copying garbage collection
	How copying collection works
	A brief example
	Prototype of a copying system for uScheme
	Performance

	Debugging a garbage collector
	An interface to debugging code
	More debugging techniques

	Reference counting
	Garbage collection as it really is
	Summary
	Key words and phrases
	Further Reading

	Exercises
	Digging into mark-and-sweep garbage collection
	Digging into copying collection

	Interlude: uScheme in ML
	Names and environments
	Abstract syntax and values
	Error detection and signaling
	Evaluation
	Primitives
	Evaluating definitions
	A reusable read-eval-print loop
	Initializing and running the interpreter
	Pulling the pieces together in the right order
	Free and bound variables
	Summary
	Key words and phrases
	Further reading

	Exercises

	Type systems for Impcore and uScheme
	Typed Impcore: a statically typed imperative core
	Concrete syntax of Typed Impcore
	Predefined functions of Typed Impcore
	Abstract syntax, types, and values of Typed Impcore
	Type system for Typed Impcore
	Type rules for Typed Impcore

	A typechecking interpreter for Typed Impcore
	Type checking
	Typechecking definitions
	Processing definitions: type checking and evaluation
	The read-eval-print loop
	Building the initial basis
	Pulling the pieces together

	Extending Typed Impcore with arrays
	Types for arrays
	Operations for arrays
	Type rules for arrays

	Interlude: common type constructors
	Type soundness
	Polymorphic type systems and Typed uScheme
	Concrete syntax
	A replacement for type-formation rules: kinds
	The heart of polymorphism: quantified types
	Abstract syntax, values, and evaluation of Typed uScheme
	Type rules for Typed uScheme
	Type equivalence and type-variable renaming
	Instantiation and renaming by capture-avoiding substitution
	Subverting the type system through variable capture
	The rest of an interpreter for Typed uScheme

	Type systems as they really are
	Summary
	Key words and phrases
	Further reading

	Exercises
	Digging into monomorphic type systems
	Digging into Typed uScheme
	Digging into polymorphic type systems
	Digging into the Typed uScheme interpreter
	Breaking type systems for fun and profit

	Nano-ML and type inference
	Nano-ML: a nearly applicative language
	Abstract syntax and values of nano-ML
	Operational semantics
	Rules for expressions
	Rules for evaluating definitions

	Type system for nano-ML
	Types, type schemes, and type environments
	Simple type constructors
	Substitution, instances, and instantiation
	Functions that print, compare, and create types
	Type rules for nano-ML
	Nondeterministic typing, principal types, and type testing

	From type rules to type inference
	The method of explicit substitutions
	The method of explicit constraints
	Solving constraints

	The interpreter
	Functions on types and type schemes
	Type environments
	A complete infrastructure for Hindley-Milner types
	Constraints and constraint solving
	Type inference
	Evaluation
	Primitives
	Processing definitions: elaboration and evaluation
	The read-eval-print loop
	Building the initial basis
	Pulling the pieces together
	Predefined functions

	Hindley-Milner as it really is
	Summary
	Key words and phrases
	Further reading

	Exercises
	Digging into the type system
	Constraints
	Digging into the interpreter

	II The Big Three
	CLU, abstract data types, and modules
	Abstractions, representations, and invariants
	Defining simple abstractions with uCLU
	The uCLU language
	Names in uCLU
	Values in CLU
	Equality, similarity, and copying

	Reference information for uCLU's primitive types
	Primitive base types
	Array types
	Record types
	Sum types

	Iteration abstraction
	Parametric polymorphism in CLU
	Program design with abstract data types
	Choosing mutable and immutable abstractions
	Placing routines: inside or outside a cluster?
	Designing with cluster interfaces; the CLU library

	Larger programming examples
	Priority queues: taking representation invariants seriously
	Heapsort
	Another cluster interface: the histogram
	Hash tables: a mutable, time-efficient finite map

	Inspecting multiple representations
	Sets of integers, using a stronger invariant
	Arbitrary-precision integer arithmetic
	Priority queues optimized for merging

	CLU, abstract data, and modules as they really are
	CLU as it really is
	Data abstraction, information hiding, and modules

	Summary
	Key words and phrases
	Further Reading

	Exercises
	Plane geometry
	Sets
	Finite maps: a-lists, sparse arrays, hash tables
	Lists, trees, and iterators
	Equality, similarity, and copying
	Programming methodology
	Arithmetic: inspecting multiple representations

	Theory and implementation of uCLU
	Essentials of uCLU's theory
	A calculus of abstract, recursive modules
	A calculus of modules with bounded polymorphism

	Essentials of uCLU's implementation
	The representation of uCLU types
	uCLU's abstract syntax
	uCLU's values

	Operational semantics and evaluation
	Evaluating calls, with overload resolution
	Operational semantics and evaluation of expressions
	Big-step semantics of statements with control operators
	Evaluating definitions, especially routines and clusters
	Desugaring routines and clusters
	When definitions depend on interfaces: uCLU's micro-library

	Foundations of uCLU's type system
	Type equality
	Type substitution
	uCLU's static environment
	Types of export records
	Constraint checking
	Expansion of type syntax into types
	Permissions

	uCLU's type checking
	Typechecking calls, which can be overloaded
	Typechecking expressions
	Typechecking statements
	Elaborating definitions: typechecking and printing

	Finishing the interpreter
	Theory as it is elsewhere (with reading)
	Exercises
	Semantics and type theory
	Implementing type theory and other static analyses
	Language extensions
	Bigger projects

	ML, algebraic data types, and pattern matching
	Case expressions and pattern matching
	The uML language
	Evaluation of pattern matching
	Distinguishing value constructors from variables
	Elaboration and evaluation of datatype definitions
	More predefined algebraic data types
	Pattern matching in predefined functions

	Large example: 2D-trees
	Searching for points in 2D-trees
	Making a balanced 2D tree
	Applying the 2D-tree: points of interest

	Equational reasoning
	Syntactic sugar: patterns everywhere
	The theory and the interpreter
	Abstract syntax, including type syntax, and values
	Operational semantics and evaluation
	Typing rules and inference code for case expressions and pattern matching
	Type generativity and type equivalence
	Rules and type inference for definitions of algebraic data types
	The rest of the interpreter

	Extending algebraic data types
	Existentials
	GADTs

	Algebraic data types as they really are
	Syntax
	Additional checking: exhaustiveness and redundancy
	Extensions and restrictions
	Efficient implementation

	Further reading
	Exercises
	Understanding pattern matching
	Programming with algebraic data types
	Trees: three families thereof
	Equational reasoning
	Properties of uML
	Generativity in other languages
	Syntactic sugar
	Digging into the interpreter

	Smalltalk and object-orientation
	Messages, classes, and inheritance
	Data abstraction all over again
	The uSmalltalk language
	Concrete syntax
	Values
	Names
	Message sends, inheritance, and method dispatch

	The initial basis
	Protocol for all objects
	Protocol for classes
	Blocks and Booleans
	Collections
	Magnitudes and numbers

	Extended example: Discrete event simulation
	Designing discrete-event simulations
	Implementing the Simulation class
	Implementing the robot-lab simulation
	Running robot-lab simulations
	Summary and analysis

	Implementations of built-in classes and objects
	Primitive classes and objects
	Implementations of Booleans and blocks
	Implementations of collections
	Inspecting multiple representations
	Implementations of magnitudes and numbers

	Interpreter and operational semantics
	Abstract syntax and values
	Operational semantics
	Structure of the interpreter
	Creating the primitive classes and values
	Primitives
	The primitive classes
	Evaluating expressions
	Evaluating definitions
	Evaluating extended definitions
	Initializing, bootstrapping, and running the interpreter

	Smalltalk as it really is
	The language
	Smalltalk-80's class hierarchy

	Objects and classes as they really are
	Summary
	Key words and phrases
	Further reading

	Exercises

	III Bonus features
	Prolog and logic programming
	Thinking in the language of logic
	Using Prolog
	The language
	Concrete syntax
	Unit tests
	Abstract syntax (and no values)
	Semantics
	Primitive predicates

	More small programming examples
	Lists
	Arithmetic
	Sorting
	Difference lists

	Implementation
	The database of clauses
	Substitution, free variables, and unification
	Backtracking search
	Processing clauses and queries
	Primitives
	Putting the pieces together

	Larger example: The blocks world
	Larger example: Haskell type classes
	Prolog as it really is
	Syntax
	Logical interpretation as a single first-order formula
	Semantics

	Summary
	Key words and phrases
	Further Reading

	Exercises
	Digging into the language
	Puzzles and games
	Digging into the semantics
	Digging into the interpreter

	What next?
	Typeful programming
	Propositions as types
	More functions
	More objects
	Functions and objects, together
	Functional animation
	Scripting
	Parallel and distributed computation
	One weird, cool, domain-specific language
	Stack-based languages
	Array languages
	Languages based on substitution
	String-processing languages
	Conclusion

	IV Infrastructure
	Code for writing interpreters in C
	Streams
	Streams of lines
	Streams of parenthesized phrases
	Streams of extended definitions

	The extensible printer
	Building print and fprint on top of vprint
	Implementations of vprint and installprinter
	Printing functions

	Error functions
	Implementation of error signaling
	Implementations of error helpers

	Test processing and reporting
	Stack-overflow detection
	Unicode support

	Parsing parenthesized phrases in C
	Planning an extensible parser
	Components, reduce functions, and form codes
	Parser state and shift functions
	Representing and parsing tables and rows
	Parsing tables and functions
	Error detection and handling
	Extending Impcore with syntactic sugar

	Supporting discriminated unions in C
	Lexical analysis
	Abstract syntax and parsing
	Interface to a general-purpose prettyprinter
	C types
	Prettyprinting C types
	Creating C types from sums and products
	Creating constructor functions and prototypes
	Writing the output
	Implementation of the prettyprinter
	Putting everything together

	Code for writing interpreters in ML
	Reusable utility functions
	Utility functions for printing
	Utility functions for renaming variables
	Utility functions for sets, collections, and lists
	Utility function for mutual recursion

	Representing error outcomes as values
	Unit testing
	Polymorphic, effectful streams
	Suspensions: repeatable access to the result of one action
	Streams: results of a sequence of actions
	Streams of extended definitions

	Tracking and reporting source-code locations
	Further reading

	Lexical analysis, parsing, and reading using ML
	Stream transformers, which act as parsers
	Error-free transformers and their composition
	Ignoring results produced by transformers
	At last, transformers that look at the input stream
	Parsing combinators
	Error-detecting transformers and their composition

	Lexical analyzers: transformers of characters
	Parsers: reading tokens and source-code locations
	Flushing bad tokens
	Parsing located, in-line tokens
	Parsers that report errors
	Parsers for common programming-language idioms
	Code used to debug parsers

	Streams that lex, parse, and prompt
	Further reading

	EBNF

	V The Supporting Cast
	Supporting code for Impcore
	Running unit tests
	Printing functions
	Implementation of function environments

	Supporting code for uScheme
	uScheme code not included in Chapter 2
	Implementation of uScheme environments
	Parsing uScheme code
	Parsing tables and reduce functions
	New shift functions: S-expressions and bindings
	New parsing functions: S-expressions and bindings
	Parsing atomic expressions

	Implementation of uScheme's value interface
	Boolean values and Boolean testing
	Unspecified values
	Printing and values

	uScheme's unit tests
	Parse-time error checking
	Support for an exercise: Concatenating names
	Print functions for expressions
	Support for uScheme+

	Supporting code for uScheme+
	The stack of evaluation contexts
	Implementing the stack
	Printing the stack
	Instrumentation for the high stack mark
	Tracing machine state using the stack

	Updating lists of expressions within contexts
	Options and diagnostic code
	Parsing
	Finding free variables

	Supporting code for garbage collection
	Basic support for the two collectors
	Object-visiting procedures for mark-and-sweep collection
	Root-scanning procedures for copying collection
	Access to the desired size of the heap
	Code to push and pop register roots

	GC debugging, with or without Valgrind
	Code that is changed to support garbage collection
	Revised environment-extension routines
	Revisions to eval
	Revised evaldef
	The revised parser
	Checking for cycles in cons

	Placeholders for exercises

	Supporting code for uScheme in ML
	Lexical analysis and parsing
	Tokens of the uScheme language
	Lexical analysis for uScheme
	Parsers for uScheme

	Unit tests for uScheme
	Unspecified values
	Further reading

	Supporting code for Typed Impcore
	Unit testing
	Printing types and values
	Parsing
	Evaluation

	Supporting code for Typed uScheme
	Printing types and values
	Parsing
	Evaluation
	Primitives of Typed uScheme
	Predefined functions
	Unit testing

	Supporting code for nano-ML
	Printing types and constraints
	Parsing
	Unit testing
	Checking types against type schemes
	Rendering expressions as strings

	Predefined functions
	Cases and code for Chapter 10

	Supporting code for uCLU
	Implementations of uCLU's primitive types
	uCLU's arrays
	Conversion between ML functions and uCLU functions
	Utilities for equality, similarity, copying, and printing
	Functions used to write primitive iterators
	Value parts of the built-in type constructors

	Evaluation
	Evaluating expressions
	Evaluating definitions

	Type checking
	Functions on the static environment
	Getting permission
	Argument checking
	Operator overloading
	Compatibility of a cluster with a previously defined interface
	Code for elaborating the less important definitions
	Types for export records of primitive types
	Easy notation for function types
	Types of operations for equality, similarity, copying, and printing
	Types of the exported operations of primitive clusters
	Types of value parts of array types
	Types of value parts of record types
	Types of value parts of sum types
	Types of value parts of arrow types

	Giving every cluster a print operation
	Lexical analysis and parsing
	Parsing
	Unit testing
	Miscellaneous error messages
	Printing stuff

	Supporting code for uML
	Parsing
	Parsing types and kinds
	Identifying uML tokens
	Parsing patterns
	Parsing expressions
	Parsing definitions
	Support for syntactic sugar

	S-expression reader
	More predefined functions
	Useful uML functions
	Printing stuff using uML
	Drawing simple figures in PostScript

	Drawing red-black trees with dot
	Printing values, patterns, types, and kinds
	Unit testing
	Support for datatype definitions
	Cases for elaboration and evaluation of definitions
	Validation for datatype definitions

	Syntactic sugar for implicit-data
	Error cases for elaboration of type syntax

	Supporting code for uSmalltalk
	Lexing and parsing
	Lexical analysis
	Parsing

	Support for tracing
	Unit testing

	Supporting code for uProlog
	Substitution
	Unit testing
	String conversions
	Lexical analysis
	Tokens
	Classification of characters
	Reserved words and anonymous variables
	Converting characters to tokens

	Parsing
	Utilities for parsing uProlog
	Parsing terms, atoms, and goals
	Recognizing concrete syntax using modes
	Reading clauses and queries while tracking locations and modes

	Command line

	VI Back matter
	Key words and phrases
	References
	Concept index
	Author index
	Code index

	VII Answers to selected exercises
	Extensions to uScheme
	Syntactic sugar
	The let expression
	Short-circuit conditional operators
	Lisp's original conditional
	Record types

	Completed garbage collectors
	Mark and sweep
	Copying collection

	Typed uScheme type checking
	Implementation of nano-ML type inference
	Independent constraint solving
	Type inference
	Primitives

	Solutions to selected problems in uCLU
	Order invariant of a binary search tree
	Proof of correctness of short division
	Implementation of uCLU type checking
	Primitives
	Clusters

	Implementation of uML type inference
	Type inference

	Large integers in uSmalltalk
	Bignums
	Representation and preliminaries
	Addition
	Subtraction
	Operations from the Magnitude protocol
	Multiplication
	Other methods

	Testing
	Large integers
	Modifications to SmallInteger
	More test cases

	Complete implementation of uProlog
	Substitution
	Unification
	Independent constraint solving

