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〈literal(v), ξ, φ, ρ〉 ⇓ 〈v, ξ, φ, ρ〉
(Literal)

x ∈ domρ

〈var(x), ξ, φ, ρ〉 ⇓ 〈ρ(x), ξ, φ, ρ〉
(FormalVar)

x /∈ domρ x ∈ dom ξ

〈var(x), ξ, φ, ρ〉 ⇓ 〈ξ(x), ξ, φ, ρ〉
(GlobalVar)

x ∈ dom ρ 〈e, ξ, φ, ρ〉 ⇓ 〈v, ξ′, φ, ρ′〉

〈set(x, e), ξ, φ, ρ〉 ⇓ 〈v, ξ′, φ, ρ′{x 7→ v}〉
(FormalAssign)

x /∈ domρ x ∈ dom ξ 〈e, ξ, φ, ρ〉 ⇓ 〈v, ξ′, φ, ρ′〉

〈set(x, e), ξ, φ, ρ〉 ⇓ 〈v, ξ′{x 7→ v}, φ, ρ′〉
(GlobalAssign)

〈e1, ξ, φ, ρ〉 ⇓ 〈v1, ξ
′, φ, ρ′〉 v1 6= 0 〈e2, ξ

′, φ, ρ′〉 ⇓ 〈v2, ξ
′′, φ, ρ′′〉

〈if(e1, e2, e3), ξ, φ, ρ〉 ⇓ 〈v2, ξ′′, φ, ρ′′〉
(IfTrue)

〈e1, ξ, φ, ρ〉 ⇓ 〈v1, ξ
′, φ, ρ′〉 v1 = 0 〈e3, ξ

′, φ, ρ′〉 ⇓ 〈v3, ξ
′′, φ, ρ′′〉

〈if(e1, e2, e3), ξ, φ, ρ〉 ⇓ 〈v3, ξ′′, φ, ρ′′〉
(IfFalse)

〈e1, ξ, φ, ρ〉 ⇓ 〈v1, ξ
′, φ, ρ′〉 v1 6= 0

〈e2, ξ′, φ, ρ′〉 ⇓ 〈v2, ξ′′, φ, ρ′′〉 〈while(e1, e2), ξ′′, φ, ρ′′〉 ⇓ 〈v3, ξ′′′, φ, ρ′′′〉

〈while(e1, e2), ξ, φ, ρ〉 ⇓ 〈v3, ξ′′′, φ, ρ′′′〉
(WhileIterate)

〈e1, ξ, φ, ρ〉 ⇓ 〈v1, ξ
′, φ, ρ′〉 v1 = 0

〈while(e1, e2), ξ, φ, ρ〉 ⇓ 〈0, ξ′, φ, ρ′〉
(WhileEnd)

〈begin(), ξ, φ, ρ〉 ⇓ 〈0, ξ, φ, ρ〉
(EmptyBegin)

〈e1, ξ0, φ, ρ0〉 ⇓ 〈v1, ξ1, φ, ρ1〉

〈e2, ξ1, φ, ρ1〉 ⇓ 〈v2, ξ2, φ, ρ2〉
...

〈en, ξn−1, φ, ρn−1〉 ⇓ 〈vn, ξn, φ, ρn〉

〈begin(e1, e2, . . . , en), ξ0, φ, ρ0〉 ⇓ 〈vn, ξn, φ, ρn〉
(Begin)

φ(f) = user(〈x1, . . . , xn〉, e)

x1, . . . , xn all distinct
〈e1, ξ0, φ, ρ0〉 ⇓ 〈v1, ξ1, φ, ρ1〉

...
〈en, ξn−1, φ, ρn−1〉 ⇓ 〈vn, ξn, φ, ρn〉

〈e, ξn, φ, {x1 7→ v1, . . . , xn 7→ vn}〉 ⇓ 〈v, ξ′, φ, ρ′〉

〈apply(f, e1, . . . , en), ξ0, φ, ρ0〉 ⇓ 〈v, ξ′, φ, ρn〉
(ApplyUser)

Figure 1.4: Summary of operational semantics (expressions)
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