
Homework 9

Introduction

In this project, you will write an interpreter for a programming language called Rube, which is a small
object-oriented programming language with a syntax similar to Ruby.

Project Structure

The project skeleton code is divided up into the following files:

Makefile Makefile
Lexer.lex Rube lexer
Parser.grm Rube parser
Ast.sml Abstract syntax tree type
Unparse.sml An “unparser” to print an AST
Interp.sml The interpreter—this is where you’ll write your code
main.sml The main program
r{1--4}.ru Small sample Rube programs

You will only change interp.sml; you should not need to edit any of the other files. The file main.sml

includes code to run the parser and then invoke Interp.run, the function you should implement. Currently,
the interpreter contains code that prints FIX ME!:

$ make

...

$ ./interp r1.ru

FIX ME!

You’ll need to modify the implementation of Interp.run in Interp.sml to actually interpret (run) the
program.

In case it’s handy, we’ve also provided you with some printing functions in Unparse, which you can use
to print out Rube programs, classes, methods, etc. There’s an example call to Unparse.print prog that’s
commented out in main.sml.

Rube Syntax

The formal syntax for Rube programs is shown in Figure 1. A Rube program P consists of a sequence of
class definitions followed by a single expression. To execute a program, we evaluate the expression given the
set of class definitions. Every class has some superclass; there is a built-in class Object, and the superclass
of Object is itself. In Rube, methods are inherited from superclasses and may be overridden; there is no
overloading in Rube. In Rube, as in Ruby, everything is an object, including integers n, the null value nil

(an instance of class Bot), and strings "str"; these three expressions are the values of the language. Local
variables are identifiers id, which are made up of upper and lower case letters or symbols (including +, -, *,
/, , !, and ?). The special identifier self refers to the current object. An identifier with an @ in front of it
refers to a field. Rube also includes the conditional form if, which evaluates to the true branch if the guard
evaluates to anything except nil, and the false branch otherwise. Rube includes sequencing of expressions,
assignments to local variables and fields, object creation, and method invocation with the usual syntax.
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P ::= C∗ E Rube program
C ::= class id < id begin M∗ end Class definition
M ::= def id (id, . . . , id) E end Method definition
E ::= v Values

| self Self
| id Local variable
| @id Field
| if E then E else E end Conditional
| E; E Sequencing
| id = E Local variable write
| @id = E Field write
| new id Object creation
| E.id(E, . . . , E) Method invocation

v ::= n Integers
| nil Nil
| "str" String

Figure 1: Rube syntax

datatype expr =

EInt of int

| ENil

| ESelf

| EString of string

| ELocRd of string (∗ Read local variable ∗)
| ELocWr of string ∗ expr (∗ Write local var ∗)
| EFldRd of string (∗ Read field ∗)
| EFldWr of string ∗ expr (∗ Write field ∗)
| EIf of expr ∗ expr ∗ expr

| ESeq of expr ∗ expr

| ENew of string

| EInvoke of expr ∗ string ∗ (expr list )

(∗ meth name ∗ arg name list ∗ method body ∗)
type meth = { meth name : string,

meth args : string list ,

meth body : expr }

(∗ class name ∗ superclass name ∗ methods ∗)
type cls = { cls name : string ,

cls super : string ,

cls meths : meth list }

(∗ classes ∗ top−level expression ∗)
type rube prog = { prog clss : cls list ,

prog main : expr }

Figure 2: Abstract syntax tree for Rube with type annotations

Abstract syntax trees We’ve provided you with a parser that translates Rube source code into an
abstract syntax tree. Figure 2 shows the AST types.

The first four constructors of expr should be self-explanatory. The expression ELocRd s represents
(reading) the local variable s, and the expression ELocWr(s,e) corresponds to s=e, where s is a local
variable. The expressions EFldRd s and EFldWr(s,e) represent reading and writing a field s. Because of
the way the parser works, s will always begin with an @. The expression EIf(e1,e2,e3) corresponds to
if e1 then e2 else e3 end. The expression ESeq(e1,e2) corresponds to e1;e2. The expression ENew(s)

corresponds to new s. The expression EInvoke(e,s,el) corresponds to calling method s of object e with
the arguments given in el. (The arguments are in the same order in the list as in the program text, and
may be empty.)

A method meth is a record containing the method name, arguments, and method body. A class cls

is a record containing the class name, superclass, and methods. Finally, a program rube prog is a record
containing the list of classes and the top-level expression.
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Int

P ` 〈A,H,n〉 → 〈A,H, n〉
Nil

P ` 〈A,H, nil〉 → 〈A,H, nil〉
Str

P ` 〈A,H, "str"〉 → 〈A,H, “str”〉

Id/Self

id ∈ dom(A)

P ` 〈A,H, id〉 → 〈A,H,A(id)〉

Field-R
A(self) = ` H(`) = [class = ids; fields = @id1 : v1, . . . ,@idn : vn]

P ` 〈A,H,@idi〉 → 〈A,H, vi〉

Field-Nil
A(self) = ` H(`) = [class = ids; fields = @id1 : v1, . . . ,@idn : vn] @id 6∈ {@id1, . . . ,@idn}

P ` 〈A,H,@id〉 → 〈A,H, nil〉

If-T
P ` 〈A,H,E1〉 → 〈A1, H1, v1〉 v1 6= nil

P ` 〈A1, H1, E2〉 → 〈A2, H2, v2〉
P ` 〈A,H, if E1 then E2 else E3 end〉 → 〈A2, H2, v2〉

If-F
P ` 〈A,H,E1〉 → 〈A1, H1, nil〉
P ` 〈A1, H1, E3〉 → 〈A3, H3, v3〉

P ` 〈A,H, if E1 then E2 else E3 end〉 → 〈A3, H3, v3〉

Seq

P ` 〈A,H,E1〉 → 〈A1, H1, v1〉
P ` 〈A1, H1, E2〉 → 〈A2, H2, v2〉

P ` 〈A,H, (E1; E2)〉 → 〈A2, H2, v2〉

Id-W
P ` 〈A,H,E〉 → 〈A′, H ′, v〉 id 6= self

A′′ = A′[id 7→ v]

P ` 〈A,H, id = E〉 → 〈A′′, H ′, v〉

Field-W
P ` 〈A,H,E〉 → 〈A′, H ′, v〉

A(self) = ` H ′(`) = [class = ids; fields = F ] H ′′ = H ′[` 7→ [class = ids; fields = F [@idf : v]]]

P ` 〈A,H,@idf = E〉 → 〈A′, H ′′, v〉

New
id ∈ P id 6= Bot ` 6∈ dom(H) H ′ = H[` 7→ [class = id; fields = ∅]]

P ` 〈A,H, new id〉 → 〈A,H ′, `〉

Invoke
P ` 〈A,H,E0〉 → 〈A0, H0, `〉 H0(`) = [class = ids; fields = . . .]

P ` 〈A0, H0, E1〉 → 〈A1, H1, v1〉 . . . P ` 〈An−1, Hn−1, En〉 → 〈An, Hn, vn〉
lookup meth P ids idm = (def idm (id1, . . . , idn) E end) k = n
A′ = self : `, id1 : v1, . . . , idk : vk P ` 〈A′, Hn, E〉 → 〈A′′, H ′′, v〉

P ` 〈A,H,E0.idm(E1, . . . , En)〉 → 〈An, H
′′, v〉

Program
P = C∗ E A = self : ` H = ` : [class = Object; fields = ∅] P ` 〈A,H,E〉 → 〈A′, H ′, v〉

` P ⇒ v

Figure 3: Rube Operational Semantics for Expressions
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Rube Semantics

Figure 3 gives the formal, big-step operational semantics for evaluating Rube expressions (we will discuss re-
lating these rules to compilation next). These rules show reductions of the form P ` 〈A,H,E〉 → 〈A′, H ′, v〉,
meaning that in program P , and with local variables environment A and heap H, expression E reduces to
the value v, producing a new local variable assignment A′ and a new heap H ′. As usual, we extend the
set of values v with locations `, which are pointers. The program P is there so we can look up classes and
methods. We’ve labeled the rules so we can refer to them in the discussion:

• The rules Int, Nil, and Str all say that an integer, nil, or string evaluate to the expected value, in
any environment and heap, and returning the same environment and heap. In the syntax of Rube,
strings begin and end with double quotes ", and may not contain double quotes inside them.

• Like Ruby, a local variable can be created by writing to it. The rule Id/Self says that the identifier
id evaluates to whatever value it has in the environment A. If id is not bound in the environment, then
this rule doesn’t apply—and hence your compiled code would signal an error. Reading a local variable
or self does not change the local variable environment or the heap.

• The rule Field-R says that when a field is accessed, we look up the current object self, which should
be a location in the heap `. Then we look up that location in the heap, which should be an object
that contains some fields idi. If one of those fields is the one we’re looking for, we return that field’s
value. On the other hand, if we’re trying to read field id, and there is no such field in self, then
rule Field-Nil applies and returns the value nil. (Notice the difference between local variables and
fields.) Also notice that like Ruby, only fields of self are accessible, and it is impossible to access a
field of another object.

• The rules If-T and If-F say that to evaluate an if-then-else expression, we evaluate the guard, and
depending on whether it evaluates to a non-nil value or a nil value, we evaluate the then or else branch
and return that. Notice the order of evaluation here: we evaluate the guard E1, which produces
a configuration 〈A1, H1, v1〉, and then we evaluate the then or else branch with that local variable
environment and heap.

• The rule Seq says that to evaluate E1; E2, we evaluate E1 and then evaluate E2, whose value we
return.

• The rule Id-W says that to write to a local variable id, we evaluate the E to a value v, and we return
a configuration with a new environment A′′ that is the same as A′, except now id is bound to v.
Notice that our semantics forbid updating the local variable self (since there’s no good reason to do
that, and if we allowed that, it would let users change fields of other objects). The parser forbids this
syntactically.

• The rule Field-W is similar; notice that we can create new fields by writing to them. We return a new
heap H ′′ that is the same as the heap H ′ after evaluating E, except we update location ` to contain
an object whose idf field is v. Here, F stands for the original set of fields, and F [idf : v] stands for F
except idf is now mapped to v; this notation either updates the previous mapping (if one existed) or
adds a new mapping to F . In both cases, assignment returns the value that was assigned.

• The rule New creates a new instance of a class id; note that making a new instance of Bot, the class
of nil, is not allowed. First we check to make sure that id is a class that’s actually defined in the
program (we write this check as id ∈ P ). Then we find a fresh location ` that is not already used in
the heap. Finally, we return the location `, along with a new heap H ′ that is the same as heap H,
except ` maps to a fresh instance of id with no initialized fields. (Notice that there are no constructors
in Rube.)
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• The most complicated rule is for method invocation. We begin by evaluating the receiver E0 to location
`, which must map to an object in the heap. We then evaluate the arguments E1 through En, in order
from 1 to n, to produce values. (Notice here the “threading” of the location variable environment and
heap through the evaluation of E1 through En.) Next, we use the lookup function to find the correct
method.

Once we find a method def idm(id1, . . . , idk) with the right name, idm, we ensure that it takes the right
number of arguments—if it doesn’t, again we would signal an error in the implementation (though this
is not one of the errors we will test; see below). Finally, we make a new environment A′ in which
self is bound to the receiver object `, and each of the formal arguments idi is bound to the actual
arguments vi. Recall that in the environment, shadowing is left-to-right, so that if id appears twice
in the environment, it is considered bound to the leftmost occurrence. We evaluate the body of the
method in this new environment A′, and whatever is returned is the value of the method invocation.

Notice that Rube has no nested scopes. Thus when you call a method, the environment A′ you evaluate
the method body in is not connected to the environment A from the caller. This makes these semantics
simpler than a language with closures.

• Finally, rule Program explains how to evaluate a Rube program. We evaluate the expression E of
the program, starting in an environment A where self is the only variable in scope, and it is bound
to a location ` containing an object that is an instance of Object and contains no fields.

In your implementation, you should call to s on v and print out the resulting string when the program
exits.

Errors

For grading purposes, there are three sorts of errors you should handle by raising the Halt exception (defined
in Ast.sml with a specific string:

• If a program tries to call a method that does not exist, your implementation should raise Halt "No

such method".

• If a program tries to instantiate Bot, the class of nil, you should raise Halt "Cannot instantiate

Bot".

• If a program tries to instantiate a class that doesn’t exist, your implementation should raise Halt

"No such class C" where C is replaced by the class name.

Be sure to match the strings above exactly so that grading works properly. When you raise a Halt exception,
code in main.sml will catch it and print the error.

For any error not on this list, your implementation may report the error in whatever way you prefer; we
will not test these cases.

Built-in methods

Notice that one thing Rube lacks is semantics for useful things like basic arithmetic on integers. That is
because everything in Rube is an object, and hence arithmetic is encoded just as methods with certain
particular names. Rube also includes several other built-in methods and classes.Your interpreter should
behave as if the built-in classes exist at the start of the program, with the appropriate methods defined. The
type signatures for the built-in methods are given in Figure 4, and their semantics is as follows:

• The equal? method of Object should compare the argument to self using pointer equality, and
should return nil if the two objects are not equal, and the Integer 1 if they are equal. However,
this method should be overridden for String and Integer to do a deep equality test of the string and
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Class Method type

Object equal? : (Object) → Object equality check
to s : () → String convert to string
print : () → Bot print to standard out

String + : (String) → String string concatenation
length : () → Integer string length

Integer + : (Integer) → Integer addition
- : (Integer) → Integer subtraction
* : (Integer) → Integer multiplication
/ : (Integer) → Integer division

Bot No additional methods

Figure 4: Built-in objects and methods

integer values, respectively, returning 1 for equality and nil for disequality. In these last two cases,
your methods should always return nil if the object self is being compared to is not a String or
Integer, respectively.

• The to s method for an arbitrary Object can behave however you like; we won’t test this. This method
should be overridden for String to return self; for Integer to return a String containing the textual
representation of the integer; and for nil to return the String containing the three letters nil.

• The print method prints an object to standard out, as-is. (E.g., do not add any additional newlines.)
For strings and integers, the output should be clear. For nil, the output should be the three letters
nil. For Object, the output can be whatever you like; we won’t test this. Your print method should
return nil.

• The + method on Strings performs string concatenation. Your method should halt execution with an
error if passed a non-String as an argument.

• The length method on Strings returns the length of the string.

• The +, -, *, and / methods perform integer arithmetic. Your method should halt execution with an
error if passed a non-Integer as an argument.

Finally, any built-in class can be instantiated with new, except for Bot. We won’t test the behavior of
new Object. Calling new String should return an empty string. Calling new Integer should return 0.

You do need to support the case of programs with classes that inherit from Object. But you can assume
the program has no classes that inherit from String, Integer, or Bot.

What to Implement

You must implement the following functions in Interp.sml:

• defined class p c : rube prog -> string -> bool, which returns true if an only if class c is
defined in program p.

• lookup meth p c m : rube prog -> string -> string -> meth option, which given a program
p, a class name c, and a method name m, returns Some m’ where m’ is the corresponding meth, or
None if there is no such method. The function lookup meth should start looking in class c and then,
if needed, recursively visit the superclasses of c to look for m.
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• run p : rube prog -> string, which runs a Rube program and returns the result of calling to s

on the value produced by the top-level expression. Code in main.sml will then print out the resulting
string.

You will probably also want to implement some helper functions, e.g., a function to evaluation expressions.

A Big Hint

You can implement the above functions however you like. But, in interest in helping you get started, here
are some definitions you are welcome to use:

type location = int

type (’a, ’b) mutable alist = (’a ∗ ’b ref ) list ref

datatype rubevalue =

RNIL

| RINT of int

| RSTR of string

| RLOC of int

type id = string

type name = string

type clsname = string

type object = { class : clsname, fields : ( id , rubevalue) mutable alist }
type locals = (name, rubevalue) mutable alist

type heap = (location , object) mutable alist

val empty A : unit → locals = fn () => ref []

val empty H : unit → heap = fn () => ref []

type config = locals ∗ heap ∗ expr

type result = locals ∗ heap ∗ rubevalue

Note that you can solve this homework different ways, and some of those ways won’t use exactly the above
types.

More Hints

You can do the assignment without reading any of the following! But in case it is helpful, here’s some more
explanation.

The run Function

The Rube interpreter you will be writing is in many ways very similar to the interpreter you wrote in the
Core ML homework two weeks ago. Consider the operational semantics for evaluating expressions of type
aexpr:

〈a,AInt(n)〉 → n

x ∈ dom(a)

〈a,AV ar(x)〉 → a(x)

〈a, ae1〉 → n1 〈a, ae2〉 → n2

〈a,AP lus(ae1, ae2)〉 → n1 + n2

You might have implemented this by writing a function that, when given an environment and an aexpr

(the things to the left of the arrow), produces an integer (the thing to the right of the arrow), by pattern
matching on the different aexprs:

fun aeval (a:env) (ae:aexpr ): int =

let fun eval (AInt n) = n

| eval (AVar x) =

(case find x a

of (SOME n) => n
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| NONE => raise Not found)

| eval (APlus (ae1, ae2)) = eval ae1 + eval ae2

in eval ae end

This is a very common pattern when writing interpreters, and one we suggest emulating for this homework.
For example, here’s some code to get you started. (Warning, this code is not complete!)

fun eval p (A, H, ENil) = (A, H, RNIL)

| eval p (A, H, EInt n) = (A, H, RINT n)

... define one pattern per opsem rule

fun run (p:rube prog ): string =

let val { prog clss =cls, prog main=e} = p

val A = ... define initial locals environment

val H = ... define initial heap environment

... other necessary setup code

val (A’, H’, v) = eval p (A, H, e)

val s = (∗ convert v to a string ∗)
in

s

end

Notice the type of eval mirrors the type of the operational semantics judgment: it takes a program and a
configuration, and produces a new configuration.

Built-in Methods

Recall from above that, just like Ruby, every value is treated as an object, including the built-in integers,
strings, and nil. However, if you implement built-ins using the Big Hint above, you’ll notice that RNIL,
RINT, and RSTR are not stored as locations that point to the heap; rather, they are stored directly.

For example, suppose we aree trying to evaluate EInvoke(EInt 1, "+", [EInt 2]). Your interpreter
will evaluate the receiver to RINT 1 and argument to RINT 2. But then how do we run dynamic dispatch on
receiver RINT 1? We can’t do the usual thing and look up the method in the program text, because it’s not
there.

There are many different solutions to this problem. However, here is a simple one. Inside your handling
of EInvoke, you can add special cases for the built-ins, something like this:

fun eval p (A, H, EInvoke ...) =

(∗ meth = method name as a string ∗)
let val v receiver = ... in (∗ receiver as a value ∗)
let val v args = List .map ... in (∗ args as a value list ∗)
case ( v receiver , meth, v args) of

(RINT n, ”+”, [RINT m]) => RINT (n+m) (∗ Handle + on integers ∗)
| (RINT n, ”+”, ) => error (∗ Int + with any other args is an error ∗)
| (RSTR s, ”+”, [RSTR s’]) => RSTR (s ˆ s’) (∗ Handle + on strings ∗)
| (RSTR s, ”+”, ) => error (∗ String + on any other args is an error ∗)
| ...

| ( , , ) => (∗ general dynamic dispatch case ∗)

Note that the one downside here is that it’s not very extensible: the code for built-ins is mixed into the
code for eval. That’s completely fine for this homework. But if you’re looking for a challenge, consider
whether you can do better!

What to Submit

Submit your edited Interp.sml.
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