
Homework 10

Introduction

In this homework, you will add a static type checking system to the Rube programming language. Recall
the formal syntax for Rube programs, shown in Figure 1, but extended with type annotations, discussed
below. This homework starts with roughly the same codebase that Homework 9 started from.

Homework Structure

The homework skeleton code is divided up into the following files:

Makefile Makefile
Lexer.lex Rube lexer
Parser.grm Rube parser
Ast.sml Abstract syntax tree type
Unparse.sml An “unparser” to print an AST
Types.sml The type checker—this is where you’ll write your code
main.sml The main program

You will only change Types.sml. You should not edit any of the other files. The file main.sml includes
code to run the parser and then dispatch to the type checker. Right now, the “type checker” implementation
just rejects the input as ill-typed, e.g., after running make you can run:

$./tc r1.ru

no

to parse r1.ru (from the last homework). The no indicates that this program does not type check. In fact,
the current implementation will always print no, until you implement your type checker.

Rube with Type Annotations

Figure 1 gives the syntax of Rube extended with type annotations. In the revised language, classes begin
with field definitions, which include types, followed by method definitions, which include type annotations
on arguments and the method return (this type is to the left of the method name). We also introduce a new
expression (E : T) that performs a dynamic type cast to check at run time that E has type T . (But you’re
only implementing the type checker, so you won’t actually do this dynamic check—your code will trust type
casts.)

Types T are simply class names. Our system will include distinguished classes Bot, the class of nil

(which can masquerade as an instance of any class) and Object, the root of the class hierarchy.
Finally, we give a definition of method types MT of the form (T1 × · · · × Tn) → T , which is a method

such that its ith argument has type Ti and it returns type T . Method types are not allowed to appear in
the surface syntax, but they are handy to have during type checking.

Abstract syntax trees Figure 2 shows the SML abstract syntax tree data types for programs with type
annotations. It is quite similar to the grammar for the untyped variant of the language. The only difference
in the expression language is the addition of textttECast(e,t), which represents a type cast.

A type typ is just a string, wrapped in the constructor TClass, e.g., TClass "Bot" is the type of nil.
We added a constructor here to make it slightly harder to mix up strings corresponding to types with other
strings. We also define mtyp for method types; we’ll use this as the return type of a key function below.

1

P ::= C∗ E Rube program
C ::= class id < id begin F ∗ M∗ end Class definition
F ::= @id : T Field type
M ::= def T id (id : T, . . . , id : T) L∗ begin E end Method definition
L ::= id : T Local variable type
E ::= n Integers

| nil Nil
| "str" String
| self Self
| id Local variable
| @id Field
| if E then E else E end Conditional
| E; E Sequencing
| id = E Local variable write
| @id = E Field write
| new id Object creation
| E.id(E, . . . , E) Method invocation
| (E : T) Type cast

T ::= id Types
MT ::= (T × · · · × T)→ T Method type

Figure 1: Rube syntax (without types)

A method meth is a record containing the method name, return type, arguments (with types), local
variable definitions, and method body. A class cls is a record containing the class name, superclass, fields,
and methods. Finally, a program prog (which we renamed from ruby prog) is a record containing the list
of classes and the top-level expression.

Part 1: Typing Utilities

To implement type checking for Rube with type annotations, we’ll need the following utility functions. You
should write these functions in Types.sml. Important: We will test your code by calling these functions
directly, so it’s important you put them in the right file.

In the following functions, you should assume the existence of four built-in classes: Object, Integer,
String, and Bot, where Object is the root of the inheritance hierarchy, and Integer and String extend
Object. The class Bot is the bottom type, and it also has all the methods of Object. Figure 3 gives type
signatures for built-in methods of these classes; you should assume these built-in methods exist. As in the
previous homework, you do need to support the case of programs with classes that inherit from Object, but
you can assume the program has no classes that inherit from String, Integer, or Bot.

1. Write a function defined class p c : prog -> string -> bool that returns true if and only if
class c is defined in program p. This function should return true if asked whether Object, Integer,
String, or Bot are defined.

2. Write a function no builtin redef : prog -> bool that returns true if the program does not try
to define classes Object, String, Integer, or Bot. (Note that we have not specified what to do for
programs that redefine user classes; our test cases will never do so, and so it’s up to you how to handle
such cases.)

3. Write a function lookup meth p c m : prog -> string -> string -> mtyp that returns the type
(an mtyp) of method m in class c or, if that method is not defined, it should return the type from c’s
superclass (and so on, recursively up the class hierarchy). This function should raise Not found if

2

datatype expr =

EInt of int

| ENil

| ESelf

| EString of string

| ELocRd of string (∗ Read a local variable ∗)
| ELocWr of string ∗ expr (∗ Write local variable ∗)
| EFldRd of string (∗ Read a field ∗)
| EFldWr of string ∗ expr (∗ Write a field ∗)
| EIf of expr ∗ expr ∗ expr

| ESeq of expr ∗ expr

| ENew of string

| EInvoke of expr ∗ string ∗ expr list

| ECast of expr ∗ typ

and typ = TClass of string

type mtyp = (typ list) ∗ typ

type meth = { meth name : string,

meth ret: typ,

meth args : (string ∗ typ) list ,

meth locals : (string ∗ typ) list ,

meth body : expr }

type cls = { cls name : string ,

cls super : string ,

cls fields : (string ∗ typ) list ,

cls meths : meth list }

type prog = { prog clss : cls list ,

prog main : expr }

Figure 2: Abstract syntax tree for Rube with type annotations

Class Method type

Object equal? : (Object)→ Object equality check
to s : ()→ String convert to string
print : ()→ Bot print to standard out

String + : (String)→ String string concatenation
length : ()→ Integer string length

Integer + : (Integer)→ Integer addition
- : (Integer)→ Integer subtraction
* : (Integer)→ Integer multiplication
/ : (Integer)→ Integer division

Bot No additional methods

Figure 3: Built-in objects and methods

no such method exists in c or in any superclass. The types of built-in methods in Object, String,
Integer, and Bot should be returned by this function. Also, if a class inherits a method from
a superclass, the inherited method’s type should be returned. (Note that we have not specified any
particular behavior if the same method is defined twice within one class; our test cases will never do
so.)

4. Write a function lookup field p c f : prog -> string -> string -> typ that returns the type
of field f in class c. As with lookup meth, it should recursively explore superclasses to find field
definitions if necessary. This function should raise Not found if f is not defined in c or in any of its
superclasses. (Note that we have not specified any particular behavior if the same field is defined twice
within one class; our test cases will never do so.)

Part 2: Subtyping

Since our language includes subclassing, we will need to define a subtyping relationship as part of type
checking. Figure 4 shows the subtyping rules for this language. In words, the rules are as follows:

• Bot states that the bottom type Bot is a subtype of any other type.

3

Bot

P ` Bot ≤ T

Obj

P ` T ≤ Object

Class
(class id1 < id2 begin . . . end) ∈ P

P ` id1 ≤ id2

Trans
P ` id1 ≤ id2 P ` id2 ≤ id3

P ` id1 ≤ id3

Refl

P ` id ≤ id

Figure 4: Subtyping

• Obj states that any type is a subtype of Object.

• Class says that id1 is a subtype of id2 if id1 is a subclass of id2 in the program text.

• Trans says that subtyping of classes is transitive, and Refl says that subtyping is reflexive.

Write a function is subtype p t1 t2 : prog -> typ -> typ -> bool that returns true if and only
if type t1 is a subtype of t2 according to this definition. Put is subtype in Types.sml.

Part 3: Type Checking

Finally, you must write a function tc prog p : prog -> unit that returns successfully if and only if p

type checks, and otherwise it raises an exception. Put this function in Types.sml. Figure 5 gives the static
type checking rules that you will translate into code. Here A is a type environment, which as discussed in class
is an associative list mapping local variables to their types. Most of the rules have the form P ;A ` E : T ,
meaning that in program P with environment A, expression E has type T . We’ll explain the other kinds of
rules as we encounter them. We’ve labeled the rules so we can refer to them in the discussion:

• The rules Int, Nil, and Str all say that an integer, nil, or string have the obvious types.

• The local variables of a method include the parameters of the current method, locals defined at the
top of the method, and self, which refers to the object whose method is being invoked. The rules
Self and Id say that self or the identifier id has whatever type is assigned to it in the environment
A. If self or id is not bound in the environment, then this rule doesn’t apply—and hence your type
checker would signal an error.

• The rule Field-R says that when a field is accessed, it has whatever type we get by looking it up
in the program according to the lookup field function you already wrote, finding the current class
by looking up the type of self. Notice that unlike in untyped Rube, it is an error to refer to fields
that have not been pre-defined. Also notice that like Ruby, only fields of self are accessible, and it is
impossible to access a field of another object.

• The rule If says that to type a conditional, the three sub-expressions must all be well-typed, and both
branches must have the same types, which is the type of the if. (Programmers could insert a type
cast to ensure this holds. It would also be possible to have a more general rule for if.)

• The rule Seq says that the type of E1; E2 is the type of E2. Notice that this rule requires E1 to be
well typed, but it doesn’t matter what that type is.

• The rule Id-W says that a write to a local variable is well-typed if the type of the right-hand side of the
assignment is a subtype of the variable type. Notice that unlike untyped Rube, it is an error to write
to a variable that hasn’t been defined as either a parameter or local. Notice also that it is an error to

4

Int

P ;A ` n : Integer

Nil

P ;A ` nil : Bot

Str

P ;A ` "str" : String

Self

P ;A ` self : A(self)

Id
id ∈ dom(A)

P ;A ` id : A(id)

Field-R
A(self) = idself

P ;A ` @id : (lookup field P idself @id)

If
P ;A ` E1 : T P ;A ` E2 : T ′ P ;A ` E3 : T ′

P ;A ` if E1 then E2 else E3 end : T ′

Seq
P ;A ` E1 : T1

P ;A ` E2 : T2

P ;A ` (E1; E2) : T2

Id-W
P ;A ` id : T P ;A ` E : T ′ P ` T ′ ≤ T

P ;A ` id = E : T

Field-W
P ;A ` @id : T P ;A ` E : T ′ P ` T ′ ≤ T

P ;A ` @id = E : T

New
defined class P id

P ;A ` new id : id

Cast
P ;A ` E : T ′

P ;A ` (E : T) : T

Invoke
P ;A ` E0 : T ′0 · · · P ;A ` En : T ′n

(lookup meth P T ′0 idm) = (T1 × · · ·Tk)→ T
k = n T ′1 ≤ T1 · · · T ′n ≤ Tn

P ;A ` E0.idm(E1, . . . , En) : T

Method
P ; (L∗, id1 : T1, . . . , idn : Tn, self : idc) ` E : T ′ P ` T ′ ≤ T

P ; idc ` def T id (id1 : T1, . . . , idn : Tn) L∗ begin E end

Class
P ; id `M1 · · · P ; id `Mn

id 6∈ {Object, Integer, String, Bot}
P ` class id < id′ begin F ∗ M1 · · · Mn end

Program
P = C1 · · ·Cn E P ` C1 · · · P ` Cn P ; · ` E : T

` P

Figure 5: Static Type Rules

write to the local variable self (which is implicitly syntactically distinct from the non-terminal id),
and your implementation should signal an error in this case.

• Similarly, the rule Field-W says that a field write is well-typed if the type of the right-hand side is
a subtype of the field type. Again, unlike untyped Rube, fields must be defined with types prior to
writing to them.

• The rule New says that a new expression is well-typed if the class being constructed exists in the
program according to the defined class function you wrote earlier. Notice that the class can appear
anywhere in the program—it could be listed before the current class definition or after.

• The rule Cast says that an expression can be type cast to any type. The resulting type of the cast
is the cast-to type. (Type casts should be checked at run-time, but since we’re not modifying the
interpreter for this homework we won’t worry about that.)

• The rule Invoke says that for a method invocation to be well-typed, the receiver object expression
and all arguments must be well-typed. Also, the types of the arguments must be subtypes of the
method type we find by looking up idm in whatever class corresponds to the receiver object, using the
lookup meth function you wrote earlier.

Notice that we don’t need to do anything else here, e.g., we don’t need to look inside the method body.

5

That’s because we’ll separately check that the method actually has the type the lookup meth function
says it has. Neat!

• The rule Method says that for a method definition to be well typed inside of class idc, it must be that
if we typecheck the method body with locals assigned their types as given, parameters assigned their
types as given, and self given type idc, the body of the method has a type T ′ that is a subtype of
the declared method return type. Note the order here says that locals may shadow parameters, which
may shadow self; however, we will not test whether you implement this shadowing.

• The rule Class says that for a class definition to be well typed, and all its method definitions must be
well-typed. There must also be no definitions of Object, Integer, String, or Bot.

(Note, we are leaving out one check—that a subclass’s type annotations are consistent with its super-
class’s type annotations—to make the homework slightly shorter.)

• Finally, rule Program says that for a program to be well-typed, all of its classes must be well-typed,
and its top-level expression must be well-typed under the empty environment. This is slightly different
than the last homework, in which the top-level expression did have self bound to an object. This
means that in Typed Rube, the top-level expression cannot even refer to self or fields!

What to Write

You’ll need to write at least the following types and functions:

• tc prog p : prog -> unit to type check the whole program. This function returns the unit value
() if the program type checks. Otherwise it raises an exception (any exception).

• type env = (string * typ) list for representing local variable environments. Notice that you don’t
need mutable environments here because types for locals and fields never change (unlike their values,
which could change).

• tc expr : prog -> env -> expr -> typ to type check an expression. This function should return
a type if the expression type checks, and otherwise it should raise an exception.

• tc meth : prog -> string -> meth -> unit to type check a method against its type signature
(i.e., it implements rule Method).

Your type checking functions can raise any exception to signal that a program is ill-typed. We’ve supplied
the exception Type error as a convenient exception to throw, but you’re not required to use it. In main.sml,
there’s code that calls your tc prog function and either prints yes or no, depending on whether tc prog

type checked the input or found a type error (i.e., raised an exception), respectively.
During development, you may wish to comment out the exception handling code in main.sml so that

you can see exactly which exception is being raised.

6

