
Program Design with ML Types and Pattern Matching

(Plus Syntax Help)

Norman Ramsey

Spring 2019

1 Introduction

This handout sketches how to transfer your design
method to ML, a language with types and pattern
matching. Popular languages with these features also
include Haskell, Elm, OCaml, Reason, F♯, Erlang,
and Scala. More obscure languages include Agda,
Idris, and Coq/Gallina. The handout also provides
a little syntax help.

2 Design steps

Our design method is affected by the introductions of
constructed data and types.

1. Forms of data for numbers and functions are as
in Scheme. But forms of data for lists, pairs, tu-
ples, trees, and other constructed data are deter-
mined by primitive types and user-defined types,
including algebraic datatypes. These forms are
shown in Table 1, as patterns.

Patterns are the technical name for the phrases
that appear as function arguments on the left-
hand sides of algebraic laws—so you already
know how to program with them. But to define
them carefully, here are ML’s rules for patterns:

• Any variable, as in x, is a pattern.

• The “wildcard,” as in _ (underscore), is a
pattern

• A sequence of patterns separated by com-
mas and wrapped in round brackets, as in
(l, x, r), is a tuple pattern.

• The empty tuple () is a pattern.

• A sequence of patterns separated by com-
mas and wrapped in square brackets, as in
[x1, x2, x3], is a list pattern.

• The empty list [] is a pattern.

• A value constructor by itself, as in nil or
NONE, is a pattern.

• A value constructor applied to a pattern, as
in SOME x, is a pattern.

• An infix value constructor placed between
patterns, as in x :: xs, is a pattern.1

• A sequence of pattern bindings separated by
commas and wrapped in curly brackets, as
in { ps1 = s, ps2 = s’ }, is a record pat-
tern. These are rare.

• A literal number, as in 2018, is a pattern.

• A literal string, as in "frogs", is a pattern.

• A literal character, as in #"f", is a pattern.

A key feature of ML is that you get to define
new forms of data, using the datatype definition.
For example, a binary tree:

datatype ’a tree

= LEAF

| NODE of ’a tree * ’a * ’a tree

2. Example inputs include what you would ex-
pect from µScheme: numbers written using nu-
meric literals, and anonymous lambda functions
written using fn, as in (fn (x, y) => y + 1).
ML also has string literals.

In addition, examples of constructed data are
formed using the pattern rules: if a pattern has
no variables or wildcards, it specifies a value. Ex-
amples:

(105, "hello")

[2, 3, 5, 7, 11]

SOME 33

3. Function names are limited. In ML, you may
use either “symbolic” characters like <, ?, +, and
so on, or you may use alphanumeric characters2

with an underscore, but you may not use both
in the same name. Symbolic characters may be
combined into arbitrarily long names, such as
<=> or /*/.

1Confusingly, “fixity” is a local property of a name, not a

property of the value constructor itself.
2The ASCII quote mark, here pronounced “prime,” counts

as alphanumeric, as in x’, pronounced “x-prime.”

1

Type of e Patterns Test in definition Test in expression Types of parts

case e

’a list [] fun f [] = · · · of [] => · · ·
x :: xs | f (x :: xs) = · · · | x :: xs => · · · x : ’a, xs : ’a list

case e

’a option NONE fun f NONE = · · · of NONE => · · ·
SOME x | f (SOME x) = · · · | SOME x => · · · x : ’a

case e

order LESS fun f LESS = · · · of LESS => · · ·
EQUAL | f EQUAL = · · · of EQUAL => · · ·
GREATER | f GREATER = · · · of GREATER => · · ·

case e

int 0 fun f 0 = · · · of 0 => · · ·
n | f n = · · · | n => · · · n : int

let val (x, y) = e

’a * ’b (x, y) fun f (x, y) = · · · in · · · x : ’a, y : ’b

end

let val (x, y, z) = e

’a * ’b * ’c (x, y, z) fun f (x, y, z) = · · · in · · · x : ’a, y : ’b, z : ’c

end

{ f1 : ’a { f1 = x fun f { f1 = x let val { f1 = x x : ’a

, f2 : ’b , f2 = y , f2 = y , f2 = y y : ’b

, f3 : ’c , f3 = z , f3 = z , f3 = z z : ’c

· · · , ... , ... , ... } = e

} } } = · · · in · · ·
(record) (“f1” is short for “field 1”, and so on) end

case e

’a tree LEAF fun f (LEAF) = · · · of LEAF => · · ·
(homework) NODE(l,x,r) | f (NODE(l,x,r)) = · · · | NODE(l,x,r) => · · · l : ’a tree, x : ’a

r : ’a tree

case e

µScheme LITERAL v fun f (LITERAL v) = · · · of LITERAL v => · · · v : value

exp VAR x | f (VAR x) = · · · | VAR x => · · · x : name

(page 366) SET (x, e) | f (SET (x, e)) = · · · | SET (x, e) => · · · x : name, e : exp
...

...
...

...

Table 1: Identifying forms and extracting parts (ML builtins and 105 types)

2

ML offers a design choice not available in Scheme:
function names can be “infix.” Predefined func-
tions like mod, o, and + all have infix names,
as does the value constructor ::. The fixity of
names can be changed by an infix or nonfix

definition form. It’s especially common for sym-
bolic names to be made infix.

Infix names like :: and + can’t be used as first-
class values; when you write an infix name,
ML thinks you mean to apply it. But there is
a workaround: putting the reserved word op in
front of any infix name turns it into a nonfix
name, which you can use as a value. Here are
two classic examples:

fun sum ns = foldl op + 0 ns

fun prod ns = foldl op * 1 ns

4. Function contracts are now enhanced: every
function has a most general type. We consider
the type to be part of the function’s contract.
The type is enforced by the compiler. In many
cases, like List.all and List.exists, the name
and the type form a sufficient contract all by
themselves.

5. Example results and test cases work using
the same ideas as in µScheme (“check-expect,”
“check-assert,” and “check-error”), but the
mechanisms are different. On the minus side,
ML doesn’t have linguistic support for unit test-
ing, so we wind up writing unit tests using anony-
mous (fn => · · ·), and we have to supply our
own string-conversion functions. On the plus
side, ML indicates checked run-time errors using
exceptions, and it’s possible to check for the pres-
ence of a particular exception, like Subscript,
Empty, or Overflow.

6. Algebraic laws are as helpful as ever. They must
respect types. We will also develop a new design
method that helps with writing right-hand sides
of algebraic laws. The new method is based on
types, and when we are ready to study types in
detail, it will be presented in class.

7. Coding case analysis is much simpler than in
Scheme: for case analysis over constructed data,
we just use pattern matching. This feature makes
the code look an awful lot like the algebraic laws.
For case analysis of natural numbers or machine
integers, we can often use partial pattern match-
ing (one or more cases of interest, followed by a
catchall case).

8. Coding right-hand sides uses the same design
methods. But in ML, both the concrete syn-
tax and the abstract syntax are different from

Scheme. Here are the key differences in the ab-
stract syntax and our use of it:

• In ML, the let form uses definitions and
has a similar semantics to Scheme’s let*.
Direct recursion is accomplished by using
fun, and mutual recursion by using and.

• ML has a case form for pattern matching in
an expression. (But usually we will pattern
match in the fun definition form.)

• Deconstruction of input data is always done
by pattern matching. ML has functions like
car, cdr, and null?, but they are used
rarely, and only by experts.

9. Revisiting tests has the same intellectual content,
but it’s much more fussy to code. To run your
tests, you’ll need to study the Unit interface that
is described in the guide to learning ML.

3

3 Syntax help

Standard ML is a full language, not simplified for
teaching, and an exhaustive syntax summary would
be overwhelming. This section presents the key syn-
tactic tools that you will use most frequently. It is
not exhaustive!
ML has four major syntactic categories. From the

top down:

d Definitions
p Patterns
e Expressions
τ Types

These categories are related like this:

• Definitions sit at the top, and they contain both
patterns and expressions. A typical definition
form has a pattern on the left and an expression
on the right. The definition of a Curried function
may have multiple patterns on the left.

The val form you already know is present, but
instead of just a name on the left, it can take any
pattern.

The define form you already know is a special
case of fun, but fun is more typically used with
patterns, to express algebraic laws directly.

There are two kinds of type definitions : type
abbreviations (type) and fresh, algebraic data
types (datatype). Both are called “types,” and
both definition forms contain types.

• Patterns are new. They are one of the two main
interesting features of ML, and they are described
in detail above. Patterns may contain types, but
they usually don’t—we put types in patterns only
when we’re debugging.

• Expressions resemble those that you already
know, except for the let form. ML’s let form
contains definitions, and it has the same seman-
tics as Scheme’s let*.

Expressions may contain definitions and types.
Expressions commonly contain definitions (any
let form), but they rarely contain types—-
we put types in expressions only when we’re de-
bugging.

• Types are more general than the types you know
from C and C++. We will study types at length.

To summarize the common forms of the categories
listed above, I use these symbols for nonterminals:

x, f Name (of a variable or function)
k Literal (like 7 or #"a")
K Name of a value constructor
t Name of a type

Using these symbols, here are some examples of the
most commonly used forms of ML syntax:

p ⇒ x
∣

∣ k
∣

∣ (p1, p2)
∣

∣ (p1, p2, p3)

| []
∣

∣ p1 :: p2
∣

∣ [p1,p2, ..., pn]

| NONE
∣

∣ SOME p
∣

∣ LESS
∣

∣ EQUAL
∣

∣ GREATER

| K
∣

∣ K p

e ⇒ x
∣

∣ k
∣

∣ (e1, e2)
∣

∣ (e1, e2, e3)

| []
∣

∣ e1 :: e2
∣

∣ [e1,e2, ..., en]

| NONE
∣

∣ SOME e
∣

∣ LESS
∣

∣ EQUAL
∣

∣ GREATER

| K
∣

∣ K e

| e e · · ·
| if e1 then e2 else e3
| let d · · · in e end

| (case e of p1 => e1 | p2 => e2 | · · ·)
| raise e

∣

∣ (e1 handle p => e)

| e1 andalso e2
∣

∣ e1 orelse e2

d ⇒ val p = e

| val (x1, x2) = e (overlooked special case)
| fun f p1 = e1 | f p2 = e2 | · · ·
| fun f p1 · · · = e1 | f p2 · · · = e2 | · · ·
| exception K

| exception K of τ

| type t = τ

| type ’a t = τ

| datatype t = K1 of τ1 | K2 of τ2 | · · ·
| datatype t = K1 | · · ·
| datatype ’a t = K1 of τ1 | K2 of τ2 | · · ·
| datatype ’a t = K1 | · · ·

τ ⇒ int
∣

∣ string
∣

∣ bool
∣

∣ char

| τ list
∣

∣ τ option

| τ1 * τ2
∣

∣ τ1 * τ2 * τ3
| τ1 -> τ2
| ’a

∣

∣ ’b
∣

∣ ’c

4

