Review: Church Encodings

```
true = \x.\y.x; // Booleans
false = \x.\y.y;
pair = \x.\y.\f.f x y; // pairs
fst = \p.p (\x.\y.x);
snd = \p.p (\x.\y.y);
noreduce bot = (\x.x x)(\x.x x); // divergence
    // S-expressions
    nil = \n.\c.n;
    cons = \y.\ys.\n.\c.c y ys;
    null? = \xs.xs true (\y.\ys.false);
noreduce
noreduce cdr = \xs.xs bot (\y.\ys.ys);
noreduce cdr = \xs.xs bot (\y.\ys.ys);
\y.\ys.y);
```


Review: Church Numerals

```
zero = \f.\x.x;
succ = \n.\f.\x.f (n f x);
plus = \n.\m.n succ m;
times = \n.\m.n (plus m) zero;
```

-> four;
\f.\x.f (f (f (f x)))
-> three;
\f.\x.f (f (f x))
-> times four three;

Reduction rules

Central rules: substitution and optimization:

$$
\begin{equation*}
\overline{(\lambda x . M) N \xrightarrow{\beta} M[x \mapsto N]} \text { (ВЕTA) } \tag{ЕТА}
\end{equation*}
$$

x not free in M
$\overline{(\lambda x . M x) \xrightarrow{\eta} M}$

Structural rules: Reduce anywhere, any time

$$
\frac{M \rightarrow M^{\prime}}{M N \rightarrow M^{\prime} N}(\mathrm{Nu}) \frac{N \rightarrow N^{\prime}}{M N \rightarrow M N^{\prime}}(\mathrm{Mu}) \frac{M \rightarrow M^{\prime}}{\lambda x \cdot M \rightarrow \lambda x \cdot M^{\prime}}(\mathrm{x})
$$

(Good for both β and η.)

Free variables

	x is free in $M \quad x \neq x^{\prime}$
x is free in x	x is free in $\lambda x^{\prime} . M$
$\frac{x \text { is free in } M}{x \text { is free in } M N}$	x is free in N
x is free in $M N$	

Your turn! Free Variables

What are the free variables in each expression?

$$
\begin{aligned}
& \backslash x \cdot \backslash y \cdot y z \\
& \backslash x \cdot x(\backslash y \cdot x) \\
& \backslash x \cdot \backslash y \cdot \backslash x \cdot x y \\
& \backslash x \cdot \backslash y \cdot x \quad(\backslash z \cdot y \text { w) } \\
& y(\backslash x \cdot z) \\
& (\backslash x \cdot \backslash y \cdot x \quad y) y
\end{aligned}
$$

Your turn! Free Variables

What are the free variables in each expression?

$$
\begin{array}{ll}
\backslash x \cdot \backslash y \cdot y z & -z \\
\backslash x \cdot x(\backslash y \cdot x) & - \text { noth } \\
\backslash x \cdot \backslash y \cdot \backslash x \cdot x y & - \text { notr } \\
\backslash x \cdot \backslash y \cdot x(\backslash z \cdot y w) & -w \\
y(\backslash x \cdot z) & -y z \\
(\backslash x \cdot \backslash y \cdot x \text { y }) y & -y
\end{array}
$$

Capture-avoiding substitution

$$
\begin{array}{ll}
x[x \mapsto M] & =M \\
y[x \mapsto M] & =y \\
(Y Z)[x \mapsto M] & =(Y[x \mapsto M])(Z[x \mapsto M]) \\
(\lambda x . Y)[x \mapsto M] & =\lambda x \cdot Y \\
(\lambda y . Z)[x \mapsto M] & =\lambda y \cdot Z[x \mapsto M]
\end{array}
$$

if x not free in Z or y not free in M
$(\lambda y \cdot Z)[x \mapsto M]=\lambda w .(Z[y \mapsto w])[x \mapsto M]$
where w not free in Z or M
Last transformation is renaming of bound variables

Renaming of bound variables

So important it has its own Greek letter:
w not free in Z

$$
\lambda y \cdot Z \xrightarrow{\alpha} \lambda w \cdot(Z[y \mapsto w])
$$

Also has structural rules

Conversion and reduction

Alpha-conversion (rename bound variable)

$$
\frac{y \text { not free in } Z}{\lambda x . Z \xrightarrow{\alpha} \lambda y \cdot Z[x \mapsto y]}
$$

Beta-reduction (the serious evaluation rule)

$$
(\lambda x . M) N \xrightarrow{\beta} M[x \mapsto N]
$$

Eta-reduction:

$$
x \text { not free in } M
$$

$$
\lambda x \cdot M x \xrightarrow{\eta} M
$$

All structural: Convert/reduce whole term or subterm

Church-Rosser Theorem

Equivalence of convertible terms:
if $A \rightarrow B$ and $A \rightarrow C$
there exists D s.t. $B \rightarrow^{*} D$ and $C \rightarrow^{*} D$

Idea: normal form

A term is a normal form if
It cannot be reduced
What do you suppose it means to say

- A term has no normal form?
-A term has a normal form?

Idea: normal form

A term is a normal form if
It cannot be reduced
A term has a normal form if
There exists a sequence of reductions that terminates (in a normal form)

A term has no normal form if
It always reduces forever
(This term diverges)

Normal forms code for values

Corollary of Church-Rosser: if $\boldsymbol{A} \rightarrow^{*} \boldsymbol{B}, \boldsymbol{B}$ in normal form, and $A \rightarrow^{*} C, C$ in normal form
then B and C are identical
(up to renaming of bound variables)

Y combinator can implement fix

Define Y such that, for any $g, Y g=g(Y g)$:

$$
\begin{aligned}
\boldsymbol{Y} & =\lambda f \cdot(\lambda x . f(x x))(\lambda x . f(x x)) \\
\boldsymbol{Y} \boldsymbol{g} & =(\lambda x \cdot g(x x))(\lambda x \cdot g(x x))
\end{aligned}
$$

and by beta-conversion

$$
\begin{aligned}
& Y g=g((\lambda x \cdot g(x x))(\lambda x \cdot g(x x))) \\
& \boldsymbol{Y} \boldsymbol{g}=\boldsymbol{g}(\boldsymbol{Y} \boldsymbol{g})
\end{aligned}
$$

so
$Y g$ is a fixed point of g

Does $Y g$ have a normal form?

Normal-order reduction

(If a normal form exists, find it!)
Application offers up to three choices:

Slogan: "leftmost, outermost redex"

Normal-order illustration

Not every term has a normal form:

$$
(\lambda x . x x)(\lambda x . x x) \xrightarrow{\beta}(\lambda x . x x)(\lambda x . x x)
$$

But

$$
(\lambda x \cdot \lambda y \cdot y)((\lambda x . x x)(\lambda x . x x)) \xrightarrow{\beta} \lambda y \cdot y
$$

Think "bodies before arguments"
Applicative order does not terminate!

