Review: Church Encodings

true = \x.\y.x; // Booleans

false = \x.\y.y;

pair = \x.\y.\f.f x y; // pairs
fst = \p.p (\x.\y.x);
\p.p (\x.\y.y);

snd

noreduce bot (\x.x x) (\x.x x); // divergence

// S—expressions

\n.\c.n;
\yv.\ys.\n.\c.c y ys;
null? = \xs.xs true (\y.\ys.false);
\xs.xs bot (\y.\ys.y);
\xs.xs bot (\y.\ys.ys);

nil

cons

noreduce car

noreduce cdr



Review: Church Numerals

zero = \f.\x.x;

sucec = \n.\f.\x.f (n £ x);
plus = \n.\m.n succ m;

times = \n.\m.n (plus m) zero;
-> four;

\f.\x.£f (£ (£ (f x)))

—> three;

\f.\x.f (£ (f x))
—> times four three;
\f.\x.£f (£ (£ (£ (£ (£ (£ (£ (£ (£ (£ (£ x)))))))))))



Reduction rules

Central rules: substitution and optimization:

x hot free in M
(BETA) (ETA)

(Ax.M)N 25 M[x s N] (Ax.Mx) 5 M

Structural rules: Reduce anywhere, any time

M— M N — N’ M— M
— (Nu) ; (Mu) ; (X)
MN — M'N MN — MN XM — x.M

(Good for both 3 and n.)



Free variables

xisfreeinM  x#x’

x is free in x x is free in \x’.M

xisfreein M xisfreein N

x is free in MN x Is free in MN



Your turn! Free Variables

What are the free variables in each expression?

\x.\y. v z

\x.x (\y.x)
\x.\yv.\x.x y
\x.\yv.x (\z.y w)
y (\x.z)
(\x.\y.x y) y



Your turn! Free Variables

What are the free variables in each expression?

\x.\y. y z -z

\x.x (\y.x) — nothing
\x.\y.\x.x y — nothing
\x.\y.x (\z.y w) - w

y (\x.z) -y z

(\x.\y.x y) y -y



Capture-avoiding substitution

x[x — M| = M
ylx — M| =y
(YZ)x = M| = (Y[x+— M|)(Z|x — M])
(Ax.Y)x =M = .Y
(Ay.Z)[x —» M| = MN.Z[x — M]
if x not free in Z or y not free in M
(Ay.Z)x —=>M] = Aw.(Z]y — w])|x — M|

where w not freein Z or M

Last transformation is renaming of bound variables



Renaming of bound variables

So important it has its own Greek letter:

w not free in Z

- (ALPHA)
Ay.Z = Aw.(Z]y — w])

Also has structural rules



Conversion and reduction

Alpha-conversion (rename bound variable)

y hot free in Z
M. Z S Ay.Zx — y]

Beta-reduction (the serious evaluation rule)

(A MN 2 Mix — N

Eta-reduction:
x hot free in M

Ae.Mx > M
All structural: Convert/reduce whole term or subterm




Church-Rosser Theorem

Equivalence of convertible terms:

ifA—->BandA — C
thereexists Ds.t. B—-*Dand C —>*D



Idea: normal form

A term is a normal form if
It cannot be reduced

What do you suppose it means to say
« A term has no normal form?
« A term has a normal form?



Idea: normal form

A term is a normal form if
It cannot be reduced

A term has a normal form if
There exists a sequence of reductions that
terminates (in a normal form)

A term has no normal form if
It always reduces forever
(This term diverges)



Normal forms code for values

Corollary of Church-Rosser:
if A —* B, B in normal form, and
A —=* C, Cin normal form

then B and C are identical
(up to renaming of bound variables)



Y combinator can implement £ix

Define Y such that, forany g, Yg =g (Y g):

Y = M.(Axf(xx))(Axf(xx))

Yg = (Ax.gxx))(Ax.g(xx))
and by beta-conversion

Yg = g((Ar.glxx))(Ax.g(xx)))

Yg = g(Yg)
SO

Y g is a fixed point of g

Does Y g have a normal form?



Normal-order reduction

(If a normal form exists, find it!)

Application offers up to three choices:

x hot freein M

#1 3 (BETA) 7 (ETA)
(Ax.M)N — M|x +— N| (Ax.Mx) > M
M— M N — N’ M— M
#2 (Nu) #3 (Mu) (X1)
MN — M’'N MN — MN’ .M — .M’

Slogan: “leftmost, outermost redex”



Normal-order illustration

Not every term has a normal form:

(Ax.xx)(Ax.xx) LA (Ax.xx)(Ax.xx)

But
(A Ayp) (Axxx) Axxx)) 2> Ay.y

Think “bodies before arguments”™

Applicative order does not terminate!



