Review: Church Encodings

```
true = \langle x. \rangle y. x;
                          // Booleans
false = \x.\y.y;
pair = x. y. f. f x y; // pairs
fst = \p.p(\x.\y.x);
snd = \langle p.p (\langle x. \langle y.y \rangle);
noreduce bot = (x.x x) (x.x x); // divergence
                                // S-expressions
           nil = \langle n. \rangle c.n;
           cons = \langle y. \langle ys. \langle n. \rangle c.c y ys;
           null? = \xs.xs true (\y.\ys.false);
noreduce car = xs.xs bot (y.ys.y);
noreduce cdr = \langle xs.xs bot (\langle y. \rangle ys.ys \rangle;
```

Review: Church Numerals

```
zero = \langle f. \rangle x.x;
succ = \n.\f.\x.f (n f x);
plus = \n.\mbox{m.n} succ m;
times = \n.\m.n (plus m) zero;
 • • •
-> four;
f. x.f (f (f x))
-> three;
f. x.f (f (f x))
-> times four three;
```

Reduction rules

Central rules: substitution and optimization:

$$\frac{1}{(\lambda x.M)N \xrightarrow{\beta} M[x \mapsto N]} (\text{Beta}) \qquad \frac{x \text{ not free in } M}{(\lambda x.Mx) \xrightarrow{\eta} M} (\text{Eta})$$

Structural rules: Reduce anywhere, any time

$$\frac{M \to M'}{MN \to M'N} (NU) \frac{N \to N'}{MN \to MN'} (MU) \frac{M \to M'}{\lambda x.M \to \lambda x.M'} (XI)$$

(Good for both β and η .)

Free variables

	x is free in M	$x \neq x'$
x is free in x	x is free in $\lambda x'.M$	
x is free in M	x is free in N	
x is free in MN	x is free in MN	

Your turn! Free Variables

What are the free variables in each expression?

Your turn! Free Variables

What are the free variables in each expression?

Capture-avoiding substitution

$$\begin{array}{rcl} x[x \mapsto M] &=& M \\ y[x \mapsto M] &=& y \\ (YZ)[x \mapsto M] &=& (Y[x \mapsto M])(Z[x \mapsto M]) \\ (\lambda x.Y)[x \mapsto M] &=& \lambda x.Y \\ (\lambda y.Z)[x \mapsto M] &=& \lambda y.Z[x \mapsto M] \\ & \quad \text{if } x \text{ not free in } Z \text{ or } y \text{ not free in } M \\ (\lambda y.Z)[x \mapsto M] &=& \lambda w.(Z[y \mapsto w])[x \mapsto M] \\ & \quad \text{where } w \text{ not free in } Z \text{ or } M \end{array}$$

Last transformation is renaming of bound variables

Renaming of bound variables

So important it has its own Greek letter:

w not free in Z

 $\lambda y. Z \xrightarrow{\alpha} \lambda w. (Z[y \mapsto w])$

(ALPHA)

Also has structural rules

Conversion and reduction

Alpha-conversion (rename bound variable)

 $\frac{y \text{ not free in } Z}{\lambda x. Z \xrightarrow{\alpha} \lambda y. Z[x \mapsto y]}$

Beta-reduction (the serious evaluation rule)

$$(\lambda x.M)N \xrightarrow{\beta} M[x \mapsto N]$$

Eta-reduction:

x not free in M

$$\lambda x.Mx \xrightarrow{\eta} M$$

All structural: Convert/reduce whole term or subterm

Church-Rosser Theorem

Equivalence of convertible terms:

if $A \to B$ and $A \to C$ there exists D s.t. $B \to^* D$ and $C \to^* D$

Idea: normal form

A term is a normal form if It cannot be reduced

What do you suppose it means to say

- A term has no normal form?
- A term has a normal form?

Idea: normal form

A term is a normal form if It cannot be reduced

A term has a normal form if There exists a sequence of reductions that terminates (in a normal form)

A term has no normal form if It always reduces forever (This term diverges)

Normal forms code for values

Corollary of Church-Rosser: if $A \rightarrow^* B$, B in normal form, and $A \rightarrow^* C$, C in normal form

then *B* and *C* are identical (up to renaming of bound variables)

Y combinator can implement fix

Define *Y* such that, for any *g*, Yg = g(Yg):

 $Y = \lambda f.(\lambda x.f(xx))(\lambda x.f(xx))$ $Yg = (\lambda x.g(xx))(\lambda x.g(xx))$ and by beta-conversion $Yg = g((\lambda x.g(xx))(\lambda x.g(xx)))$

$$\boldsymbol{Y}\boldsymbol{g} = \boldsymbol{g}\left(\boldsymbol{Y}\boldsymbol{g}\right)$$

SO

Y g is a fixed point of *g*

Does *Y g* have a normal form?

Normal-order reduction

(If a normal form exists, find it!)

Application offers up to three choices:

#1
$$\frac{1}{(\lambda x.M)N \xrightarrow{\beta} M[x \mapsto N]}$$
 (BETA) $\frac{x \text{ not free Iff } M}{(\lambda x.Mx) \xrightarrow{\eta} M}$ (ETA)
#2 $\frac{M \to M'}{MN \to M'N}$ (NU) #3 $\frac{N \to N'}{MN \to MN'}$ (MU) $\frac{M \to M'}{\lambda x.M \to \lambda x.M'}$ (XI)

Slogan: "leftmost, outermost redex"

Normal-order illustration

Not every term has a normal form:

$$(\lambda x.xx)(\lambda x.xx) \xrightarrow{\beta} (\lambda x.xx)(\lambda x.xx)$$

But

$$(\lambda x.\lambda y.y)((\lambda x.xx)(\lambda x.xx)) \xrightarrow{\beta} \lambda y.y$$

Think "bodies before arguments"

Applicative order does not terminate!