
Review: Church Encodings

true = \x.\y.x; // Booleans

false = \x.\y.y;

pair = \x.\y.\f.f x y; // pairs

fst = \p.p (\x.\y.x);

snd = \p.p (\x.\y.y);

noreduce bot = (\x.x x)(\x.x x); // divergence

// S-expressions

nil = \n.\c.n;

cons = \y.\ys.\n.\c.c y ys;

null? = \xs.xs true (\y.\ys.false);

noreduce car = \xs.xs bot (\y.\ys.y);

noreduce cdr = \xs.xs bot (\y.\ys.ys);



Review: Church Numerals

zero = \f.\x.x;

succ = \n.\f.\x.f (n f x);

plus = \n.\m.n succ m;

times = \n.\m.n (plus m) zero;

...

-> four;

\f.\x.f (f (f (f x)))

-> three;

\f.\x.f (f (f x))

-> times four three;

\f.\x.f (f (f (f (f (f (f (f (f (f (f (f x)))))))))))



Reduction rules

Central rules: substitution and optimization:

(�x:M)N

�

!M[x 7! N℄

(BETA)
x not free in M

(�x:Mx)
�

!M
(ETA)

Structural rules: Reduce anywhere, any time

M!M′

MN!M′N
(NU)

N! N′

MN!MN′
(MU)

M!M′

�x:M! �x:M′
(XI)

(Good for both � and �.)



Free variables

x is free in x

x is free in M x 6= x′

x is free in �x′:M

x is free in M

x is free in MN

x is free in N

x is free in MN



Your turn! Free Variables

What are the free variables in each expression?

\x.\y. y z

\x.x (\y.x)

\x.\y.\x.x y

\x.\y.x (\z.y w)

y (\x.z)

(\x.\y.x y) y



Your turn! Free Variables

What are the free variables in each expression?

\x.\y. y z - z

\x.x (\y.x) - nothing

\x.\y.\x.x y - nothing

\x.\y.x (\z.y w) - w

y (\x.z) - y z

(\x.\y.x y) y - y



Capture-avoiding substitution

x[x 7!M℄ = M

y[x 7!M℄ = y

(YZ)[x 7!M℄ = (Y[x 7!M℄)(Z[x 7!M℄)

(�x:Y)[x 7!M℄ = �x:Y

(�y:Z)[x 7!M℄ = �y:Z[x 7!M℄

if x not free in Z or y not free in M

(�y:Z)[x 7!M℄ = �w:(Z[y 7! w℄)[x 7!M℄

where w not free in Z or M

Last transformation is renaming of bound variables



Renaming of bound variables

So important it has its own Greek letter:

w not free in Z

�y:Z

�

! �w:(Z[y 7! w℄)

(ALPHA)

Also has structural rules



Conversion and reduction

Alpha-conversion (rename bound variable)

y not free in Z

�x:Z

�

! �y:Z[x 7! y℄

Beta-reduction (the serious evaluation rule)

(�x:M)N
�

!M[x 7! N℄

Eta-reduction:
x not free in M

�x:Mx

�

!M

All structural: Convert/reduce whole term or subterm



Church-Rosser Theorem

Equivalence of convertible terms:

if A! B and A! C

there exists D s.t. B!∗ D and C!∗ D



Idea: normal form

A term is a normal form if

It cannot be reduced

What do you suppose it means to say

• A term has no normal form?

• A term has a normal form?



Idea: normal form

A term is a normal form if

It cannot be reduced

A term has a normal form if

There exists a sequence of reductions that

terminates (in a normal form)

A term has no normal form if

It always reduces forever

(This term diverges)



Normal forms code for values

Corollary of Church-Rosser:

if A!∗ B, B in normal form, and

A!∗ C, C in normal form

then B and C are identical

(up to renaming of bound variables)



Y combinator can implement fix

Define Y such that, for any g, Y g = g (Y g):

Y = �f :(�x:f(xx))(�x:f(xx))
Y g = (�x:g(xx))(�x:g(xx))

and by beta-conversion

Y g = g ((�x:g(xx))(�x:g(xx)))

Y g = g (Y g)

so

Y g is a fixed point of g

Does Y g have a normal form?



Normal-order reduction

(If a normal form exists, find it!)

Application offers up to three choices:

#1

(�x:M)N

�

!M[x 7! N℄

(BETA)
x not free in M

(�x:Mx)
�

!M
(ETA)

#2
M!M′

MN!M′N
(NU) #3

N! N′

MN!MN′
(MU)

M!M′

�x:M! �x:M′
(XI)

Slogan: “leftmost, outermost redex”



Normal-order illustration

Not every term has a normal form:

(�x:xx)(�x:xx)
�

! (�x:xx)(�x:xx)

But

(�x:�y:y)((�x:xx)(�x:xx))
�

! �y:y

Think “bodies before arguments”

Applicative order does not terminate!


