Scheme problems

Unsolved:
 • Printf debugging

Solved:
 • Need switch or similar
 (Clausal definition, case expression)
 • Only cons for data
 (Define as many forms as you like: datatype)
 • Wrong number of arguments (typecheck)
 • car or cdr of non-list (typecheck)
 • car or cdr of empty list (pattern match)
New vocabulary

Data:
• Constructed data
• Value constructor

Code:
• Pattern
• Pattern matching
• Clausal definition
• Clause

Types:
• Type variable (’a)
Today’s plan: programming with types

1. Mechanisms to know:
 • Define a type
 • Create value
 • Observe a value

2. Making types work for you: from types, code
Mechanisms to know

Three programming tasks:

- Define a type
- Create value ("introduction")
- Observe a value ("elimination")

For functions, all you can do with a function is apply it.

For constructed data, "How were you made & from what parts?"
Datatype definitions

datatype suit = HEARTS | DIAMOND | CLUBS | SPADES

datatype 'a list = nil (* copy me NOT! *)
 | op :: of 'a * 'a list

datatype 'a heap = EHEAP
 | HEAP of 'a * 'a heap * 'a heap

type suit val HEARTS : suit, ...

type 'a list val nil : forall 'a . 'a list
 val op :: : forall 'a .
 'a * 'a list -> 'a list

type 'a heap
 val EHEAP: forall 'a. 'a heap
 val HEAP : forall 'a.'a * 'a heap * 'a heap -> 'a heap
Structure of algebraic types

An algebraic data type is a collection of alternatives
 • Each alternative must have a name

The thing named is the value constructor

(Also called “datatype constructor”)
Your turn: Define a type

An ordinary S-expression is one of

- A symbol (string)
- A number (int)
- A Boolean (bool)
- A list of ordinary S-expressions

Two steps:
1. For each form, choose a value constructor
2. Write the datatype definition
Your turn: Define a type

datatype sx
 = SYMBOL of string
 | NUMBER of int
 | BOOL of bool
 | SXLIST of sx list
Other constructed data: Tuples

Always only one way to form

- Expressions \((e_1, e_2, \ldots, e_n)\)
- Patterns \((p_1, p_2, \ldots, p_n)\)

Example:

```haskell
let val (left, right) = splitList xs
  in if abs (length left - length right) < 1
    then NONE
    else SOME "not nearly equal"
  end
```
"Eliminate" values of algebraic types

New language construct case (an expression)

fun length xs =
 case xs
 of [] => 0
 | (x::xs) => 1 + length xs

Clausal definition is preferred
(sugar for val rec, fn, case)
case works for any datatype

fun toStr t =
 case t
 of EHEAP => "empty heap"
 | HEAP (v, left, right) =>
 "nonempty heap"

But often a clausal definition is better style:

fun toStr' EHEAP = "empty heap"
 | toStr' (HEAP (v, left, right)) =
 "nonempty heap"
The rest of this slide deck is “bonus content”
(intended primarily for those without books)
Define algebraic data types for \(SX_1\) and \(SX_2\), where

\[
SX_1 = ATOM \cup \text{LIST}(SX_1)
\]

\[
SX_2 = ATOM \cup \{ (\text{cons } v_1 \ v_2) \mid v_1 \in SX_2, v_2 \in SX_2 \}
\]

(take \(ATOM\), with ML type \text{atom} as given)
Wait for it . . .
Exercise answers

datatype sx1 = ATOM1 of atom
 | LIST1 of sx1 list

datatype sx2 = ATOM2 of atom
 | PAIR2 of sx2 * sx2
Exception handling in action

loop (evaldef (reader (), rho, echo))
handle EOF => finish ()
 | Div => continue "Division by zero"
 | Overflow => continue "Arith overflow"
 | RuntimeError msg => continue ("error: " ^ msg)
 | IO.Io {name, ...} => continue ("I/O error: " ^ name)
 | SyntaxError msg => continue ("error: " ^ msg)
 | NotFound n => continue (n ^ "not found")
ML Traps and pitfalls
Order of clauses matters

fun take n (x::xs) = x :: take (n-1) xs
 | take 0 xs = []
 | take n [] = []

(* what goes wrong? *)
Gotcha — overloading

- fun plus x y = x + y;
 > val plus = fn : int -> int -> int

- fun plus x y = x + y : real;
 > val plus = fn : real -> real -> real
Gotcha — equality types

- (fn (x, y) => x = y);
> val it = fn : ∀ ''a . ''a * ''a -> bool

Tyvar ''a is “equality type variable”:
 • values must “admit equality”
 • (functions don’t admit equality)
Gotcha — parentheses

Put parentheses around anything with | case, handle, fn

Function application has higher precedence than any infix operator
Syntactic sugar for lists

- 1 :: 2 :: 3 :: 4 :: nil; (* :: associates to the right *)
 > val it = [1, 2, 3, 4] : int list

- "the" :: "ML" :: "follies" :: [];
 > val it = ["the", "ML", "follies"] : string list

 > concat it;
 val it = "theMLfollies" : string
ML from 10,000 feet
The value environment

Names bound to immutable values

Immutable ref and array values point to mutable locations

ML has no binding-changing assignment

Definitions add new bindings (hide old ones):

val pattern = exp
val rec pattern = exp
fun ident patterns = exp
datatype ... = ...
Nesting environments

At top level, definitions

Definitions contain expressions:
\[
def \ ::= \text{val} \ pattern = \ exp
\]

Expressions contain definitions:
\[
exp \ ::= \text{let} \ defs \text{ in } \ exp \text{ end}
\]

Sequence of \textit{defs} has let-star semantics
What is a pattern?

\[
\text{pattern} ::= \text{variable} \\
| \text{wildcard} \\
| \text{value-constructor} \ [\text{pattern}] \\
| \text{tuple-pattern} \\
| \text{record-pattern} \\
| \text{integer-literal} \\
| \text{list-pattern}
\]

Design bug: no lexical distinction between
- VALUE CONSTRUCTORS
- variables

Workaround: programming convention
Function peculiarities: 1 argument

Each function takes 1 argument, returns 1 result

For “multiple arguments,” use tuples!

fun factorial n =
 let fun f (i, prod) =
 if i > n then prod else f (i+1, i*prod)
 in f (1, 1)
end

fun factorial n = (* you can also Curry *)
 let fun f i prod =
 if i > n then prod else f (i+1) (i*prod)
 in f 1 1
end
Mutual recursion

Let-star semantics will not do.

Use and (different from andalso)!

fun a x = ... b (x-1) ...
and b y = ... a (y-1) ...

Syntax of ML types

Abstract syntax for types:

\[ty \Rightarrow \begin{array}{ll}
 \text{TYVAR of string} & \text{type variable} \\
 \text{TYCON of string * ty list} & \text{apply type constructor}
\end{array} \]

Each tycon takes fixed number of arguments.

- **nullary**: \(\text{int, bool, string, ...} \)
- **unary**: \(\text{list, option, ...} \)
- **binary**: \(\Rightarrow \)
- **\(n \)-ary**: \(\text{tuples (infix \(\ast \))} \)
Syntax of ML types

Concrete syntax is baroque:

\[
\begin{align*}
ty & \Rightarrow tyvar \quad \text{type variable} \\
| & tycon \quad \text{(nullary) type constructor} \\
| & ty \ tycon \quad \text{(unary) type constructor} \\
| & (ty, \ldots, ty) \ tycon \quad \text{(n-ary) type constructor} \\
| & ty \ast \ldots \ast ty \quad \text{tuple type} \\
| & ty \rightarrow ty \quad \text{arrow (function) type} \\
| & (ty)
\end{align*}
\]

\[
\begin{align*}
tyvar & \Rightarrow ' \text{identifier} \quad 'a, 'b, 'c, \ldots \\
tycon & \Rightarrow \text{identifier} \quad \text{list, int, bool,} \ldots
\end{align*}
\]
Polymorphic types

Abstract syntax of type scheme σ:
$\sigma \Rightarrow$ FORALL of tyvar list * ty

Bad decision: \forall left out of concrete syntax

$$(\text{fn (f, g) => fn x => f (g x)})$$

: $\forall \ 'a, 'b, 'c .$

$$('a -> 'b) \ast ('c -> 'a) -> ('c -> 'b)$$

Key idea: substitute for quantified type variables
Old and new friends

\[\text{op o} : \forall \ 'a, 'b, 'c . \]
\[(\ 'a \to 'b) \times (\ 'c \to 'a) \to 'c \to 'b \]

\[\text{length} : \forall \ 'a . \ 'a \text{ list} \to \text{ int} \]

\[\text{map} : \forall \ 'a, 'b . \]
\[(\ 'a \to 'b) \to (\ 'a \text{ list} \to 'b \text{ list}) \]

\[\text{curry} : \forall \ 'a, 'b, 'c . \]
\[(\ 'a \times 'b \to 'c) \to 'a \to 'b \to 'c \]

\[\text{id} : \forall \ 'a . \ 'a \to 'a \]