What solves this equation?

Equation:

fact = λn .if n = 0 then 1 else $n \times fact(n-1)$?

The factorial function!

Factorial in lambda calculus

Wish for:

fact = $\n.(zero? n)$ 1 (times n (fact (pred n)));

But: on right-hand side, fact is not defined.

Successive approximations

Function bot always goes into an infinite loop. What are these? fact0 = $\n.(zero? n)$ 1 (times n (bot (pred n))); fact1 = $\n.(zero? n)$ 1 (times n (fact0 (pred n)));

fact2 = $\n.(zero? n)$ 1 (times n (fact1 (pred n)));

Successive approximations (manufactured)

. . .

Fixed point

Suppose f = g f. I claim f n is n factorial!

Proof by induction on n.

Fixed-point combinator

What if

fix g = g (fix g)

Then fix g n is n factorial!

Expand as much as you need to.

Y combinator can implement fix

Can define *Y* such that, for any *g*, Yg = g(Yg).

(Details next time, with evaluation model.)

Conversion to fixed point

length = xs.null? xs 0 (+ 1 (length (cdr xs)))

 $lg = \langle lf. \langle xs.null? xs 0 (+ 1 (lf (cdr xs))) \rangle$

Example recursion equations

Is there a solution? Is it unique? If so, what is it?

$$f1 = \n.\mbox{(eq? n m) n}$$

$$(plus n (f1 (succ n) m));$$

$$f2 = \langle n.f2$$
 (isZero? n 100 (pred n));

 $f3 = \langle xs.xs nil (\langle z. \rangle zs.cons 0 (f3 zs));$

 $f4 = \xs.\ys.f4$ ys xs;

Wait for it...

Example recursion equations

Church Numerals

Encoding natural numbers as lambda-terms

zero	=	$\lambda f.\lambda x.x$
one	=	$\lambda f.\lambda x.f x$
two	=	$\lambda f.\lambda x.f(f x)$
succ	=	$\lambda n.\lambda f.\lambda x.f(nfx)$
plus	=	$\lambda n. \lambda m. n \operatorname{succ} m$
times	=	$\lambda n. \lambda m. n \text{ (plus } m \text{) zero}$

Idea: "apply f to x, n times"

Church Numerals to machine integers

Church Numerals in λ

```
zero = \langle f. \rangle x.x;
succ = \n.\f.\x.f (n f x);
plus = \n.\mbox{m.n} succ m;
times = \n.\m.n (plus m) zero;
 . . .
-> four;
f. x.f (f (f x))
-> three;
f. x.f (f (f x))
-> times four three;
```