
What solves this equation?

Equation:

fact = �n:if n = 0 then 1 else n�fact(n� 1)?

The factorial function!



Factorial in lambda calculus

Wish for:

fact = \n.(zero? n) 1 (times n (fact (pred n)));

But: on right-hand side, fact is not defined.



Successive approximations

Function bot always goes into an infinite loop.

What are these?

fact0 = \n.(zero? n) 1 (times n (bot (pred n)));

fact1 = \n.(zero? n) 1 (times n (fact0 (pred n)));

fact2 = \n.(zero? n) 1 (times n (fact1 (pred n)));



Successive approximations (manufactured)

g = \f.\n.(zero? n) 1 (times n (f (pred n)));

fact0 = g bot;

fact1 = g fact0; // = g (g bot)

fact2 = g fact1; // = g (g (g bot))

fact3 = g fact2; // = g (g (g (g bot)))

...



Fixed point

Suppose f = g f. I claim f n is n factorial!

Proof by induction on n.



Fixed-point combinator

What if

fix g = g (fix g)

Then fix g n is n factorial!

fix g = g (fix g)

= g (g (fix g))

= g (g (g (fix g)))

= ...

Expand as much as you need to.



Y combinator can implement fix

Can define Y such that, for any g, Y g = g (Y g).

(Details next time, with evaluation model.)



Conversion to fixed point

length = \xs.null? xs 0 (+ 1 (length (cdr xs)))

lg = \lf.\xs.null? xs 0 (+ 1 (lf (cdr xs)))



Example recursion equations

Is there a solution? Is it unique? If so, what is it?

f1 = \n.\m.(eq? n m) n

(plus n (f1 (succ n) m));

f2 = \n.f2 (isZero? n 100 (pred n));

f3 = \xs.xs nil (\z.\zs.cons 0 (f3 zs));

f4 = \xs.\ys.f4 ys xs;



Wait for it...



Example recursion equations

f1 = \n.\m.(eq? n m) n

(plus n (f1 (succ n) m));

; sigma (sum from n to m)

f2 = \n.f2 (isZero? n 100 (pred n));

; no unique solution (any constant f2)

f3 = \xs.xs nil (\z.\zs.cons 0 (f3 zs));

; map (const 0)

f4 = \xs.\ys. f4 xs ys;

; not unique: constant funs, commutative ops



Church Numerals

Encoding natural numbers as lambda-terms

zero = �f :�x:x

one = �f :�x:f x

two = �f :�x:f(f x)

succ = �n:�f :�x:f(n f x)

plus = �n:�m:n succ m

times = �n:�m:n (plus m) zero

Idea: “apply f to x, n times”



Church Numerals to machine integers

; uscheme or possibly uhaskell

-> (val add1 ((curry +) 1))

-> (define to-int (n)

((n add1) 0))

-> (to-int three)

3

-> (to-int ((times three) four))

12



Church Numerals in �

zero = \f.\x.x;

succ = \n.\f.\x.f (n f x);

plus = \n.\m.n succ m;

times = \n.\m.n (plus m) zero;

...

-> four;

\f.\x.f (f (f (f x)))

-> three;

\f.\x.f (f (f x))

-> times four three;

\f.\x.f (f (f (f (f (f (f (f (f (f (f (f x)))))))))))


