What solves this equation?

Equation:

$$
\text { fact }=\lambda n \text {.if } n=0 \text { then } 1 \text { else } n \times \text { fact }(n-1) ?
$$

The factorial function!

Factorial in lambda calculus

Wish for:
fact $=\backslash \mathrm{n}$. (zero? n$) 1$ (times $\mathrm{n}($ fact $($ pred n$)))$;
But: on right-hand side, fact is not defined.

Successive approximations

Function bot always goes into an infinite loop.

What are these?

fact $0=\backslash n .(z e r o ? n) 1$ (times $n($ bot $(\operatorname{pred} n))$);
fact1 $=\backslash$ n. (zero? $n) 1$ (times $n($ fact $0(\operatorname{pred} n))) ;$
fact $2=\backslash$ n. (zero? $n) 1$ (times $n($ fact $1(\operatorname{pred} n))$);

Successive approximations (manufactured)

```
g = \f.\n.(zero? n) 1 (times n (f (pred n)));
fact0 = g bot;
fact1 = g fact0; // = g (g bot)
fact2 = g fact1; // = g (g (g bot))
fact3 = g fact2; // = g (g (g (g bot)))
```


Fixed point

Suppose $\mathbf{f}=\mathbf{g} \mathbf{f}$. I claim $\mathbf{f} \mathbf{n}$ is \mathbf{n} factorial! Proof by induction on n .

Fixed-point combinator

What if

fix $g=g(f i x$ g)
Then fix $\mathbf{g} \mathbf{n}$ is \mathbf{n} factorial!

$$
\begin{aligned}
\text { fix } g & =g(\text { fix } g) \\
& =g(g(\text { fix } g)) \\
& =g(g \quad(g \quad(f i x \ln))) \\
& =\cdots
\end{aligned}
$$

Expand as much as you need to.

Y combinator can implement fix

Can define Y such that, for any $g, Y g=g(Y g)$.
(Details next time, with evaluation model.)

Conversion to fixed point

$$
\begin{aligned}
& \text { length }=\text { \xs.null? xs } 0(+1 \text { (length (cdr xs))) } \\
& \lg =\backslash l f . \backslash x s . n u l l ? \text { xs } 0(+1 \text { (lf (cdr xs))) }
\end{aligned}
$$

Example recursion equations

Is there a solution? Is it unique? If so, what is it?

$$
\begin{aligned}
& \mathrm{f} 1 \mathrm{~h}=\mathrm{n} . \backslash \mathrm{m} .(\mathrm{eq} \text { ? } \mathrm{n} \mathrm{~m}) \mathrm{n} \\
& \text { (plus } n \text { (f1 (succ n) m)); } \\
& \text { f2 }=\text { \n.f2 (isZero? n } 100(\text { pred } n)) ; \\
& \text { f3 = \xs.xs nil (} \backslash \mathbf{z} . \backslash \text { zs.cons } 0(f 3 \text { zs)); } \\
& \mathrm{f} 4=\text { \xs.\ys.f4 ys xs; }
\end{aligned}
$$

Wait for it...

Example recursion equations

```
f1 = \n.\m.(eq? n m) n
                                    (plus n (f1 (succ n) m));
    ; sigma (sum from n to m)
f2 = \n.f2 (isZero? n 100 (pred n));
        ; no unique solution (any constant f2)
f3 = \xs.xs nil (\z.\zs.cons 0 (f3 zs));
        ; map (const 0)
```

$\mathrm{f} 4=$ \xs.\ys. f 4 xs es;
; not unique: constant funs, commutative op

Church Numerals

Encoding natural numbers as lambda-terms

$$
\begin{aligned}
\text { zero } & =\lambda f \cdot \lambda x \cdot x \\
\text { one } & =\lambda f \cdot \lambda x \cdot f x \\
\text { two } & =\lambda f \cdot \lambda x \cdot f(f x) \\
\text { succ } & =\lambda n \cdot \lambda f \cdot \lambda x \cdot f(n f x) \\
\text { plus } & =\lambda n \cdot \lambda m \cdot n \text { succ } m \\
\text { times } & =\lambda n \cdot \lambda m \cdot n \text { (plus } m \text {) zero }
\end{aligned}
$$

Idea: "apply f to x, n times"

Church Numerals to machine integers

; uscheme or possibly uhaskell
-> (val add1 ((curry +) 1))
-> (define to-int (n)
-> (to-int three)
3
-> (to-int ((times three) four))
12

Church Numerals in λ

```
zero = \f.\x.x;
succ = \n.\f.\x.f (n f x);
plus = \n.\m.n succ m;
times = \n.\m.n (plus m) zero;
```

-> four;
\f.\x.f (f (f (f x)))
-> three;
\f. $\mathrm{x} . \mathrm{f}$ (f (f $\mathbf{x})$)
\rightarrow times four three;

