Membership revisited

From duplicates? function, member?

Laws:

```
(member? m '()) == #f
(member? m (cons m ks)) == #t
(member? m (cons k ks)) == (member? m ks), m != k
```

What kind of algorithm is this?

Your turn: Common list algorithms

Algorithms on linked lists (or arrays in sequence):

- Search for an element
- What else?

Predefined list algorithms

Some classics:

- exists? (Example: Is there a number?)
- all? (Example: Is everything a number?)
- filter (Example: Select only the numbers)
- map (Example: Add 1 to every element)
- foldr (Visit every element)

Fold also called reduce, accum, a "catamorphism"

Coding: Generalize linear search

Laws:

Generalize selection; make predicate a parameter:

```
(exists? p? '()) = #f
(exists? p? (cons y ys)) = #t, if (p? y)
(exists? p? (cons y ys)) = (exists? p? ys), otherwise
```

Predicate p? could come from curry (forthcoming)

Defining exists?

```
; (exists? p? '()) = #f
; (exists? p? (cons y ys)) = #t, if (p? y)
; (exists? p? (cons y ys)) = (exists? p? ys),
                                otherwise
-> (define exists? (p? xs)
            (if (null? xs)
                # f
                        (if (p? (car xs))
                #t
                            (exists? p? (cdr xs)))))
-> (exists? symbol? '(1 2 zoo))
#t
-> (exists? symbol? '(1 2 (zoo)))
#f
```


Defining filter

```
; (filter p? '()) == '()
; (filter p? (cons y ys)) ==
; (cons y (filter p? ys)), when (p? y)
; (filter p? (cons y ys)) ==
; (filter p? ys), when (not (p? y))
-> (define filter (p? xs)
    (if (null? xs)
        '()
        (if (p? (car xs))
        (cons (car xs) (filter p? (cdr xs)))
        (filter p? (cdr xs)))))
```


Running filter

-> (filter (lambda (n) (> n 0)) ${ }^{\prime}\left(\begin{array}{llllll}1 & 2 & -3 & -4 & 5 & 6\end{array}\right)$
(1 25 6)
\rightarrow (filter (lambda (n) $(<=\mathrm{n} 0))^{\prime}\left(\begin{array}{llllll}1 & 2 & -3 & -4 & 5 & 6\end{array}\right)$
(-3 -4)
\rightarrow (filter ((curry <) 0) '(1 2 -3 -4 5 6))
(1 $\left.2 \begin{array}{lll}1 & 5\end{array}\right)$
\rightarrow (filter ((curry >=) 0) '($\left.1 \begin{array}{llllll}1 & 2 & -3 & -4 & 5 & 6\end{array}\right)$
(-3 -4)

Your turn: map

\rightarrow (map add3 '(1 2 1 3 4 5))
(4 54678)
; ($\operatorname{map} \mathrm{f}$ '()) =
; ; (map f (cons y ys)) =

Answers: map

```
-> (map add3 '(1 2 3 4 5))
(4 5 5 6 7 8)
; (map f '()) == '()
; (map f (cons y ys)) == (cons (f y) (map f ys))
```


Defining and running map

```
; (map f '()) == '()
; (map f (cons y ys)) == (cons (f y) (map f ys))
-> (define map (f xs)
    (if (null? xs)
    '()
        (cons (f (car xs)) (map f (cdr xs)))))
-> (map number? '(3 a b (5 6)))
(#t #f #f #f)
-> (map *100 '(5 6 7))
(500 600 700)
```

Foldr

Algebraic laws for foldr

Idea: $\lambda+. \lambda 0 . x_{1}+\cdots+x_{n}+0$

Note: Binary operator + associates to the right.
Note: zero might be identity of plus.

Code for foldr

```
Idea: \(\lambda+. \lambda 0 . x_{1}+\cdots+x_{n}+0\)
-> (define foldr (plus zero xs)
        (if (null? xs)
        zero
        (plus (car xs) (foldr plus zero (cdr xs)))))
\(\rightarrow\) (val sum (lambda (xs) (foldr + 0 xs)))
-> (sum ' (1 \(\left.2 \begin{array}{llll}1 & 3 & 4\end{array}\right)\)
10
-> (val prod (lambda (xs) (foldr * 1 xs)))
-> (prod ' (1 2 3 4) )
24
```


Another view of operator folding

```
'(1 2 3 4) = (cons 1 (cons 2 (cons 3 (cons 4'()))))
(foldr + O '(1 2 3 4))
    = (+ 1 (+ 2(+ 3(+ 4 0 ))))
    (foldr f z '(1 2 3 4))
        = (f 1 (f 2 (f 3(f 4 z )) ))
```


Your turn

Idea: $\lambda+. \lambda 0 . x_{1}+\cdots+x_{n}+0$
-> (define combine (x a) (+ 1 a))
-> (foldr combine 0 ' (2 341))
???

Wait for it

Answer

Idea: $\lambda+. \lambda 0 . x_{1}+\cdots+x_{n}+0$
-> (define combine (x a) (+ 1 a))
-> (foldr combine 0 ' (2 341))
4
What function have we written?

Your turn: Explain the design

1. Functions like exists?, map, filter are subsumed by
2. Function foldr, which is subsumed by
3. Recursive functions

Seems redundant: Why?

Cornucopia of one-argument functions

The "function factory"

The idea of currying

-> (map ((curry +) 3) '(1 2 (344 5))
; add 3 to each element
-> (exists? ((curry =) 3) '(1 2344 5))
; is there an element equal to 3 ?
-> (filter ((curry >) 3) ' (1 234 5))
; keep elements that 3 is greater then

To get one-argument functions: Curry

-> (val positive? (lambda (y) (< 0 y)))
-> (positive? 3)
\#t
-> (val <-c (lambda (x) (lambda (y) (< x y))))
-> (val positive? (<-c 0)) ; "partial application"
-> (positive? 0)
\# \mathbf{f}

What's the algebraic law for curry?

... (curry f) ... = ... f...
Keep in mind:
All you can do with a function is apply it!

$$
(((\text { curry } f) x) y)=(f x y)
$$

Three applications: so implementation will have three lambdas

No need to Curry by hand!

```
;; curry : binary function -> value -> function
-> (val curry
    (lambda (f)
        (lambda (x)
            (lambda (y) (f x y)))))
-> (val positive? ((curry <) 0))
-> (positive? -3)
#f
-> (positive? 11)
#t
```


Your turn!

$$
\begin{aligned}
& \text { ??? } \\
& \text {-> (exists? ((curry =) 3) '(} \left.\begin{array}{lllll}
1 & 2 & 3 & 4 & 5
\end{array}\right) \\
& \text { ??? } \\
& \text {-> (filter ((curry >) 3) '(1 } 23445) \text {) } \\
& \text { ??? }
\end{aligned}
$$

Answers

$\left.\rightarrow\left(\operatorname{map} \quad\left(\begin{array}{llll} \\ \text { (curry }+) & 3\end{array}\right)^{1} \begin{array}{llll}1 & 3 & 4 & 5\end{array}\right)\right)$
(4 54678)
\rightarrow (exists? ((curry =) 3) '($\left.\begin{array}{l}1 \\ 2\end{array} 3445\right)$)
\#t
-> (filter ((curry >) 3) '(1 2344 5))
(1 2)

One-argument functions compose

\#f

Next up: proving facts about functions

