Membership revisited

From duplicates? function, member?

Laws:

(member? m '()) == #f
(member? m (cons m ks)) == #t
(member? m (cons k ks)) == (member? m ks), m != k

What kind of algorithm is this?
Your turn: Common list algorithms

Algorithms on linked lists (or arrays in sequence):

- Search for an element
- What else?
Predefined list algorithms

Some classics:

- exists? (Example: Is there a number?)
- all? (Example: Is everything a number?)
- filter (Example: Select only the numbers)
- map (Example: Add 1 to every element)
- foldr (Visit every element)

Fold also called reduce, accum, a “catamorphism”
Coding: Generalize linear search

Laws:

(member? m '()) = #f
(member? m (cons k ks)) = #t, if m == k
(member? m (cons k ks)) = (member? m ks), if m != k

Generalize selection; make predicate a parameter:

(exists? p? '()) = #f
(exists? p? (cons y ys)) = #t, if (p? y)
(exists? p? (cons y ys)) = (exists? p? ys), otherwise

Predicate p? could come from curry (forthcoming)
Defining exists?

; (exists? p? '()) = #f
; (exists? p? (cons y ys)) = #t, if (p? y)
; (exists? p? (cons y ys)) = (exists? p? ys), otherwise

-> (define exists? (p? xs)
 (if (null? xs)
 #f
 (if (p? (car xs))
 #t
 (exists? p? (cdr xs)))))

-> (exists? symbol? '(1 2 zoo))
#t

-> (exists? symbol? '(1 2 (zoo)))
#f
Defining filter

; (filter p? '()) == '()
; (filter p? (cons y ys)) ==
; (cons y (filter p? ys)), when (p? y)
; (filter p? (cons y ys)) ==
; (filter p? ys), when (not (p? y))

-> (define filter (p? xs)
 (if (null? xs)
 '()
 (if (p? (car xs))
 (cons (car xs) (filter p? (cdr xs)))
 (filter p? (cdr xs))))))
Running filter

-> (filter (lambda (n) (> n 0)) '(1 2 -3 -4 5 6))
 (1 2 5 6)
-> (filter (lambda (n) (<= n 0)) '(1 2 -3 -4 5 6))
 (-3 -4)
-> (filter ((curry <) 0) '(1 2 -3 -4 5 6))
 (1 2 5 6)
-> (filter ((curry >=) 0) '(1 2 -3 -4 5 6))
 (-3 -4)
Your turn: map

\[
\rightarrow (\text{map } \text{add3} \; '(1 \; 2 \; 3 \; 4 \; 5))
\]
\[
(4 \; 5 \; 6 \; 7 \; 8)
\]

;; \text{(map f } '(()) =

;; \text{(map f (cons y ys)) =}
Answers: map

-> (map add3 ' (1 2 3 4 5))
 (4 5 6 7 8)

; (map f ' ()) == ' ()
; (map f (cons y ys)) == (cons (f y) (map f ys))
Defining and running map

; (map f '()) == '()
; (map f (cons y ys)) == (cons (f y) (map f ys))
-> (define map (f xs)
 (if (null? xs)
 '()
 (cons (f (car xs)) (map f (cdr xs)))))
-> (map number? ' (3 a b (5 6)))
 (#t #f #f #f)
-> (map *100 ' (5 6 7))
 (500 600 700)
Algebraic laws for foldr

Idea: $\lambda + . \lambda 0 . x_1 + \cdots + x_n + 0$

$$(\text{foldr } (\text{plus } \text{zero } '())) = \text{zero}$$
$$(\text{foldr } (\text{plus } \text{zero } (\text{cons } y \text{ ys}))) =$$
$$(\text{plus } y (\text{foldr } \text{plus } \text{zero } \text{ys}))$$

Note: Binary operator $+$ associates to the right.

Note: zero might be identity of plus.
Code for foldr

Idea: $\lambda+.\lambda0. x_1 + \cdots + x_n + 0$

\rightarrow (define foldr (plus zero xs)
 (if (null? xs)
 zero
 (plus (car xs) (foldr plus zero (cdr xs)))))

\rightarrow (val sum (lambda (xs) (foldr + 0 xs)))
\rightarrow (sum '(1 2 3 4))
10

\rightarrow (val prod (lambda (xs) (foldr * 1 xs)))
\rightarrow (prod '(1 2 3 4))
24
Another view of operator folding

\[(1 \ 2 \ 3 \ 4) = \text{cons 1 (cons 2 (cons 3 (cons 4 '()))))}\]

\[(\text{foldr } + \ 0 \ '(1 \ 2 \ 3 \ 4))\]

\[= (+ \ 1 (+ \ 2 (+ \ 3 (+ \ 4 0)))))\]

\[(\text{foldr } f \ z \ '(1 \ 2 \ 3 \ 4))\]

\[= (f \ 1 (f \ 2 (f \ 3 (f \ 4 z)))))\]
Your turn

Idea: $\lambda+ . \lambda 0 . x_1 + \cdots + x_n + 0$

\to (define combine (x a) (+ 1 a))
\to (foldr combine 0 '(2 3 4 1))

???
Wait for it
Answer

Idea: \(\lambda \lambda x_1 + \cdots + x_n + 0 \)

\[
\rightarrow (\text{define combine } (x \ a) (+ \ 1 \ a))
\]

\[
\rightarrow (\text{foldr combine } 0 '(2 \ 3 \ 4 \ 1))
\]

4

What function have we written?
Your turn: Explain the design

1. Functions like `exists?`, `map`, `filter` are subsumed by
2. Function `foldr`, which is subsumed by
3. Recursive functions

Seems redundant: Why?
Cornucopia of one-argument functions

The “function factory”
The idea of currying

-> (map ((curry +) 3) '(1 2 3 4 5))
; add 3 to each element

-> (exists? ((curry =) 3) '(1 2 3 4 5))
; is there an element equal to 3?

-> (filter ((curry >) 3) '(1 2 3 4 5))
; keep elements that 3 is greater then
To get one-argument functions: Curry

-> (val positive? (lambda (y) (< 0 y)))
-> (positive? 3)
#t
-> (val <-c (lambda (x) (lambda (y) (< x y))))
-> (val positive? (<-c 0)); "partial application"
-> (positive? 0)
#f
What’s the algebraic law for *curry*?

\[\ldots \ (\text{curry } f) \ldots = \ldots f \ldots \]

Keep in mind:
All you can do with a function is apply it!

\[(((\text{curry } f) \ x) \ y) = (f \ x \ y) \]

Three applications: so implementation will have three *lambdas*
No need to Curry by hand!

;; curry : binary function -> value -> function
-> (val curry
 (lambda (f)
 (lambda (x)
 (lambda (y) (f x y))))))
-> (val positive? ((curry <) 0))
-> (positive? -3)
 #f
-> (positive? 11)
 #t
Your turn!

-> (map ((curry +) 3) '(1 2 3 4 5))
-> (exists? ((curry =) 3) '(1 2 3 4 5))
-> (filter ((curry >) 3) '(1 2 3 4 5)) ; tricky
Answers

-> (map ((curry +) 3) '(1 2 3 4 5))
 (4 5 6 7 8)

-> (exists? ((curry =) 3) '(1 2 3 4 5))
 #t

-> (filter ((curry >) 3) '(1 2 3 4 5))
 (1 2)
One-argument functions compose

```scheme
-> (define o (f g) (lambda (x) (f (g x))))
-> (define even? (n) (= 0 (mod n 2)))
-> (val odd? (o not even?))
-> (odd? 3)
#t
-> (odd? 4)
#f
```
Next up: proving facts about functions