Recursive-function problem

Exercise: all-fours?
Write a function that takes a natural number n and returns true (1) if and only if all the digits in n's numeral are 4's.

Key design step: form of number

Choose inductive structure for natural numbers:

- Which case analysis do we want?

Step 1: Forms of DECNUMERAL proof system (1st lesson in program design):

- Either a single digit d
- Or $10 \times m+d$, where $m \neq 0$

Example inputs

Step 2:

- Single digits: 4, 9
- Multi-digits: 44, 907, 48

Function's name and contract

Steps 3 and 4:
Function (all-fours? n) returns nonzero if and only if the decimal representation of n can be written using only the digit 4.

Example results

Step 5: write expected results as unit tests:

(check-assert	(all-fours? 4))	
(check-assert	(not	(all-fours? 9)))
(check-assert	(all-fours? 44))	
(check-assert	(not	(all-fours? 48)))
(check-assert	(not	(all-fours? 907)))

Algebraic laws

Step 6: Generalize example results to arbitrary forms of data
(all-fours? d) == (= d 4)
(all-fours? (+ (* 10 m) d)) ==
(= d 4) \&\& (all-fours? m)

Left-hand sides turn into case analysis

Step 7:

; (all-fours? d) == ...
; (all-fours? (+ (* 10 m$) \mathrm{d})$) ==
(define all-fours? (n)
(if (< n 10)
... case for $\mathrm{n}=\mathrm{d} .$.
... case for $n=(+(* 10 \mathrm{~m}) \mathrm{d})$,
so $m=(/ n 10)$ and
$\mathrm{d}=(\bmod \mathrm{n} 10) \ldots)$)

Each right-hand side becomes a result

Step 8:

```
; (all-fours? d) == (= d 4)
; (all-fours? (+ (* 10 m) d)) ==
    (= d 4) && (all-fours? m)
```

(define all-fours? (n)
(if (< n 10)
($=$ n 4)
(and (= 4 (mod n 10))
(all-fours? (/ n 10)))))

Revisit tests:

Step 9:

(check-assert		$($ all-fours?
(check-assert	(not	(all-fours?
(check-assert))		
(check-assert	(not	(all-fours? 44))
(all-fours? 907)))		

(check-assert (not (all-fours? 48)))
Checklist:

- For each form of data, one true and one false
- One extra corner case (partly fours)
- Tests pass

Our common framework

Goal: eliminate superficial differences

- Makes comparisons easy
- Differences that remain must be important!

No new language ideas.
Imperative programming with an IMPerative CORE:

- Has features found in most languages
(loops and assignment)
- Trivial syntax (from LISP)

Idea of LISP syntax

Parenthesized prefix syntax:

- Names and numerals are basic atoms
- Other constructs bracketed with (...) or [...] (Possible keyword after opening bracket)

Examples:

(+ 2 2)
(if (isbound? x rho) (lookup rho x) (error 99))
(For now, we use just the round brackets)

Impcore structure

Two syntactic categories: expressions, definitions
No statements!-expression-oriented (compositional)
(if e1 e2 e3)
(while e1 e2)
(set x e)
(begin e1 ... en)
(f e1 ... en)
Evaluating e has value, may have side effects
Functions f named (e.g., + - * / = < print)
The only type of data is "machine integer"
(deliberate oversimplification)

Syntactic structure of Impcore

An Impcore program is a sequence of definitions
(define mod (m n) (-m (* $\mathrm{n}(/ \mathrm{m} \mathrm{n}))$))
Compare
int mod (int m, int n) \{
return $m-n *(m / n) ;$
\}

Impcore variable definition

Example

```
(val n 99)
```

Compare
int $\mathrm{n}=99$;

Concrete syntax for Impcore

Definitions and expressions:

```
def ::= (define f (x1 ... xn) exp) ; ; "true" defs
    | (val x exp)
    | exp
    | (use filename) ; ; "extended" defs
    | (check-expect exp1 exp2)
    | (check-assert exp)
    | (check-error exp)
exp ::= integer-literal
    | variable-name
    | (set x exp)
    | (if exp1 exp2 exp3)
    | (while exp1 exp2)
    | (begin exp1 ... expn)
    | (function-name exp1 ... expn)
```


Example function shows every form

(define even? (n) (= (mod n 2) 0))
(define $3 n+1$-sequence (n) ; from Collatz (begin
(while (! $=\mathrm{n}$ 1)
(begin
(println n)
(if (even? n)
(set $n(/ n 2))$
(set n (+ (* 3 n) 1)))))
n))

