
Recursive-function problem

Exercise: all-fours?

Write a function that takes a natural number n and

returns true (1) if and only if all the digits in n’s

numeral are 4’s.



Key design step: form of number

Choose inductive structure for natural numbers:

• Which case analysis do we want?

Step 1: Forms of DECNUMERAL proof system

(1st lesson in program design):

• Either a single digit d

• Or 10�m+ d, where m 6= 0



Example inputs

Step 2:

• Single digits: 4, 9

• Multi-digits: 44, 907, 48



Function’s name and contract

Steps 3 and 4:

Function (all-fours? n) returns nonzero if

and only if the decimal representation of n

can be written using only the digit 4.



Example results

Step 5: write expected results as unit tests:

(check-assert (all-fours? 4))

(check-assert (not (all-fours? 9)))

(check-assert (all-fours? 44))

(check-assert (not (all-fours? 48)))

(check-assert (not (all-fours? 907)))



Algebraic laws

Step 6: Generalize example results to arbitrary

forms of data

(all-fours? d) == (= d 4)

(all-fours? (+ (* 10 m) d)) ==

(= d 4) && (all-fours? m)



Left-hand sides turn into case analysis

Step 7:

; (all-fours? d) == ...

; (all-fours? (+ (* 10 m) d)) == ...

(define all-fours? (n)

(if (< n 10)

... case for n = d ...

... case for n = (+ (* 10 m) d),

so m = (/ n 10) and

d = (mod n 10) ...))



Each right-hand side becomes a result

Step 8:

; (all-fours? d) == (= d 4)

; (all-fours? (+ (* 10 m) d)) ==

; (= d 4) && (all-fours? m)

(define all-fours? (n)

(if (< n 10)

(= n 4)

(and (= 4 (mod n 10))

(all-fours? (/ n 10)))))



Revisit tests:

Step 9:

(check-assert (all-fours? 4))

(check-assert (not (all-fours? 9)))

(check-assert (all-fours? 44))

(check-assert (not (all-fours? 907)))

(check-assert (not (all-fours? 48)))

Checklist:

• For each form of data, one true and one false

• One extra corner case (partly fours)

• Tests pass



Our common framework

Goal: eliminate superficial differences

• Makes comparisons easy

• Differences that remain must be important!

No new language ideas.

Imperative programming with an IMPerative CORE:

• Has features found in most languages

(loops and assignment)

• Trivial syntax (from LISP)



Idea of LISP syntax

Parenthesized prefix syntax:

• Names and numerals are basic atoms

• Other constructs bracketed with (. . .) or [. . .]

(Possible keyword after opening bracket)

Examples:

(+ 2 2)

(if (isbound? x rho) (lookup rho x) (error 99))

(For now, we use just the round brackets)



Impcore structure

Two syntactic categories: expressions, definitions

No statements!—expression-oriented (compositional)

(if e1 e2 e3)

(while e1 e2)

(set x e)

(begin e1 ... en)

(f e1 ... en)

Evaluating e has value, may have side effects

Functions f named (e.g., + - * / = < > print)

The only type of data is “machine integer”

(deliberate oversimplification)



Syntactic structure of Impcore

An Impcore program is a sequence of definitions

(define mod (m n) (- m (* n (/ m n))))

Compare

int mod (int m, int n) {

return m - n * (m / n);

}



Impcore variable definition

Example

(val n 99)

Compare

int n = 99;



Concrete syntax for Impcore

Definitions and expressions:

def ::= (define f (x1 ... xn) exp) ;; "true" defs

| (val x exp)

| exp

| (use filename) ;; "extended" defs

| (check-expect exp1 exp2)

| (check-assert exp)

| (check-error exp)

exp ::= integer-literal

| variable-name

| (set x exp)

| (if exp1 exp2 exp3)

| (while exp1 exp2)

| (begin exp1 ... expn)

| (function-name exp1 ... expn)



Example function shows every form

(define even? (n) (= (mod n 2) 0))

(define 3n+1-sequence (n) ; from Collatz

(begin

(while (!= n 1)

(begin

(println n)

(if (even? n)

(set n (/ n 2))

(set n (+ (* 3 n) 1)))))

n))


