
Scheme: What’s Good? What’s Bad?

An advanced cognitive task:

1. Remember

2. Understand

3. Apply

4. Analyze

5. Evaluate

6. Create



Length

fun length [] = 0

| length (x::xs) = 1 + length xs

val res = length [1,2,3]



Map

fun map f [] = []

| map f (x::xs) = (f x) :: (map f xs)

val res1 =

map length [[], [1], [1,2], [1,2,3]]



Map, without redundant parentheses

fun map f [] = []

| map f (x::xs) = f x :: map f xs

val res1 =

map length [[], [1], [1,2], [1,2,3]]



Filter

fun filter pred [] = []

| filter pred (x::xs) = (* no ’pred?’ *)

let val rest = filter pred xs

in if pred x then

(x :: rest)

else

rest

end

val res2 =

filter (fn x => (x mod 2) = 0) [1,2,3,4]



Filter, without redundant parentheses

fun filter pred [] = []

| filter pred (x::xs) = (* no ’pred?’ *)

let val rest = filter pred xs

in if pred x then

x :: rest

else

rest

end

val res2 =

filter (fn x => (x mod 2) = 0) [1,2,3,4]



Exists

fun exists pred [] = false

| exists pred (x::xs) =

(pred x) orelse (exists pred xs)

val res3 =

exists (fn x => (x mod 2) = 1) [1,2,3,4]

(* Note: fn x => e is syntax for lambda *)



Exists, without redundant parentheses

fun exists pred [] = false

| exists pred (x::xs) =

pred x orelse exists pred xs

val res3 =

exists (fn x => (x mod 2) = 1) [1,2,3,4]

(* Note: fn x => e is syntax for lambda *)



All

fun all pred [] = true

| all pred (x::xs) =

(pred x) andalso (all pred xs)

val res4 = all (fn x => (x >= 0)) [1,2,3,4]



All, without redundant parentheses

fun all pred [] = true

| all pred (x::xs) =

pred x andalso all pred xs

val res4 = all (fn x => (x >= 0)) [1,2,3,4]



Take

exception TooShort

fun take 0 _ = [] (* wildcard! *)

| take n [] = raise TooShort

| take n (x::xs) = x :: (take (n-1) xs)

val res5 = take 2 [1,2,3,4]

val res6 = take 3 [1]

handle TooShort =>

(print "List too short!"; [])

(* Note use of exceptions. *)



Take, without redundant parentheses

exception TooShort

fun take 0 _ = [] (* wildcard! *)

| take n [] = raise TooShort

| take n (x::xs) = x :: take (n-1) xs

val res5 = take 2 [1,2,3,4]

val res6 = take 3 [1]

handle TooShort =>

(print "List too short!"; [])

(* Note use of exceptions. *)



Drop

fun drop 0 zs = zs

| drop n [] = raise TooShort

| drop n (x::xs) = drop (n-1) xs

val res7 = drop 2 [1,2,3,4]

val res8 = drop 3 [1]

handle TooShort =>

(print "List too short!"; [])



Takewhile

fun takewhile p [] = []

| takewhile p (x::xs) =

if p x then (x :: (takewhile p xs))

else []

fun even x = (x mod 2 = 0)

val res8 = takewhile even [2,4,5,7]

val res9 = takewhile even [3,4,6,8]



Takewhile, without redundant parentheses

fun takewhile p [] = []

| takewhile p (x::xs) =

if p x then x :: takewhile p xs

else []

fun even x = (x mod 2 = 0)

val res8 = takewhile even [2,4,5,7]

val res9 = takewhile even [3,4,6,8]



Dropwhile

fun dropwhile p [] = []

| dropwhile p (zs as (x::xs)) =

if p x then (dropwhile p xs) else zs

val res10 = dropwhile even [2,4,5,7]

val res11 = dropwhile even [3,4,6,8]

(* fancy pattern form: zs as (x::xs) *)



Dropwhile, without redundant parentheses

fun dropwhile p [] = []

| dropwhile p (zs as (x::xs)) =

if p x then dropwhile p xs else zs

val res10 = dropwhile even [2,4,5,7]

val res11 = dropwhile even [3,4,6,8]

(* fancy pattern form: zs as (x::xs) *)



Folds

fun foldr p zero [] = zero

| foldr p zero (x::xs) = p (x, (foldr p zero xs))

fun foldl p zero [] = zero

| foldl p zero (x::xs) = foldl p (p (x, zero)) xs

val res12 = foldr (op +) 0 [1,2,3,4]

val res13 = foldl (op * ) 1 [1,2,3,4]

(* Note ’op’ to use infix operator as a value *)



Folds, without redundant parentheses

fun foldr p zero [] = zero

| foldr p zero (x::xs) = p (x, foldr p zero xs )

fun foldl p zero [] = zero

| foldl p zero (x::xs) = foldl p (p (x, zero)) xs

val res12 = foldr (op +) 0 [1,2,3,4]

val res13 = foldl (op * ) 1 [1,2,3,4]

(* Note ’op’ to use infix operator as a value *)



ML—Five Questions

Values: num/string/bool, constructed data

Syntax: definitions, expressions, patterns, types

Environments: names stand for values (and types)

Evaluation: uScheme + case and pattern matching

Initial Basis: medium size; emphasizes lists

(Question Six: type system—a coming attraction)



A note about books

Ullman is easy to digest

Ullman costs money but saves time

Ullman is clueless about good style

Suggestion:

• Learn the syntax from Ullman

• Learn style from Ramsey, Harper, & Tofte

Details in course guide Learning Standard ML


