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Introduction

The lambda calculus is a universal model of computation. What
this means is the proper study of a course in theory of com-
putation, but roughly speaking, lambda calculus is as powerful
as any deterministic, sequential computer that we can imagine.
Lambda calculus is equivalent to that other universal model of
computation, the Turing machine.

Roughly speaking, “universal” also means “can run any program.”
To convince yourself that the lambda calculus really is universal,
there is no better exercise than to translate code into the lambda
calculus. One of the benefits of lambda calculus is that translating
code into lambda calculus is relatively painless. By contrast,
translating code for a Turing machine demands a compiler.

Given that high-level languages have all sorts of syntactic forms
and data structures, whereas lambda calculus has only three forms
of term, it’s not obvious that high-level languages can be trans-
lated. This handout sketches some standard translations. Ideas
about translating syntax and translating data are mixed freely.

Summary of lambda calculus

To write lambda calculus, I use the concrete syntax of the lambda
interpreter in the homework. If terms are written M and N , and
variables are written x and y, there three forms of term:

M ::= x | \x.M | M1 M2

And there is one form of definition

def ::= x = M;

(I ignore noreduce as a mere instruction to the interpreter.)

Lambda calculus is not evaluated in the same way that other lan-
guages are evaluated: the closest thing to evaluation is reduction
to normal form. That said, we can think of lambda calculus as
being evaluated like any other functional language (think Scheme
or ML), except that the actual parameters to functions are not
evaluated—instead, actual parameters are passed around in un-
evaluated state, and they are evaluated only when and if needed.
This delay or “laziness” in evaluation is exploited by the coding
of algebraic data types.

Natural numbers
A natural number n is coded using an idea of Alonzo Church’s:
n is coded as the capability of taking a function f and an argu-
ment x, and applying f to x n times. Examples:

<0> = \f.\x.x;

<1> = \f.\x.f x;

<2> = \f.\x.f (f x);

<3> = \f.\x.f (f (f x));

We can’t write down all the natural numbers, but any natural
number, no matter how large, is either zero or is the successor of
some other natural number (m+ 1). The successor of m has the
ability to apply f to x m times, plus one more time, obeying this
law:

// succ m f x = f (m f x)

and we can therefore define successor as follows:

succ = \m.\f.\x.f (m f x);

To add n to m, we take the successor of m, n times:

// plus n m = n succ m

plus = \n.\m.n succ m;

To multiply n by m, we can add m to zero, n times:

// times n m = n (plus m) <0>

times = \n.\m.n (plus m) <0>;

Left as an exercise: m raised to the nth power.

Other clever tricks can be accomplished by choice of a suitable
function f . For example, consider what happens if you choose a
function f that always returns true.

Constructed data and case expressions
When thinking in lambda calculus, I code every form of data as an
instance of one of these three concepts: a function, a natural num-
ber, or constructed data. (Both natural numbers and constructed
data are then coded as functions.) The coding of constructed data
is based, as always, on the ability to look at a constructed value
and answer two questions:

• How were you made?
• From what parts?
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These questions are the same questions that we can ask about
value constructors and constructed data in ML, except that in
lambda calculus, a value constructor doesn’t take a tuple; instead,
it’s Curried, with zero or more arguments.1 And each constructed
datum is coded as the capability of answering these two questions.
The questions are posed as follows:

• Each possible answer to “how were you made?” is coded as
a continuation. That is, there is one continuation per form
of data.

• Each continuation takes the “parts” as arguments.

Here’s an example. There are two ways to make a list:

• nil makes an empty list, which does not have any parts.
• cons makes a nonempty list, from two parts.

Supposing I have one continuation kn for nil and another con-
tinuation kc for cons, the constructed data obey these algebraic
laws:

// nil kn kc = kn

// (cons x xs) kn kc = kc x xs

We therefore have these definitions:

nil = \kn.\kc.kn;

cons = \x.\xs.\kn.\kc.kc x xs;

What can we do with the constructed data? Pattern match!
Lambda calculus doesn’t have pattern matching or case expres-
sions, but it can still express a limited form of pattern matching
with lambdas. This form corresponds to a case expression in
which every pattern is a value constructor applied to zero or more
variables. So to translate ML code into lambda calculus, we first
reduce all pattern matching into cases of this form. As an exam-
ple, I translate ML’s null into lambda calculus.

First, I write the classic clausal definition:

fun null [] = true

| null (x::xs) = false

Next, I translate it to use ML’s lambda syntax (fn) and its case
syntax:

val null = fn ys => case ys of [] => true

| x :: xs => false

Now I turn each case “arm” into a continuation:

• The arm [] => true becomes continuation kn, which
takes no arguments and returns true.

Continuation kn is just true.

• The arm x :: xs => false becomes continuation kc,
which takes arguments x and xs and returns false.

Continuation kc is \x.\xs.false.

1This sensible system for value constructors is also used in the programming
language Haskell.

Finally, I translate the case expression by applying the con-
structed data to its continuations:

null = \ys . ys (true) (\x.\xs.false);

Here’s another one:

singleton? = \ys. ys false (\x.\xs.null xs);

Here’s another type and some functions:

datatype 'a option = NONE | SOME of 'a
(* Option.map f NONE = NONE

Option.map f (SOME x) = SOME (f x)

valOf (SOME x) = x *)

Here are their codings in lambda calculus

NONE = \kn.\ks.kn;

SOME = \a.\kn.\ks.ks a;

Option.map = \f.\v.v NONE (\a.SOME (f a));

valOf = \v.v bot (\a.a);

Here bot is the divergent term (\x.x x)(\x.x x). (In ML,
valOf NONE results in a checked run-term error. In lambda
calculus, nontermination, which is usually called “divergence,” is
the closest thing we have to an error.)

Booleans
We’re used to Booleans being special, and they get their own
special elimination form (the if expression), but in practice,
Booleans are just constructed data:

datatype bool = true | false

// if P then ET else EF ==

// case p of true => ET | false => EF

We have our algebraic laws:

// true ET EF = ET

// false ET EF = EF

and here are the definitions:

true = \x.\y.x;

false = \x.\y.y;

Pairs
Pairs are just constructed data with special syntactic support.
Roughly speaking,

// type 'a * 'b == PAIR of 'a * 'b // really Curried

// (e1, e2) == PAIR e1 e2

// let val (x, y) = p in e end ==

// (case p of (x, y) => e)

In other words, a pair is a single form of data (one continuation)
made from two parts (two_arguments to the continuation):
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// pair x y k = k x y

pair = \x.\y.\k.k x y;

It’s easy and efficient to program with pairs and continuations
directly, but we can also translate some ML functions:

fun swap (x, y) = (y, x)

fun fst (x, y) = x

fun snd (x, y) = y

fun swap p = case p of (x, y) => (y, x)

fun fst p = case p of (x, y) => x

fun snd p = case p of (x, y) => y

swap = \p.p (\x.\y.pair y x);

fst = \p.p (\x.\y.x);

snd = \p.p (\x.\y.y);

Other high-level data

Aside from natural numbers and algebraic data types, high-level
languages offer other data representations. But they can be trans-
lated!

• As in C, a character is just a natural number. (Think Unicode
“code point.”)

• A string is a list of characters.

• An array is the same abstraction as a list—it just offers a
different cost model (constant-time access, no growth or
shrinkage). Lambda calculus, like a Turing machine, does
not offer a sequence structure with constant-time access.
As a result, costs relative to modern hardware may be larger
by a factor polynomial in the size of the input.

• Records are coded in the same way as pairs and other tuples.
Record names are treated as syntactic sugar.

High-level expression forms

What about translating high-level expression forms into lambda
calculus? Here’s a list:

• The LITERAL form is not needed. All values are coded as
expressions, so any “literal value” is simply written directly
as an expression.

• The VAR form is supported directly.

• The LAMBDA form is supported directly, but it is limited to
single-argument functions. A multiple-argument function
is coded by Currying. A zero-argument function is coded
as just its body—thanks to the unusual evaluation model of
the lambda calculus, an unprotected body behaves the same
way as zero-argument function in Scheme.

• The APPLY form is supported directly, but is limited to ap-
plying a function to a single actual parameter. Since all
functions are Curried, this works out just fine.

• The case form (not found in µScheme, but found in ML
and in µML) is coded by applying the scrutinee to one or
more continuations, as described above.

• The IFX form is coded by applying the condition to the true
and false branches. It is a special case of case.

• The LET form is coded by a combination of APPLY and
LAMBDA:

(let ([x1 e1] ... [xn en]) e)

is coded as

((lambda [x1 ... xn] e) e1 ... en)

• The LETSTAR form (and ML’s let/val form) is syntactic
sugar for a nested series of LET forms. The coding is de-
scribed in the book.

• The BEGIN form can be coded using let*:

(begin e1 e2 ... en)

is coded as

(let* ([_ e1]

[_ e2]

...

[_ en])

_)

where _ stands for any name that is not free in any of the
e’s.

• The WHILE form can be coded using a recursive function.
You did something similar for homework:

(while e1 e2)

is coded as

(letrec

([loop (lambda ()

(if e1 (begin e2 (loop)) #f))])

(loop))

where loop is a name that is not free in e1 or e2.

This is almost everything you might find in a high-level language.
We’re left with LETREC, which is treated below, and SET.

Mutation (SET) doesn’t play well with lambda calculus—in
lambda calculus, as in ML and Haskell, a name stands for a
value, not a mutable location.2 If you want to simulate mutation
in lambda calculus, I don’t know a better way than just simulating
the operational semantics of a mutable store. (What happens in
practice is that we learn to write algorithms that use let* instead

2In Haskell, the real story is more complicated, as a name may stand for a
“thunk” containing an unevaluated expression, but a name definitely does not
stand for a location that user code can mutate.
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of set, and formal parameters instead of mutable variables. This
trick works well.)

Recursion
Lambda calculus has nothing like letrec or define. There is
no recursion in the lambda calculus, and when we use the (only)
definition form, all variables on the right-hand side have to be
defined in the environment already (so they can be substituted).
So the lambda calculus might look like a dead end—how can
we write anything interesting with no loops or recursion?—but
there is an amazing trick. The trick is more than just a trick,
however: it is based in the ultimate truth about how we think about
and define recursions. This method, the method of successive
approximations, is where we begin.

Approximations (mathy)
This section defines, technically, what an approximation is.
It’s mathy, and you can think about skipping it.

All approximations begin with a divergent term. I use

noreduce bot = (\x.x x)(\x.x x);

Term bot beta-reduces to itself in one step, so any attempt to
normalize it runs away in an endless sequence of reductions.
(This behavior is called divergence.) This behavior makes bot a
really bad approximation to factorial. Approximation is defined
on both functions and lambda terms, but the place to start is with
functions:

Function f approximates g (f v g) if g is defined on
at least as many inputs as f is, and where they are both
defined, they agree.

Getting super pedantic, we can adapt this definition for lambda
terms:

Term M1 approximates term M2 if for every term N ,
the following property holds:

• If M1 N has a normal form, then M2 N also has
a normal form, and furthermore, these two normal
forms are equivalent up to alpha-renaming.

Therefore, bot approximates factorial, because for every term N ,
bot N doesn’t have a normal form, and the property holds triv-
ially. (The property makes it an approximation, and the triviality
makes it a bad approximation.)

Approximating factorial
We’d really like to define factorial recursively:

// WRONG!

// fact = \n.(zero? n) <1> (* n (fact (pred n)));

This idea won’t work: we can imagine that zero?, 1, *, and pred
are all defined, but there is no way that fact is defined. However,

since fact is all we’re missing, we can slot in an approximation:
on the right-hand side, instead of using fact, we can use bot:

noreduce fact0 = \n.(zero? n) <1> (* n (bot (pred n)));

And we can usefully apply this to zero, but not one:

-> fact0 <0>;

\f.f

-> fact0 <1>;

Failed to normalize after 100000 reductions

DIVERGENT TERM fact0 <1>

fact0 <1>

->

But now we can use fact0 to define a better approximation:
we go back to our recursive definition, and on the right-hand side,
we plug in fact0 in place of the recursive call:

noreduce fact1 = \n.(zero? n) <1> (* n (fact0 (pred n)));

If we pass 0 to fact1, it works just like it did before. But now if
we pass 1 to fact1, it takes the predecessor to get 0, passes 0 to
fact0, and it still works:

-> fact1 <1>;

\f.f

More things that work:

noreduce fact2 = \n.(zero? n) <1> (* n (fact1 (pred n)));

noreduce fact3 = \n.(zero? n) <1> (* n (fact2 (pred n)));

Approximations keep getting better!

-> fact2 <3>;

Failed to normalize after 100000 reductions

DIVERGENT TERM fact2 <3>

fact2 <3>

-> fact3 <3>;

\f.\x.f (f (f (f (f (f x)))))

Plugging things in by hand grows tiresome. Fortunately, beta
reduction gives us a tool for plugging things in. I can define an
“approximation builder” that takes an approximation as a param-
eter, then plugs it in, leaving me with a better approximation.
Because it’s a “factorial builder,” I call it fb:

fb = \f.\n.(zero? n) <1> (* n (f (pred n)));

noreduce fact4 = fb fact3;

noreduce fact5 = fb fact4;

noreduce fact6 = fb fact5;

Now we can start computing some decent-sized factorials:

-> fact6 <4>;

\f.\x.f (f (f (f (f (f (f (f (f (f (f (f (f

(f (f (f (f (f (f (f (f (f (f (f x)

))))))))))))))))))))))
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How an approximation works
Let’s sketch how those calls actually work. To begin, let’s look
more closely at the structure of fact6:

fact6 = fb fact5 = fb (fb fact4)

= fb (fb (fb fact3))

= fb (fb (fb (fb fact2)))

= fb (fb (fb (fb (fb fact1))))

= fb (fb (fb (fb (fb (fb bot)))))

By itself this term does nothing interesting—it just diverges. But
when we apply it to the Church numeral for 4, we suddenly have
some more interesting reductions available. To see how things
evolve, I’ll exploit the algebraic laws for Booleans and for Church
numerals, plus a few more:

// fb f n = (zero? n) <1> (* n (f (pred n)))

// zero? <0> = true

// zero? (succ n) = false

Let’s calculate!3

fact6 4

= { definition of `fact6` above }

fb (fb (fb (fb (fb (fb bot))))) 4

= { law of `fb` }

(zero? 4) 1 (* 4 (fb (fb (fb (fb (fb bot)))) (pred 4)))

= { 2nd law of `zero?` }

false 1 (* 4 (fb (fb (fb (fb (fb bot)))) (pred 4)))

= { law of `false` }

(* 4 (fb (fb (fb (fb (fb bot)))) (pred 4)))

= { law of `pred` }

(* 4 (fb (fb (fb (fb (fb bot)))) 3))

= { law of `fb` }

(* 4 ((zero? 3) 1 (* 3 (fb (fb (fb (fb bot))) (pred 3)))))

= { 2nd law of `zero?` }

(* 4 (false 1 (* 3 (fb (fb (fb (fb bot))) (pred 3)))))

= { law of `false` }

(* 4 (* 3 (fb (fb (fb (fb bot))) (pred 3))))

= { law of `pred` }

(* 4 (* 3 (fb (fb (fb (fb bot))) 2)))

= { law of `fb` }

(* 4 (* 3 ((zero? 2) 1 (* 2 (fb (fb (fb bot)) (pred 2))))))

= { 2nd law of `zero?` }

(* 4 (* 3 (false 1 (* 2 (fb (fb (fb bot)) (pred 2))))))

= { law of `false` }

(* 4 (* 3 (* 2 (fb (fb (fb bot)) (pred 2)))))

= { law of `pred` }

(* 4 (* 3 (* 2 (fb (fb (fb bot)) 1))))

= { law of `fb` }

(* 4 (* 3 (* 2 ((zero? 1) 1 (* 1 (fb (fb bot) (pred 1)))))))

= { 2nd law of `zero?` }

(* 4 (* 3 (* 2 (false 1 (* 1 (fb (fb bot) (pred 1)))))))

= { law of `false` }

(* 4 (* 3 (* 2 (* 1 (fb (fb bot) (pred 1))))))

= { law of `pred` }

(* 4 (* 3 (* 2 (* 1 (fb (fb bot) 0)))))

= { law of `fb` }

(* 4 (* 3 (* 2 (* 1 ((zero? 0) 1 (fb bot (pred 0)))))))

3To make the calculation fit, I’ve taken the angle brackets off all the numerals.

= { at long last, the first law of `zero?` }

(* 4 (* 3 (* 2 (* 1 (true 1 (fb bot (pred 0)))))))

= { law of `true` }

(* 4 (* 3 (* 2 (* 1 1))))

Perfect approximations via fixed points
The key thing making the calculation fact6 4 work is that we
never get to bot: we have enough applications of fb so that even-
tually, we stop the recursion. But a finite number of applications
is not always good enough: fact6 can compute the factorials
of numbers up to 6, and no more. But there is an amazing trick,
hinted at by the observation that we don’t actually use bot: sup-
pose we replace bot with a different diverging term, let’s call
it F, so that when it “reduces,” it actually expands to give us more
applications of fb. That is, we’re looking for

F = fb F = fb (fb F) = fb (fb (fb F))

such an F, if it exists, is called a fixed point of fb. The shocking
thing is that there is a lambda term that, when applied to fb, is a
fixed point of fb. There are actually many such terms; the one
we use is called the “Y combinator”:

noreduce Y = \f.(\x.f(x x))(\x.f(x x));

Let’s calculate!

Y fb

= { definition of `Y` }

(\f.(\x.f(x x))(\x.f(x x))) fb;

= { beta-reduction }

(\x.fb(x x))(\x.fb(x x));

= { beta-reduction }

fb ((\x.fb(x x))(\x.fb(x x)));

= { first two steps in this calculation, backward }

fb (Y fb)

And we didn’t use any properties of fb! The Y combinator works
for any function.

Calculating with the Y combinator
We’ve already done factorial. Let’s do length. We just define a
function lb (“length builder”), and instead of the recursive call,
we plug in the parameter:

noreduce lb = \f.\xs.null? xs <0> (succ (f (cdr xs)));

// lb f xs = null? xs <0> (succ (f (cdr xs)))

noreduce length = Y lb;

And let’s calculate:

length (cons A (cons B nil))

= { definition of `length` }

Y lb (cons A (cons B nil))

= { law of `Y` }

lb (Y lb) (cons A (cons B nil))

= { law of `lb` }

null? (cons A (cons B nil)) <0> (succ ((Y lb) (cdr (cons A (cons B nil)))))
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= { null-cons law }

false <0> (succ ((Y lb) (cdr (cons A (cons B nil)))))

= { law of `false` }

succ ((Y lb) (cdr (cons A (cons B nil))))

= { cdr-cons law }

succ ((Y lb) (cons B nil))

= { KEY STEP: law of `Y` }

succ (lb (Y lb) (cons B nil))

= { law of `lb` }

succ (null? (cons B nil) <0> (succ ((Y lb) (cdr (cons B nil)))))

= { null-cons law }

succ (false <0> (succ ((Y lb) (cdr (cons B nil)))))

= { law of `false` }

succ (succ ((Y lb) (cdr (cons B nil))))

= { cdr-cons law }

succ (succ ((Y lb) nil))

= { KEY STEP: law of `Y` }

succ (succ (lb (Y lb) nil))

= { law of `lb` }

succ (succ (null? nil <0> (succ (Y lb) (cdr nil))))

= { null-nil law }

succ (succ (true <0> (succ (Y lb) (cdr nil))))

= { law of `true` }

succ (succ <0>)

As expected, the length is 2. Each “KEY STEP” in the calculation
is an expansion of Y lb to lb (Y lb). Each one corresponds to
one recursive call of length.

Replacing recursion
Every define form can be replaced with a val form that uses Y:

// (define f (x) e) becomes

// val f = Y (\f.\x.e);

The same ideas work on letrec:

// (letrec ([f (lambda (x) e)]) body)

// becomes

// (\f.body) (Y (\f.\x.e))

When letrec defines multiple functions, you can put them into
(nested) pairs, and use the fixed-point operator to approximate
the pairs.

Summary
To translate any code into lambda calculus, choose from these
transformations:

• Replace while with recursion and set with let-binding or
function parameters. Replace begin with let*.

• Desugar let* into nested let expressions.
• Desugar let expressions into applied lambdas.
• Code signed integers and floating-point numbers in software,

using natural numbers.
• Code natural numbers, unsigned integers, and characters

using Church numerals.
• Code constructed data using continuations.
• Code sequences using lists.
• Curry all functions, and change applications to match.
• Translate conditionals into case expressions.
• Translate all pattern matching (case, fun, let) into case

expressions.
• Un-nest patterns in case expressions, turning nested pat-

terns into nested case expressions.
• Translate case into continuation-passing style.
• Translate recursion using the Y combinator .

Many of these transformations are standard compiler transforma-
tions.
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