
Programming with Scheme Values and Algebraic Laws

Norman Ramsey

Spring 2019

1 Introduction

This handout goes deeper into programming with al-
gebraic laws, in three parts:

• You get the bare bones of programming
with µScheme values, including lists and S-
expressions, using proof systems and algebraic
laws. You see the same techniques as before, but
with new forms of data.

• You see a wider world of algebraic laws, distin-
guishing algorithmic laws from non-algorithmic
properties. When coding from scratch, you must
learn to make your laws algorithmic.

• You see some issues that you may have when
working more broadly with algebraic laws.

2 Proof systems and laws for

µScheme data

The first section of this handout revisits the ideas in
the natural-number case study, but for some common
forms of µScheme data.

Proof systems for µScheme data

As noted in Figure 2.1 on page 95 of Programming

Languages: Build, Prove, and Compare, a µScheme
value is either an atom, a function, or a cons cell.
A “fully general S-expression” is any of these except
a function. We could write a proof system like this:

⊢ v symbol

⊢ v gsx

⊢ n number

⊢ n gsx ⊢ #t gsx

⊢ #f gsx ⊢ ’() gsx

⊢ v1 gsx ⊢ v2 gsx

⊢ (cons v1 v2) gsx

We could define “list of A” using the proof system
from section 2.6, which starts on page 116 of the text-
book:

EmptyList
’() ∈ LIST (A)

ConsList
a ∈ A as ∈ LIST (A)

(cons a as) ∈ LIST (A)

On your homework I’ll ask you to define “nonempty

list of A’s.”

We could define “ordinary” S-expression using just
ideas 1 and 2 from Figure 2.1 on page 95. The nota-
tion of that last rule gets a little dodgy:

⊢ n number

⊢ n osx ⊢ #t osx ⊢ #f osx

vs ∈ LIST (osx)

⊢ vs osx

Writing LIST (osx) is flagrant abuse of notation.
There’s a better way.

An informal alternative

Proof systems are great for describing the structure
of natural numbers, as well as more complex struc-
tures like computations. But for describing simpler
data structures, we don’t need the expressive power
of proof systems, and it’s often difficult to come up
with good judgment forms—that’s where we got into
trouble above. As an alternative, we can write an in-
ductive definition informally. We name the set we’re
trying to define, and we list all the ways that data in
the set could be formed. Examples follows.

A fully general S-expression is one of the following:

• A symbol
• A number
• A Boolean
• The empty list ’()
• (cons v1 v2), where v1 and v2 are fully general
S-expressions

1



Data Left-hand side

Fully general (f a) = · · ·, where a is an atom
S-expression (f (cons y z)) = · · ·

List of A (f ’()) = · · ·

(f (cons y ys)) = · · ·

Ordinary (f a) = · · ·, where a is an atom
S-expression (f (cons y ys)) = · · ·

Also (f ’()) = · · ·

Ordinary (f a) = · · ·, where a is an atom but not ’()
S-expression (f (cons y ys)) = · · ·

Nonempty list of A (homework)
· · ·

Table 1: Forms of laws for a one-argument function f

A list of A’s is one of the following:

• The empty list ’()
• (cons a as), where a is an A and as is a list

of A’s

An ordinary S-expression is one of the following:

• A symbol
• A number
• A Boolean
• A list of ordinary S-expressions

It is frequently useful to expand that last bullet.
It is equally true that an ordinary S-expression is one
of the following:

• A symbol
• A number
• A Boolean
• The empty list ’()
• (cons v vs), where v is an ordinary S-expression

and vs is a list of ordinary S-expressions

Writing algebraic laws and code

As with natural numbers, the forms of data determine
the left-hand sides of algebraic laws, which determine
the case analysis that goes into your code. Table 1
shows what laws will look like for a one-argument
function f . Table 2 shows how to identify forms of
data and how to extract the parts from which data is
formed.

3 More uses of algebraic laws

The first assignment introduces you to algebraic laws
purely as a tool for designing functions that you code

from scratch. The tool works even better for lists
and S-expressions than it works for natural numbers.
For example, here are laws that define a function for
asking how many elements there are in a list:

(length ’()) == 0

(length (cons x xs)) == (+ 1 (length xs))

A set of laws like this is called algorithmic: the laws
specify the algorithm for length, and they are very
close to an implementation.

More generally, we can write algebraic laws for any
property that we believe is true. For example, if we
append two lists, the length of the result is the sum
of the lengths of the arguments:

(length (append xs ys)) ==

(+ (length xs) (length ys))

This law is not algorithmic—a law like this is called
a property. Let’s go deeper into the distinction.

Understanding and using algorithmic

laws

You can recognize an algorithmic set of laws by these
hallmarks:

• Each left-hand side is a function to be defined,
applied to one or more arguments, where each
argument is either a variable or a form of data. In
the length example, both ’() and (cons x xs)

are forms of data.

• In an algorithmic set of laws, each law is mu-

tually exclusive with the others. That is, given
any particular input, at most one law applies.
Mutual exclusion is accomplished either using
mutually exclusive forms of data, like ’() and

2



Data Form of argument x or xs Test for form Parts argument is formed from

Fully general a (atom? x) a = x
S-expression (cons y z) (not (atom? x)) y = (car x) z = (cdr x)

or (pair? x)

List of A ’() (null? xs)

(cons y ys) (not (null? xs)) y = (car xs) ys = (cdr xs)

Ordinary a (atom? x) a = x
S-expression (cons y ys) (not (atom? x)) y = (car x) ys = (cdr x)

or (pair? x)

Also ’() (null? x)
Ordinary a (atom? x) a = x
S-expression (cons y ys) (not (atom? x)) y = (car x) ys = (cdr x)

Nonempty
list of A

· · · (homework) · · ·

Table 2: Identifying forms and extracting parts

(cons x xs), or by using mutually exclusive side
conditions.

There are rare cases in which algorithmic laws
allow some overlap: inputs for which more than
one law could apply. In cases of overlap, all appli-
cable right-hand sides must produce the same re-

sult. These cases are sufficiently rare that I don’t
have an example.

• Collectively, an algorithmic set of laws accounts

for every input that is permitted by a function’s

contract. If an input is permissible, there must
be a law that applies.

• In every recursive call on every right-hand side,
some input is getting smaller.

Algorithmic laws are used for these purposes:

• Algorithmic laws are used primarily to design and

implement functions.

• Algorithmic laws can also be used to test func-

tions.

Understanding and using properties

Technically, every law in an algorithmic law is also a
property. But you can but sure to recognize a non-
algorithmic property by these hallmarks:

• On a left-hand side, a function is applied to the

result of another function. For example, in the
length property, length is applied to the result
of append.

• Properties might not be mutually exclusive, and
they needn’t account for every permissible input.

Properties have many more uses than algebraic laws,
including these purposes:

• Properties are used for testing. Substitute a per-
missible value for each variable in the property,
and check that equality holds. For example,
here’s a property we use to test arithmetic in
Smalltalk:

(* 2 n) == (+ n n)

We can test this property with any natural num-
ber n.

Here’s a property about lists that is useful only
for testing:

(permutation? (cons x (cons y zs))

(cons y (cons x zs))) == #t

Good tooling for programming languages fre-
quently includes random, automated, property-

based testing based on substituting randomly
generated values for variables in properties.

• Properties are used for refactoring, which means
rewriting code to improve its structure, without
changing its semantics. A good example is code
simplification. Many of the properties found in
section 2.4 of the textbook, like this append-cons
law, can be used to simplify code:

(append (cons x ’()) xs) == (cons x xs)

• Properties are used for code improvement, which
means rewriting code to improve its performance,

3



without changing its semantics. (Code improve-
ment is often called “optimization.”) Some of
the properties found in section 2.4 of the text-
book, like this append-append law, can be used
to improve performance:

(append (append xs ys) zs) ==

(append xs (append ys zs))

• Properties are used for specification, especially of
abstract data types. Programmers may use prop-
erties to say how an abstraction behaves without
saying how it is implemented. Here’s a typical
property from an abstraction of sets:

(member? x (add-element x xs)) == #t

The property says that if we add an element x to
any set, then x is a member of the resulting set.

4 Issues with algebraic laws on

the first homework

In addition to the faults listed in the general rubric,
we found three other common faults in algebraic laws
from the first homework. The faults reflect confusion
about what a variable in a law stands for: an actual
parameter or a part of an actual parameter? When
a variable stands for a part of a parameter, trouble
sometimes follows.
In the first fault, the right-hand side of a law uses

a variable that doesn’t appear on the left, as in

(log10 (10 * m + d)) == (+ (log10 (/ n 10)) 1)

The n on the right-hand side is not specified—it could
be anything. I can see what’s going on: the left-hand
side specifies the parts of the actual parameter, but
the right-hand side uses n to name the parameter it-
self. What’s meant by (/ n 10) is actually m.
To avoid this fault, remember this rule: The right-

hand side of an algebraic law may use any variable

that appears on the left-hand side, and only those vari-

ables.

In the second fault, a right-hand side misuses a vari-
able from the left as if it were the argument, rather
than a part of the argument. Here’s an example:

(population-count (* 2 m)) ==

(population-count (/ m 2))

The variable m is already meant to be half the ar-
gument: m = n/2. The right-hand side of the law
incorrectly applies to m the operation that is meant
to be applied to n.
In the third fault, a name like m is used in the alge-

braic laws to stand for a part of an argument, but in

the code to stand for the entire argument. Here’s an
example:

;; (log10 d) == ...

;; (log10 (+ (* 10 m) d)) == ...

(define log10 (m)

...) ;; case 2: m == (+ (* 10 m) d)???

Each part is technically correct by itself, but mixing
the two is just too confusing: the argument can’t be
both m and 10×m+d. To avoid this fault, make sure
each name stands consistently either for an argument
or for a part of an argument, but not both.

5 Common issues using alge-

braic laws with Scheme

Below are some other issues you might run into when
writing algebraic laws for Scheme functions.

Correct use of variables

A common mistake is to write laws thinking that vari-
ables are mutually exclusive with other forms of data.
They aren’t. When you write a variable, you are say-
ing implicitly, “this could be any form of data, and
I don’t care which.” In other words, when you write
a variable in an argument position, you are promising
not to look and see how the argument was formed.
In particular, when you write a variable, you are
promising never to apply null?, car, or cdr to that
variable.

Here’s an example of this common mistake:

(sublist? xs ’()) == #f ;; WRONG

(sublist? ’() ys) == #t

... more cases below ...

The student who wrote these laws meant for xs and
ys meant to be nonempty. But a variable could be
any list, including the empty list. In this example, if
both xs and ys are empty, the laws give inconsistent
results. That’s how we’re certain that something is
wrong. Here’s a correct version, in which every argu-
ment is either explicitly empty or explicitly nonempty.

(sublist? (cons w ws) ’()) == #f ;; RIGHT

(sublist? ’() (cons z zs)) == #t

... more cases below ...

These left-hand sides can’t possibly be confused.
This version can be refined by observing that in

the original set, the problem lies with the first law.
The law (sublist? ’() ys) == #t is actually good:
the empty list is a sublist of any list ys, whether ys is
empty or not. So we could write the laws this way:

4



(sublist? (cons w ws) ’()) == #f ;; RIGHT

(sublist? ’() ys) == #t ;; SPLENDID

... more cases below ...

The advantage of this final specification is that we
might then have to consider fewer alternatives in the
“more cases below.”

Breaking S-expression inputs down by cases

Quite often it’s useful to define an ordinary S-
expression as one of the following:

• The empty list

• (cons z zs), where z is an S-expression and zs

is a list of S-expressions

• a, where a is an atom but not the empty list

A common mistake here is to forget the side condition
on a. Here are some mistaken laws for counting the
number of atoms in an ordinary S-expression:

(atom-count ’()) = 0

(atom-count (cons z zs)) =

(+ (atom-count z) (atom-count zs))

(atom-count a) = 1 ;; WRONG

The last law needs a side condition:

(atom-count a) = 1,

where a is a non-null atom ;; RIGHT

You can’t break a function down by cases

Some of the problems on the homework, like
takewhile, dropwhile, and arg-max, take functions
as inputs. You can’t break a function down by cases,
because there’s no way to ask a function how it was
formed. All you can do with a function is apply it.
How, then, should a function appear in an algebraic
law? As a variable. Here’s an example for takewhile,
which takes two arguments, a predicate p? and a list
of values. A function has one case and a list has two,
and multiplied together there are two in total:

(takewhile p? ’()) = ...

(takewhile p? (cons x xs)) = ...

That’s not the end of the story, however: once we have
both p? and an x that we could apply p? to, we could
have extra cases depending on whether (p? x) is true
or false. Those cases would be written as side condi-
tions.
One final example: function arg-max takes a func-

tion and a nonempty list of values. The laws for
arg-max will have one case for the function input
(just a variable), and other cases for the nonempty
list. (Finding the forms of a nonempty list is a home-
work problem.)

5


