Higher-Order Functions

COMP 105 Assignment

Due Tuesday, February 19, 2019 at 11:59PM

Contents

Overview 2
Setup 2
Dire Warnings 2
Reading Comprehension (10 percent) 3
Programming and Proof (90 percent) 5
Overview 5
Book problems 6
Relating imperative code to functional code 8
A function that returns a function 9
Input validation 9
Calculational reasoning about functions 12
Ordered lists 13
Extra credit 14
What and how to submit 14
Avoid common mistakes 15
How your work will be evaluated 15
Structure and organization 15
Functional correctness 16
Proofs and inference rules 17
This assignment is all individual work. There is no pair programming.

Overview

Higher-order functions are a cornerstone of functional programming. And they have migrated into all of the web/scripting languages, including JavaScript, Python, Perl, and Lua. This assignment will help you incorporate first-class and higher-order functions into your programming practice. You will use existing higher-order functions, define higher-order functions that consume functions, and define higher-order functions that return functions. The assignment builds on what you've already done, and it adds new ideas and techniques that are described in sections 2.7, 2.8, and 2.9 of Build, Prove, and Compare.

Setup

The executable μ Scheme interpreter is in /comp/105/bin/uscheme; if you are set up with use comp105, you should be able to run uscheme as a command. The interpreter accepts a -q ("quiet") option, which turns off prompting. Your homework will be graded using uscheme. When using the interpreter interactively, you may find it helpful to use ledit, as in the command

```
ledit uscheme
```

We don't give you a template-by this time, you know how to identify solutions and where to put contracts, algebraic laws, and tests.

Dire Warnings

The μ Scheme programs you submit must not use any imperative features. Banish set, while, print, println, printu, and begin from your vocabulary! If you break this rule for any exercise, you get No Credit for that exercise. You may find it useful to use begin and println while debugging, but they must not appear in any code you submit. As a substitute for assignment, use let or let*.

Except for the implementation of length in exercise 15, no code may compute the length of a list.
Except as noted below, do not define helper functions at top level. Instead, use let or letrec to define helper functions. When you do use let to define inner helper functions, avoid passing as parameters values that are already available in the environment. (An example of what to avoid appears under "Avoid common mistakes" below.)

Your solutions must be valid μ Scheme; in particular, they must pass the following test:
/comp/105/bin/uscheme -q < myfilename > /dev/null
without any error messages or unit-test failures. If your file produces error messages, we won't test your solution and you will earn No Credit for functional correctness. (You can still earn credit for structure and organization). If your file includes failing unit tests, you might possibly get some credit for functional correctness, but we cannot guarantee it.

Every function should be accompanied by a short contract and by unit tests. If the function does case analysis, it must also be accompanied by algebraic laws. Submissions without algebraic laws will earn No Credit.

We will evaluate functional correctness by testing your code extensively. Because this testing is automatic, each function must be named be exactly as described in each question. Misnamed functions earn No Credit.

Reading Comprehension (10 percent)

Answer these questions before starting the rest of the assignment. As usual, you can download the questions ${ }^{1}$.

1. The first step in this assignment is to learn the standard higher-order functions on lists, which you will use a lot. Suppose you need a list, or a Boolean, or a function-what can you call?

Review Sections 2.7.2, 2.8.1, and 2.8.2. Now consider each of the following functions: map filter exists? all? curry uncurry foldl foldr

Put each function into exactly one of the following four categories:
(B) Always returns a Boolean
(F) Always returns a function
(L) Always returns a list
(A) Can return anything (including a Boolean, a function, or a list)

After each function, write (B), (F), (L), or (A):

```
map
filter
exists?
all?
    curry
    uncurry
    foldl
    foldr
```

2. Here are the same functions again:
```
map filter exists? all? curry uncurry foldl foldr
```

For each function, say which of the following five categories best describes it. Pick the most specific category (e.g., (S) is more specific than (L) or (M), and all of these are more specific than (?)).
(S) Takes a list \& a function; returns a list of exactly the same size
(L) Takes a list \& a function; returns a list of at least the same size
(M) Takes a list \& a function; returns a list of at most the same size
(?) Might return a list
(V) Never returns a list

After each function, write (S), (L), (M), (?), or (V):

[^0]```
map
filter
exists?
all?
curry
uncurry
foldl
foldr
```

3. Here are the same functions again:
```
map filter exists? all? curry uncurry foldl foldr
```

Put each function into exactly one of the following categories. Always pick the most specific category (e.g. (F2) is more specific than (F)).
(F) Takes a single argument: a function
(F2) Takes a single argument: a function that itself takes two arguments
(+) Takes more than one argument
After each function, write (F), (F2), or (+):
map
filter
exists?
all?
curry
uncurry
foldl
foldr
You are now ready to tackle most parts of exercise 14.
4. Review the difference between foldr and foldl in section 2.8.1. You may also find it helpful to look at their implementations in section 2.8.3, which starts on page 133; the implementations are at the end.
(a) Do you expect (foldl $+0^{\prime}\left(\begin{array}{lll}1 & 2 & 3\end{array}\right)$ ) and (foldr $+0{ }^{\prime}\left(\begin{array}{lll}1 & 2 & 3\end{array}\right)$ ) to be the same or
different?
 same or different?
(c) Look at the initial basis, which is summarized on 159. Give one example of a function, other than + or cons, that can be passed as the first argument to foldl or foldr, such that foldl always returns exactly the same result as foldr.
(d) Give one example of a function, other than + or cons, that can be passed as the first argument to foldl or foldr, such that foldl may return a different result from foldr.

You are now ready to tackle all parts of exercises 14 and 15.
5. Read the third Lesson in Program Design ${ }^{2}$ : Higher-Order Functions. The lesson mentions a higher-order function flip , which can convert < into > , among other tricks. Write as many algebraic laws as are needed to specify flip:
6. Review function composition and currying, as described in section 2.7.2, which starts on page 128. Then judge the proposed properties below, which propose equality of functions, according to these rules:

- Assume that names curry, $\mathrm{o},<$, , cons, even?, and odd? have the definitions you would expect, but that may have any value.
- Each property proposes to equate two functions. If the functions are equal-which is to say, when both sides are applied to an argument, they always produce the same result-then mark the property Good. But if there is any argument on which the left-hand side produces different results from the right, mark the property Bad.

Mark each property Good or Bad:

```
((curry <) m) == (lambda (n) (< m n))
((curry <) m) == (lambda (n) (< n m))
((curry cons) 10) == (lambda (xs) (cons 10 xs))
(o odd? (lambda (n) (* 3 n))) == odd?
(o even? (lambda (n) (* 4 n))) == even?
```

You are now ready to tackle the first three parts of exercise 19, as well as problem $\boldsymbol{M}$ below.

## Programming and Proof (90 percent)

## Overview

For this assignment, you will do Exercises 14 (b-f,h,j), 15, and 19, from pages 212 to 216 of Build, Prove, and Compare, plus the exercises $\mathbf{A}, \mathbf{F}, \mathbf{V} 1$ to V6, M, and $\mathbf{O}$ below.

[^1]A summary of the initial basis can be found on page 159. While you're working on this homework, keep it handy.
Each top-level function you define must be accompanied by a contract and unit tests. Each named internal function written with lambda should be accompanied by a contract, but internal functions cannot be unittested. (Anonymous lambda functions need not have contracts.) Algebraic laws are required only where noted below; each problem is accompanied by a Laws section, which says what is needed in the way of algebraic laws.

## Book problems

14. Higher-order functions. Do exercise 14 on page 212 of Build, Prove, and Compare, parts (b) to (f), part (h), and part (j). Note which functions accept only nonempty lists, and code accordingly. You must not use recursion-solutions using recursion will receive No Credit. (This restriction applies only to code you write. For example, gcd, which is defined in the initial basis, may use recursion.)

Because you are not defining recursive functions, you need not write any algebraic laws.
For this problem only, you may define one helper function at top level.
Related reading: For material on higher order functions, see sections 2.8.1 and 2.8.2 starting on page 131. For material on curry, see section 2.7.2, which starts on page 128.
Laws: These functions must not be recursive, should not do any case analysis, ${ }^{3}$ and do not return functions. Therefore, no algebraic laws are needed.
15. Higher-order functions. Do exercise 15 on page 214. You must not use recursion-solutions using recursion will receive No Credit. As above, this restriction applies only to code you write.
Because you are not defining recursive functions, you need not write any algebraic laws.
For this problem, you get full credit if your implementations return correct results. You get extra credit ${ }^{4}$ if you can duplicate the behavior of exists? and all? exactly. To earn the extra credit, it must be impossible for an adversary to write a $\mu$ Scheme program that produces different output with your version than with a standard version. However, the adversary is not permitted to change the names in the initial basis.

Related reading: Examples of foldl and foldr are in sections 2.8.1 and 2.8.2 starting on page 131. You may also find it helpful to study the implementations of foldl and foldr in section 2.8.3, which starts on page 133; the implementations are at the end. Information on lambda can be found in section 2.7, on pages 121 to 124 .

Laws: These functions must not be recursive, should not begin with case analysis, and do not return functions. Therefore, no algebraic laws are needed.
19. Functions as values. Do exercise 19 on page 216 of Build, Prove, and Compare. You cannot represent these sets using lists. If any part of your code to construct or to interrogate a set uses cons, car, cdr, or null?, you are doing the problem wrong.
Do all four parts:

[^2]- Parts (a) and (b) require no special instructions.
- In part (c), your add-element function must take two parameters: the element to be added as the first parameter and the set as the second parameter.

When you code part (c), compare values for equality using the equal? function.
To help you design part (c), put comments in your source code that complete the right-hand sides of the following properties:

```
(member? x (add-element x s)) == ...
(member? x (add-element y s)) == ..., where (not (equal? y x))
(member? x (union s1 s2)) == ...
(member? x (inter s1 s2)) == ...
(member? x (diff s1 s2)) == ...
```

The properties are not quite algorithmic, but they should help anyway.

- In part (d), when you code the third approach to polymorphism, write a function set-ops-from which places your set functions in a record. To define record functions, use the syntactic sugar described in the book in Section 2.16.6 on page 194. In particular, be sure your code includes this record definition:

```
(record set-ops (empty member? add-element union inter diff))
```

Code your solution to part (d) as a function set-ops-from, which will accept one argument (an equality predicate) and will return a record created by calling make-set-ops. Your function might look like this:

```
(define set-ops-from (eq?)
 (let ([empty ...]
 [member? ...]
 [add ...]
 [union ...]
 [inter ...]
 [diff ...])
 (make-set-ops empty member? add union inter diff)))
```

Fill in each ... with your own implementations. Each implementation is like one you wrote in part (c), except instead of using the predefined equal?, it uses the parameter eq?-that is what is meant by "the third approach to polymorphism."

No additional laws are needed for part (d).
To help you get part (d) right, we recommend that you use these unit tests:

```
(check-assert (procedure? set-ops-from))
(check-assert (set-ops? (set-ops-from =)))
```

And to write your own unit tests for the functions in part (d), you may use these definitions:

```
(val atom-set-ops (set-ops-from =))
(val atom-emptyset (set-ops-empty atom-set-ops))
(val atom-member? (set-ops-member? atom-set-ops))
(val atom-add-element (set-ops-add-element atom-set-ops))
```

```
(val atom-union
(set-ops-union atom-set-ops))
(val atom-inter (set-ops-inter atom-set-ops))
(val atom-diff (set-ops-diff atom-set-ops))
```

Hint: The recitation for this unit includes an "arrays as functions" exercise. Revisit it.
Related reading: For functions as values, see the examples of lambda in the first part of section 2.7 on page 121, and also the array exercise from recitation. For function composition and currying, see section 2.7.2. For polymorphism, see section 2.9 , which starts on page 135.

Laws: Complete the right-hand sides of the properties listed above. These properties say what happens when member? is applied to any set created with any of the other functions. No other laws are needed.

## Relating imperative code to functional code

A. Good functional style. The Impcore-with-locals function

```
(define f-imperative (y) [locals x]
 (begin
 (set x e)
 (while (\(p\) ? \(x\) y)
 (set \(x(g \times y)))\)
 (h x y)))
```

is in a typical imperative style, with assignment and looping. Write an equivalent $\mu$ Scheme function f-functional that doesn't use the imperative features begin (sequencing), while (goto), and set (assignment).

- Assume that p ?, g , and h are free variables which refer to externally defined functions.
- Assume that e is an arbitrary expression.
- Use as many helper functions as you like, as long as they are defined using let or letrec and not at top level.
- You need not write any algebraic laws.
- You need not write any unit tests. (And we recommend against trying to unit-test this function.)

Hint \#1: If you have trouble getting started, rewrite while to use if and goto. Now, what is like a goto?
Hint \#2: (set x e) binds the value of e to the name x . What other ways do you know of binding the value of an expression to a name?

Don't be confused about the purpose of this exercise. The exercise is a thought experiment. We don't want you to write and run code for some particular choice of $g$, $h, p$, $e, x$, and $y$. Instead, we want you write a function that works the same as $f$-imperative given any choice of $g, h, p$ ?, e, $x$, and $y$. So for example, if f -imperative would loop forever on some inputs, your f -functional must also loop forever on exactly the same inputs.

Once you get your mind twisted in the right way, this exercise should be easy. The point of the exercise is not only to show that you can program without imperative features, but also to help you develop a technique for eliminating such features.

Related reading: No part of the book bears directly on this question. You're better off reviewing your experience with recursive functions and perhaps the solutions for the Scheme assignment.

Laws: This problem doesn't need laws.

## A function that returns a function

F. The third lesson in program design ${ }^{5}$ ("Higher-order functions") mentions a higher-order function flip, which can convert < into >, among other tricks. Using your algebraic law or laws from the comprehension questions, define flip. Don't forget unit tests.

Related reading: Seven Lessons in Program Design ${ }^{6}$, lesson 3.
Laws: Use your law or laws from the comprehension questions.

## Input validation

In the following set of problems, you use higher-order functions to create a fault detector for web forms. To see what such a fault detector does, go to the course regrade form at https://www.cs.tufts.edu/comp/ 105/regrade, and click the Submit button without filling in the form. Now ask for a grade review without giving a problem or assignment, and Submit again. How does the software know the response to the form is faulty?

The regrade form uses higher-order functions to detect fields that have not been filled out and radio buttons that have not been checked. The browser's response to the web form is represented as an association list, and the fault detector, which uses functions you will implement, looks something like this:

```
(val regrade-analyzer ;; as you read the problem, refer back to me
 (faults/switch 'why
 (bind 'photo
 faults/none
 (bind 'badsubmit
 (faults/both (faults/equal 'badsubmit_asst '...)
 (faults/equal 'info #f))
 (bind 'badgrade
 (faults/both
 (faults/equal 'badgrade_asst '...)
 (faults/both
 (faults/equal 'info #f)
 (faults/equal 'problem #f)))
 (bind '#f
 (faults/always 'nobutton)
 '()))))))
```

You can download some integration tests ${ }^{7}$ for this analyzer.
Before we see the specifications of the functions, here is how we represent the input-validation problem in $\mu$ Scheme:

- A response to a web form is represented by an association list: each field in the form has a name, which is represented by a symbol, and in the response, that name is bound to the value the user responded with. If the user did not supply a value, the name is bound to the value \#f.

Here's an example response, representing a student who wants something regraded because they accidentally submitted the wrong PDF:

[^3]```
(val sample-response
    '([why badsubmit]
        [badsubmit asst scheme]
        [info (I accidentally submitted the opsem PDF again.)]
        [badgrade_asst ...]
        [problem #f]))
```

- A fault is represented by a symbol. The symbol is typically the name of the field that was filled out incorrectly, or that was not filled out, but any symbol can be a fault.

Here are some of the faults used by the regrade analyzer:

- nobutton if no radiobutton was selected
- problem if "review my grade" was selected but the "problem" field was blank
- badsubmit_asst if "I submitted the wrong PDF" was selected but the "assignment" dropdown was left at ...
- A fault set is represented by a list of symbols without duplicates. ${ }^{8}$

For example, if I select "review my grade" on the regrade form, but I don't fill out anything else, the analyzer will return a fault set containing symbols problem, badgrade_asst, and info, like this one:
'(problem badgrade_asst info)

- An analyzer is a function that takes one argument (a response) and returns a fault set.

In the problems below, you create a "little language" for writing analyzers. ${ }^{9}$ The key elements of this language are higher-order functions: functions that build analyzers from other analyzers.

Expectations for these functions:

- Each function you write must be accompanied by algebraic laws and unit tests.
- Every analyzer must treat the response as an abstraction. An analyzer must never interrogate a response about its form of data; the analyzer should restrict itself to function find and possibly function bound-in?:

```
(define bound-in? (key pairs)
    (if (null? pairs)
        #f
        (|| (= key (alist-first-key pairs))
                    (bound-in? key (cdr pairs)))))
```

Problem \mathbf{V} is to implement the five functions described in V1 to $\mathbf{V} 5$ below, plus the "travel validator" described in V6. My five functions total less than 20 lines of μ Scheme.

Related reading:

- Except for faults/none, the functions below are "function factories": each one takes in some arguments and returns a function. The main function factories in the book are curry and o ("compose"); to review them, study section 2.7.2, which starts on page 128 .

[^4]- For faults/both, revisit the combine and divvy examples from the lecture on lambda. (These functions are intended to be called conjoin and disjoin.)
- For a review of association lists and find, consult section 2.3.8, which starts on page 106.

Laws. Write laws for each of the five functions V1 to V5 below. Most of your algebraic laws, like the algebraic laws for curry and flip, will need to specify what happens when the result of calling a function is itself applied. If written well, your laws will be clearer and easier to follow than the informal text below. Which is one reason why we write them.

For the travel validator in V6, laws are neither necessary nor useful.
V1. Function faults/none is an analyzer that always returns the empty list of faults, no matter what the response.
V2. Function faults/always takes one argument (a fault F), and it returns an analyzer that finds fault with every response. No matter what the response, the analyzer returns a singleton list containing the fault F.

V3. Function faults/equal takes two arguments, a key k and a value v, and it returns an analyzer that finds fault if the response binds k to v. That is, when given a response R, the analyzer returns an empty set of faults unless key k is bound to value v in R. If key k is bound to value v, the analyzer returns a singleton list containing the fault k.

V4. Function faults/both takes two analyzers a1 and a2 as arguments. It returns an analyzer that, when applied to a response, finds all the faults found by analyzer al and also all the faults found by analyzer a2, returning them together in a single set.
To avoid conflicts with the set code in exercise 19, you are welcome to use the following template to define faults/both:

```
(val faults/both
    (let* ([member? (lambda (x s) (exists? ((curry =) x) s))]
            [add-elem (lambda (x s) (if (member? x s) s (cons x s)))]
            [union (lambda (faults1 faults2) (foldr add-elem faults2 faults1))])
        ...))
```

V5. Function faults/switch takes two arguments, a key k and an analyzer table, and it returns an analyzer that uses field k of the response to analyze the response. The analyzer table is like the list of cases in a C switch statement: each case is labeled with a value, and the action to be performed in the case is itself an analyzer. The analyzer table is represented as an association list.
The use case for faults/switch is to create an analyzer that uses some of the input data to figure out how to analyze the rest. For example, in the regrade-form validator, if a student submits a photo for regrade, faults/switch figures out that no more analysis required. But if a student asks for a given problem to be regraded, faults/switch figures out that we need an assignment, a problem number, and an explanation ("info").

Here's the contract of faults/switch: key k determines which field of the response is used to make a decision. When the analyzer is given a response, the value v associated with key k in the response is looked up in the analyzer table, and the resulting analyzer is used to find faults in the response. If I had a language like Lua, Python, or JavaScript, where table lookup is primitive, I might write simply

```
analyzer_table[response[k]](response)
```

When you write your algebraic laws, you will notate a similar computation in μ Scheme.
This problem is simplest if key k is bound in the response and value v is bound in the analyzer table. When you write your algebraic laws, make this simplifying assumption. And when you write your code, you may simply assume that k is bound in the response. But if v is unbound in the analyzer table, the analyzer must halt with a checked run-time error. (Any error will do.)

V6. Travel validator. In this problem, you use some of the functions above to define a validator for a travel form. A response to the travel form has three fields:

- Field type is either 'one-way, 'round-trip, or \#f.
- Field out_date is either \#f (if empty) or a symbol (if not empty).
- Field return_date is either \#f (if empty) or a symbol (if not empty).

Your validator must detect the following faults:

- If field type is \#f, then field type is at fault.
- if field type is round-trip and field out_date is \#f, field out_date is at fault.
- if field type is round-trip and field return_date is \#f, field return_date is at fault.
- if field type is one-way and field out_date is \#f, field out_date is at fault.
(A one-way trip with a return date is also faulty, but that fault can't easily be detected with the functions you have. You're not required to detect it.)

Using the val definition form, define an analyzer travel-validator, which implements the faultdetection rules above. Your analyzer should be implemented using only the functions above.

Here is a test case:

```
(check-expect
    (travel-validator '([type round-trip]
                        [out_date 4/11/2019]
                        [return_date #f]))
    '(return_date))
```


Calculational reasoning about functions

M. Reasoning about higher-order functions. Using the calculational techniques from Section 2.4.5, which starts on page 110, prove that

```
(o ((curry map) f) ((curry map) g)) == ((curry map) (o f g))
```

To prove two functions equal, prove that when applied to equal arguments, they return equal results.
Related reading: Section 2.4.5. The definitions of composition and currying in section 2.7.2. Example uses of map in section 2.8.1. The definition of map in section 2.8.3.

Laws: In this problem you don't write new laws; you reuse existing ones. You may use any law in the Basic Laws ${ }^{10}$ handout, which includes laws for o, curry, and map. (If it simplifies your proof, you may also introduce new laws, provided that you prove each new law is valid.)

[^5]
Ordered lists

O. Ordered lists. Like natural numbers, the forms of a list can be viewed in different ways. In almost all functions, we examine just two ways a list can be formed: ' () and cons. But in some functions, we need a more refined view. Here is a problem that requires us to divide a list of values into three forms.

Define a function ordered-by? that takes one argument-a comparison function that represents a transitive relation-and returns a predicate that tells if a list of values is totally ordered by that relation. Assuming the comparison function is called precedes?, here is an inductive definition of a list that is ordered by precedes?:

- The empty list of values is ordered by precedes?.
- A singleton list containing one value is ordered by precedes?.
- A list of values in the form (cons x (cons $y z s)$) is ordered by precedes? if the following properties hold:
- x is related to y, which is to say (precedes? $x y$).
- List (cons y zs) is ordered by precedes?.

Here are some examples. Note the parentheses surrounding the calls to ordered-by?.

```
-> ((ordered-by? <) '(1 2 3))
#t
-> ((ordered-by? <=) '(1 2 3))
#t
-> ((ordered-by? <) '(3 2 1))
#f
-> ((ordered-by? >=) '(3 2 1))
#t
-> ((ordered-by? >=) '(3 3 3))
#t
-> ((ordered-by? =) '(3 3 3))
#t
```

Hints:

- The entire 9-step software-design process applies, and it starts with the three forms of data in the definition of "list ordered by" above.
- For the code itself, you will need letrec.
- We recommend that your submission include the following unit tests, which help ensure that your function has the correct name and takes the expected number of parameters.

```
(check-assert (procedure? ordered-by?))
(check-assert (procedure? (ordered-by? <)))
(check-error (ordered-by? < '(1 2 3)))
```

Related reading: Section 2.9 , which starts on page 135 . Especially the polymorphic sort in section 2.9.2-the lt? parameter to that function is an example of a transitive relation. Section 2.7.2. Example uses of map in section 2.8.1. The definition of map in section 2.8.3.

Laws: Write algebraic laws for ordered-by?, including at least one law for each of the three forms of data used in the definition of "list ordered by" above.

Extra credit

VX. For extra credit, answer the questions below.
(a) Which of the following equations are valid properties of the fault-validation functions?

- (faults/both faults/none A) $\equiv A$?
- (faults/both (faults/always F) A) $\equiv(f a u l t s / a l w a y s ~ F)$?
(b) For each of the equations in part (a),
- If the equation is a valid property, present a calculational proof using your laws from problems V1, V2, and V4.
- If the equation is not a valid property, present a counterexample. That is, present examples of A, F (if necessary), and a response such that, when applied to the response, the two analyzers produce different fault sets.

What and how to submit

You must submit four files:

- A README file containing
- The names of the people with whom you collaborated
- A list identifying which problems you solved
- A note identifying any extra-credit work you did
- A cqs.hofs.txt containing the reading-comprehension questions ${ }^{11}$ with your answers edited in
- A PDF files semantics.pdf containing the solutions to Exercises \mathbf{M} and VX. (Exercise VX is extra credit and is optional.) If you already know LaTeX, by all means use it. Otherwise, write your solution by hand and scan it. Do check with someone else who can confirm that your work is legible-if we cannot read your work, we cannot grade it.
- A file solution. scm containing the solutions to Exercises $\mathbf{1 4}$ (b-f,h,j), 15, 19, A, F, V1 to V6, and \mathbf{O}. You must precede each solution by a comment that looks like something like this:

```
;;
;; Problem A
;;
```

As soon as you have the files listed above, run submit105-hofs to submit a preliminary version of your work. Keep submitting until your work is complete; we grade only the last submission.

[^6]
Avoid common mistakes

Listed below are some common mistakes, which we encourage you to avoid.
Passing unnecessary parameters. In this assignment, a very common mistake is to pass unnecessary parameters to a nested helper function. Here's a silly example:

```
(define sum-upto (n)
    (letrec ([sigma (lambda (m n) ;;; UGLY CODE
                                    (if (> m n) 0 (+ m (sigma (+ m 1) n))))])
        (sigma 1 n)))
```

The problem here is that the \mathbf{n} parameter to sigma never changes, and it is already available in the environment. To eliminate this kind of problem, don't pass the parameter:

```
(define sum-upto (n)
    (letrec ([sum-from (lambda (m) ;;; BETTER CODE
                                    (if (> m n) 0 (+ m (sum-from (+ m 1)))))])
        (sum-from 1)))
```

I've changed the name of the internal function, but the only other things that are different is that I have removed the formal parameter from the lambda and I have removed the second actual parameter from the call sites. I can still use n in the body of sum-from; it's visible from the definition.

An especially good place to avoid this mistake is in your definition of ordered-by? in problem \mathbf{O}.
Another common mistake is to fail to redefine predefined functions like map and filter in exercise 15. Yes, we really want you to provide new definitions that replace the existing functions, just as the exercise says.

How your work will be evaluated

Structure and organization

The criteria in the general coding rubric ${ }^{12}$ apply. As always, we emphasize contracts and naming. In particular, unless the contract is obvious from the name and from the names of the parameters, an inner function defined with lambda and a let form needs a contract. (An anonymous lambda that is returned from a function like faults/both does not need a contract-the behavior of that lambda is part of the contract of the function that returns it.)

There are a few new criteria related to let, lambda, and the use of basis functions. The short version is use the functions in the initial basis; except when we specifically ask you to, don't redefine initial-basis functions.

[^7]| | Exemplary | Satisfactory | Must Improve |
| :---: | :---: | :---: | :---: |
| Structure | - Short problems are solved using simple anonymous lambda expressions, not named helper functions.
 - When possible, inner functions use the parameters and let-bound names of outer functions directly.
 - The initial basis of μ Scheme is used effectively. | - Most short problems are solved using anonymous lambdas, but there are some named helper functions.
 - An inner function is passed, as a parameter, the value of a parameter or let-bound variable of an outer function, which it could have accessed directly.
 - Functions in the initial basis, when used, are used correctly. | - Most short problems are solved using named helper functions; there aren't enough anonymous lambda expressions.
 - Functions in the initial basis are redefined in the submission. |

Functional correctness

In addition to the usual testing, we'll evaluate the correctness of your translation in problem \mathbf{A}. We'll also want appropriate list operations to take constant time.

Correctness	Exemplary	Satisfactory	Must Improve
	- The translation in problem A is correct. - Your code passes every one of our stringent tests. - Testing shows that your code is of high quality in all respects.	- The translation in problem A is almost correct, but an easily identifiable part is missing. - Testing reveals that your code demonstrates quality and significant learning, but some significant parts of the specification may have been overlooked or implemented incorrectly.	- The translation in problem A is obviously incorrect, - Or course staff cannot understand the translation in problem A. - Testing suggests evidence of effort, but the performance of your code under test falls short of what we believe is needed to foster success. - Testing reveals your work to be substantially incomplete, or shows serious deficiencies in meeting the problem specifications (serious fault). - Code cannot be tested because of loading errors, or no solutions were submitted (No Credit).
Performance	- Empty lists are distinguished from non-empty lists in constant time.		- Distinguishing an empty list from a non-empty list might take longer than constant time.

Proofs and inference rules

For your calculational proof, use induction correctly and exploit the laws that are proved in the book.

	Exemplary	Satisfactory	Must Improve
Proofs	- Proofs that involve predefined functions appeal to their definitions or to laws that are proved in the book. - Proofs that involve inductively defined structures, including lists and S-expressions, use structural induction exactly where needed.	- Proofs involve predefined functions but do not appeal to their definitions or to laws that are proved in the book. - Proofs that involve inductively defined structures, including lists and S-expressions, use structural induction, even if it may not always be needed.	- A proof that involves an inductively defined structure, like a list or an S-expression, does not use structural induction, but structural induction is needed.

[^0]: ${ }^{1}$./cqs.hofs.txt

[^1]: ${ }^{2}$../design/lessons.pdf

[^2]: ${ }^{3}$ Case analysis may be happening, but on this problem, it will be happening inside functions like map and foldr, not in any code that you write.
 ${ }^{4}$ In your README, please identify this credit as EXACT-EXISTS.

[^3]: 5../design/lessons.pdf
 ${ }^{6}$../design/lessons.pdf
 ${ }^{7}$./analyzer-tests.scm

[^4]: ${ }^{8}$ Unlike exercise 19 , the fault set here is represented by a list of values, not by a function.
 ${ }^{9}$ It's actually just a library, but a library like this is called a "little language" because of the way functions compose. The composition of fault analyzers resembles the syntactic composition of expressions in an actual programming language.

[^5]: ${ }^{10}$../handouts/initial-laws.html

[^6]: ${ }^{11}$./cqs.hofs.txt

[^7]: ${ }^{12}$../coding-rubric.html

