
Higher-Order Functions

COMP 105 Assignment

Due Tuesday, February 19, 2019 at 11:59PM

Contents
Overview 2

Setup 2

Dire Warnings 2

Reading Comprehension (10 percent) 3

Programming and Proof (90 percent) 5
Overview . 5
Book problems . 6
Relating imperative code to functional code . 8
A function that returns a function . 9
Input validation . 9
Calculational reasoning about functions . 12
Ordered lists . 13
Extra credit . 14

What and how to submit 14

Avoid common mistakes 15

How your work will be evaluated 15
Structure and organization . 15
Functional correctness . 16
Proofs and inference rules . 17

This assignment is all individual work. There is no pair programming.

1

Overview
Higher-order functions are a cornerstone of functional programming. And they have migrated into all of
the web/scripting languages, including JavaScript, Python, Perl, and Lua. This assignment will help you
incorporate first-class and higher-order functions into your programming practice. You will use existing
higher-order functions, define higher-order functions that consume functions, and define higher-order
functions that return functions. The assignment builds on what you’ve already done, and it adds new
ideas and techniques that are described in sections 2.7, 2.8, and 2.9 of Build, Prove, and Compare.

Setup
The executable μScheme interpreter is in /comp/105/bin/uscheme; if you are set up with use comp105,
you should be able to run uscheme as a command. The interpreter accepts a -q (“quiet”) option, which
turns off prompting. Your homework will be graded using uscheme. When using the interpreter interac-
tively, you may find it helpful to use ledit, as in the command

ledit uscheme

Wedon’t give you a template—by this time, you know how to identify solutions andwhere to put contracts,
algebraic laws, and tests.

Dire Warnings
The μScheme programs you submit must not use any imperative features. Banish set, while, print,
println, printu, and begin from your vocabulary! If you break this rule for any exercise, you get
No Credit for that exercise. You may find it useful to use begin and println while debugging, but they
must not appear in any code you submit. As a substitute for assignment, use let or let*.

Except for the implementation of length in exercise 15, no code may compute the length of a list.

Except as noted below, do not define helper functions at top level. Instead, use let or letrec to define
helper functions. When you do use let to define inner helper functions, avoid passing as parameters
values that are already available in the environment. (An example of what to avoid appears under “Avoid
common mistakes” below.)

Your solutions must be valid μScheme; in particular, they must pass the following test:

/comp/105/bin/uscheme -q < myfilename > /dev/null

without any error messages or unit-test failures. If your file produces error messages, wewon’t test your
solution and you will earn No Credit for functional correctness. (You can still earn credit for structure
and organization). If your file includes failing unit tests, you might possibly get some credit for functional
correctness, but we cannot guarantee it.

Every function should be accompanied by a short contract and by unit tests. If the function does case
analysis, it must also be accompanied by algebraic laws. Submissions without algebraic laws will earn
No Credit.

We will evaluate functional correctness by testing your code extensively. Because this testing is auto-
matic, each function must be named be exactly as described in each question. Misnamed functions
earn No Credit.

2

Reading Comprehension (10 percent)
Answer these questions before starting the rest of the assignment. As usual, you can download the ques-
tions1.

1. The first step in this assignment is to learn the standard higher-order functions on lists, which you
will use a lot. Suppose you need a list, or a Boolean, or a function—what can you call?

Review Sections 2.7.2, 2.8.1, and 2.8.2. Now consider each of the following functions:

map filter exists? all? curry uncurry foldl foldr

Put each function into exactly one of the following four categories:

(B) Always returns a Boolean
(F) Always returns a function
(L) Always returns a list
(A) Can return anything (including a Boolean, a function, or a list)

After each function, write (B), (F), (L), or (A):

map

filter

exists?

all?

curry

uncurry

foldl

foldr

2. Here are the same functions again:

map filter exists? all? curry uncurry foldl foldr

For each function, say which of the following five categories best describes it. Pick the most
specific category (e.g., (S) is more specific than (L) or (M), and all of these are more specific
than (?)).

(S) Takes a list & a function; returns a list of exactly the same size
(L) Takes a list & a function; returns a list of at least the same size
(M) Takes a list & a function; returns a list of at most the same size
(?) Might return a list
(V) Never returns a list

After each function, write (S), (L), (M), (?), or (V):
1./cqs.hofs.txt

3

./cqs.hofs.txt

map

filter

exists?

all?

curry

uncurry

foldl

foldr

3. Here are the same functions again:

map filter exists? all? curry uncurry foldl foldr

Put each function into exactly one of the following categories. Always pick the most specific
category (e.g. (F2) is more specific than (F)).

(F) Takes a single argument: a function
(F2) Takes a single argument: a function that itself takes two arguments
(+) Takes more than one argument

After each function, write (F), (F2), or (+):

map

filter

exists?

all?

curry

uncurry

foldl

foldr

You are now ready to tackle most parts of exercise 14.

4. Review the difference between foldr and foldl in section 2.8.1. You may also find it helpful to
look at their implementations in section 2.8.3, which starts on page 133; the implementations are
at the end.

(a) Do you expect (foldl + 0 '(1 2 3)) and (foldr + 0 '(1 2 3)) to be the same or

4

different?

(b) Do you expect (foldl cons '() '(1 2 3)) and (foldr cons '() '(1 2 3)) to be the
same or different?

(c) Look at the initial basis, which is summarized on 159. Give one example of a function, other
than + or cons, that can be passed as the first argument to foldl or foldr, such that foldl
always returns exactly the same result as foldr.

(d) Give one example of a function, other than + or cons, that can be passed as the first argument
to foldl or foldr, such that foldl may return a different result from foldr.

You are now ready to tackle all parts of exercises 14 and 15.

5. Read the third Lesson in Program Design2: Higher-Order Functions. The lesson mentions a
higher-order function flip, which can convert < into >, among other tricks. Write as many alge-
braic laws as are needed to specify flip:

6. Review function composition and currying, as described in section 2.7.2, which starts on page 128.
Then judge the proposed properties below, which propose equality of functions, according to these
rules:

• Assume that names curry, o, <, *, cons, even?, and odd? have the definitions you would
expect, but that m may have any value.

• Each property proposes to equate two functions. If the functions are equal—which is to
say, when both sides are applied to an argument, they always produce the same result—then
mark the property Good. But if there is any argument on which the left-hand side produces
different results from the right, mark the property Bad.

Mark each property Good or Bad:

((curry <) m) == (lambda (n) (< m n))

((curry <) m) == (lambda (n) (< n m))

((curry cons) 10) == (lambda (xs) (cons 10 xs))

(o odd? (lambda (n) (* 3 n))) == odd?

(o even? (lambda (n) (* 4 n))) == even?

You are now ready to tackle the first three parts of exercise 19, as well as problem M below.

Programming and Proof (90 percent)

Overview
For this assignment, you will do Exercises 14 (b-f,h,j), 15, and 19, from pages 212 to 216 of Build, Prove,
and Compare, plus the exercises A, F, V1 to V6, M, and O below.

2../design/lessons.pdf

5

../design/lessons.pdf

A summary of the initial basis can be found on page 159. While you’re working on this homework, keep
it handy.

Each top-level function you definemust be accompanied by a contract and unit tests. Each named internal
function written with lambda should be accompanied by a contract, but internal functions cannot be unit-
tested. (Anonymous lambda functions need not have contracts.) Algebraic laws are required only where
noted below; each problem is accompanied by a Laws section, which says what is needed in the way of
algebraic laws.

Book problems
14. Higher-order functions. Do exercise 14 on page 212 of Build, Prove, and Compare, parts (b) to (f),
part (h), and part (j). Note which functions accept only nonempty lists, and code accordingly. You must
not use recursion—solutions using recursion will receive No Credit. (This restriction applies only to
code you write. For example, gcd, which is defined in the initial basis, may use recursion.)

Because you are not defining recursive functions, you need not write any algebraic laws.

For this problem only, you may define one helper function at top level.

Related reading: For material on higher order functions, see sections 2.8.1 and 2.8.2 starting on page 131.
For material on curry, see section 2.7.2, which starts on page 128.

Laws: These functionsmust not be recursive, should not do any case analysis,3 and do not return functions.
Therefore, no algebraic laws are needed.

15. Higher-order functions. Do exercise 15 on page 214. Youmust not use recursion—solutions using
recursion will receive No Credit. As above, this restriction applies only to code you write.

Because you are not defining recursive functions, you need not write any algebraic laws.

For this problem, you get full credit if your implementations return correct results. You get extra credit4
if you can duplicate the behavior of exists? and all? exactly. To earn the extra credit, it must be
impossible for an adversary to write a 𝜇Scheme program that produces different output with your version
than with a standard version. However, the adversary is not permitted to change the names in the initial
basis.

Related reading: Examples of foldl and foldr are in sections 2.8.1 and 2.8.2 starting on page 131.
You may also find it helpful to study the implementations of foldl and foldr in section 2.8.3, which
starts on page 133; the implementations are at the end. Information on lambda can be found in section 2.7,
on pages 121 to 124.

Laws: These functions must not be recursive, should not begin with case analysis, and do not return
functions. Therefore, no algebraic laws are needed.

19. Functions as values. Do exercise 19 on page 216 of Build, Prove, and Compare. You cannot
represent these sets using lists. If any part of your code to construct or to interrogate a set uses cons,
car, cdr, or null?, you are doing the problem wrong.

Do all four parts:
3Case analysis may be happening, but on this problem, it will be happening inside functions like map and foldr, not in any code

that you write.
4In your README, please identify this credit as EXACT-EXISTS.

6

• Parts (a) and (b) require no special instructions.

• In part (c), your add-element function must take two parameters: the element to be added as the
first parameter and the set as the second parameter.

When you code part (c), compare values for equality using the equal? function.

To help you design part (c), put comments in your source code that complete the right-hand sides
of the following properties:

(member? x (add-element x s)) == ...
(member? x (add-element y s)) == ..., where (not (equal? y x))
(member? x (union s1 s2)) == ...
(member? x (inter s1 s2)) == ...
(member? x (diff s1 s2)) == ...

The properties are not quite algorithmic, but they should help anyway.

• In part (d), when you code the third approach to polymorphism, write a function set-ops-from
which places your set functions in a record. To define record functions, use the syntactic sugar
described in the book in Section 2.16.6 on page 194. In particular, be sure your code includes this
record definition:

(record set-ops (empty member? add-element union inter diff))

Code your solution to part (d) as a function set-ops-from, which will accept one argument
(an equality predicate) and will return a record created by calling make-set-ops. Your function
might look like this:

(define set-ops-from (eq?)
(let ([empty ...]

[member? ...]
[add ...]
[union ...]
[inter ...]
[diff ...])

(make-set-ops empty member? add union inter diff)))

Fill in each ... with your own implementations. Each implementation is like one you wrote in
part (c), except instead of using the predefined equal?, it uses the parameter eq?—that is what is
meant by “the third approach to polymorphism.”

No additional laws are needed for part (d).

To help you get part (d) right, we recommend that you use these unit tests:

(check-assert (procedure? set-ops-from))
(check-assert (set-ops? (set-ops-from =)))

And to write your own unit tests for the functions in part (d), you may use these definitions:

(val atom-set-ops (set-ops-from =))
(val atom-emptyset (set-ops-empty atom-set-ops))
(val atom-member? (set-ops-member? atom-set-ops))
(val atom-add-element (set-ops-add-element atom-set-ops))

7

(val atom-union (set-ops-union atom-set-ops))
(val atom-inter (set-ops-inter atom-set-ops))
(val atom-diff (set-ops-diff atom-set-ops))

Hint: The recitation for this unit includes an “arrays as functions” exercise. Revisit it.

Related reading: For functions as values, see the examples of lambda in the first part of section 2.7
on page 121, and also the array exercise from recitation. For function composition and currying, see
section 2.7.2. For polymorphism, see section 2.9, which starts on page 135.

Laws: Complete the right-hand sides of the properties listed above. These properties say what happens
when member? is applied to any set created with any of the other functions. No other laws are needed.

Relating imperative code to functional code
A. Good functional style. The Impcore-with-locals function

(define f-imperative (y) [locals x]
(begin
(set x e)
(while (p? x y)

(set x (g x y)))
(h x y)))

is in a typical imperative style, with assignment and looping. Write an equivalent μScheme function
f-functional that doesn’t use the imperative features begin (sequencing), while (goto), and set (as-
signment).

• Assume that p?, g, and h are free variables which refer to externally defined functions.
• Assume that e is an arbitrary expression.
• Use as many helper functions as you like, as long as they are defined using let or letrec and not

at top level.
• You need not write any algebraic laws.
• You need not write any unit tests. (And we recommend against trying to unit-test this function.)

Hint #1: If you have trouble getting started, rewrite while to use if and goto. Now, what is like a goto?

Hint #2: (set x e) binds the value of e to the name x. What other ways do you know of binding the
value of an expression to a name?

Don’t be confused about the purpose of this exercise. The exercise is a thought experiment. We don’t
want you to write and run code for some particular choice of g, h, p?, e, x, and y. Instead, we want
you write a function that works the same as f-imperative given any choice of g, h, p?, e, x, and y. So
for example, if f-imperative would loop forever on some inputs, your f-functional must also loop
forever on exactly the same inputs.

Once you get your mind twisted in the right way, this exercise should be easy. The point of the exercise
is not only to show that you can program without imperative features, but also to help you develop a
technique for eliminating such features.

Related reading: No part of the book bears directly on this question. You’re better off reviewing your
experience with recursive functions and perhaps the solutions for the Scheme assignment.

Laws: This problem doesn’t need laws.

8

A function that returns a function
F. The third lesson in program design5 (“Higher-order functions”) mentions a higher-order function flip,
which can convert < into >, among other tricks. Using your algebraic law or laws from the comprehension
questions, define flip. Don’t forget unit tests.

Related reading: Seven Lessons in Program Design6, lesson 3.

Laws: Use your law or laws from the comprehension questions.

Input validation
In the following set of problems, you use higher-order functions to create a fault detector for web forms.
To see what such a fault detector does, go to the course regrade form at https://www.cs.tufts.edu/comp/
105/regrade, and click the Submit button without filling in the form. Now ask for a grade review without
giving a problem or assignment, and Submit again. How does the software know the response to the form
is faulty?

The regrade form uses higher-order functions to detect fields that have not been filled out and radio buttons
that have not been checked. The browser’s response to the web form is represented as an association list,
and the fault detector, which uses functions you will implement, looks something like this:

(val regrade-analyzer ;; as you read the problem, refer back to me
(faults/switch 'why

(bind 'photo
faults/none

(bind 'badsubmit
(faults/both (faults/equal 'badsubmit_asst '...)

(faults/equal 'info #f))
(bind 'badgrade

(faults/both
(faults/equal 'badgrade_asst '...)
(faults/both

(faults/equal 'info #f)
(faults/equal 'problem #f)))

(bind '#f
(faults/always 'nobutton)
'()))))))

You can download some integration tests7 for this analyzer.

Before we see the specifications of the functions, here is how we represent the input-validation problem
in μScheme:

• A response to a web form is represented by an association list: each field in the form has a name,
which is represented by a symbol, and in the response, that name is bound to the value the user
responded with. If the user did not supply a value, the name is bound to the value #f.

Here’s an example response, representing a student who wants something regraded because they
accidentally submitted the wrong PDF:

5../design/lessons.pdf
6../design/lessons.pdf
7./analyzer-tests.scm

9

https://www.cs.tufts.edu/comp/105/regrade
https://www.cs.tufts.edu/comp/105/regrade
../design/lessons.pdf
../design/lessons.pdf
./analyzer-tests.scm

(val sample-response
'([why badsubmit]

[badsubmit_asst scheme]
[info (I accidentally submitted the opsem PDF again.)]
[badgrade_asst ...]
[problem #f]))

• A fault is represented by a symbol. The symbol is typically the name of the field that was filled
out incorrectly, or that was not filled out, but any symbol can be a fault.

Here are some of the faults used by the regrade analyzer:

– nobutton if no radiobutton was selected
– problem if “review my grade” was selected but the “problem” field was blank
– badsubmit_asst if “I submitted the wrong PDF” was selected but the “assignment” drop-

down was left at ...

• A fault set is represented by a list of symbols without duplicates.8

For example, if I select “review my grade” on the regrade form, but I don’t fill out anything else,
the analyzer will return a fault set containing symbols problem, badgrade_asst, and info, like
this one:

'(problem badgrade_asst info)

• An analyzer is a function that takes one argument (a response) and returns a fault set.

In the problems below, you create a “little language” for writing analyzers.9 The key elements of this
language are higher-order functions: functions that build analyzers from other analyzers.

Expectations for these functions:

• Each function you write must be accompanied by algebraic laws and unit tests.

• Every analyzer must treat the response as an abstraction. An analyzer must never interrogate a
response about its form of data; the analyzer should restrict itself to function find and possibly
function bound-in?:

(define bound-in? (key pairs)
(if (null? pairs)

#f
(|| (= key (alist-first-key pairs))

(bound-in? key (cdr pairs)))))

Problem V is to implement the five functions described in V1 to V5 below, plus the “travel validator”
described in V6. My five functions total less than 20 lines of μScheme.

Related reading:

• Except for faults/none, the functions below are “function factories”: each one takes in some
arguments and returns a function. The main function factories in the book are curry and o (“com-
pose”); to review them, study section 2.7.2, which starts on page 128.

8Unlike exercise 19, the fault set here is represented by a list of values, not by a function.
9It’s actually just a library, but a library like this is called a “little language” because of the way functions compose. The com-

position of fault analyzers resembles the syntactic composition of expressions in an actual programming language.

10

• For faults/both, revisit the combine and divvy examples from the lecture on lambda. (These
functions are intended to be called conjoin and disjoin.)

• For a review of association lists and find, consult section 2.3.8, which starts on page 106.

Laws. Write laws for each of the five functions V1 to V5 below. Most of your algebraic laws, like the
algebraic laws for curry and flip, will need to specify what happens when the result of calling a function
is itself applied. If written well, your laws will be clearer and easier to follow than the informal text below.
Which is one reason why we write them.

For the travel validator in V6, laws are neither necessary nor useful.

V1. Function faults/none is an analyzer that always returns the empty list of faults, no matter what the
response.

V2. Function faults/always takes one argument (a fault 𝐹), and it returns an analyzer that finds fault
with every response. No matter what the response, the analyzer returns a singleton list containing the
fault 𝐹 .

V3. Function faults/equal takes two arguments, a key 𝑘 and a value 𝑣, and it returns an analyzer that
finds fault if the response binds 𝑘 to 𝑣. That is, when given a response 𝑅, the analyzer returns an empty
set of faults unless key 𝑘 is bound to value 𝑣 in 𝑅. If key 𝑘 is bound to value 𝑣, the analyzer returns a
singleton list containing the fault 𝑘.
V4. Function faults/both takes two analyzers a1 and a2 as arguments. It returns an analyzer that, when
applied to a response, finds all the faults found by analyzer a1 and also all the faults found by analyzer a2,
returning them together in a single set.

To avoid conflicts with the set code in exercise 19, you are welcome to use the following template to
define faults/both:

(val faults/both
(let* ([member? (lambda (x s) (exists? ((curry =) x) s))]

[add-elem (lambda (x s) (if (member? x s) s (cons x s)))]
[union (lambda (faults1 faults2) (foldr add-elem faults2 faults1))])

...))

V5. Function faults/switch takes two arguments, a key 𝑘 and an analyzer table, and it returns an
analyzer that uses field 𝑘 of the response to analyze the response. The analyzer table is like the list of
cases in a C switch statement: each case is labeled with a value, and the action to be performed in the
case is itself an analyzer. The analyzer table is represented as an association list.

The use case for faults/switch is to create an analyzer that uses some of the input data to figure out how
to analyze the rest. For example, in the regrade-form validator, if a student submits a photo for regrade,
faults/switch figures out that no more analysis required. But if a student asks for a given problem to be
regraded, faults/switch figures out that we need an assignment, a problem number, and an explanation
(“info”).

Here’s the contract of faults/switch: key 𝑘 determines which field of the response is used to make a
decision. When the analyzer is given a response, the value 𝑣 associated with key 𝑘 in the response is
looked up in the analyzer table, and the resulting analyzer is used to find faults in the response. If I had
a language like Lua, Python, or JavaScript, where table lookup is primitive, I might write simply

analyzer_table[response[k]](response)

11

When you write your algebraic laws, you will notate a similar computation in μScheme.

This problem is simplest if key 𝑘 is bound in the response and value 𝑣 is bound in the analyzer table.
When you write your algebraic laws, make this simplifying assumption. And when you write your code,
you may simply assume that 𝑘 is bound in the response. But if 𝑣 is unbound in the analyzer table, the
analyzer must halt with a checked run-time error. (Any error will do.)

V6. Travel validator. In this problem, you use some of the functions above to define a validator for a
travel form. A response to the travel form has three fields:

• Field type is either 'one-way, 'round-trip, or #f.
• Field out_date is either #f (if empty) or a symbol (if not empty).
• Field return_date is either #f (if empty) or a symbol (if not empty).

Your validator must detect the following faults:

• If field type is #f, then field type is at fault.
• if field type is round-trip and field out_date is #f, field out_date is at fault.
• if field type is round-trip and field return_date is #f, field return_date is at fault.
• if field type is one-way and field out_date is #f, field out_date is at fault.

(A one-way trip with a return date is also faulty, but that fault can’t easily be detected with the functions
you have. You’re not required to detect it.)

Using the val definition form, define an analyzer travel-validator, which implements the fault-
detection rules above. Your analyzer should be implemented using only the functions above.

Here is a test case:

(check-expect
(travel-validator '([type round-trip]

[out_date 4/11/2019]
[return_date #f]))

'(return_date))

Calculational reasoning about functions
M. Reasoning about higher-order functions. Using the calculational techniques from Section 2.4.5,
which starts on page 110, prove that

(o ((curry map) f) ((curry map) g)) == ((curry map) (o f g))

To prove two functions equal, prove that when applied to equal arguments, they return equal results.

Related reading: Section 2.4.5. The definitions of composition and currying in section 2.7.2. Example
uses of map in section 2.8.1. The definition of map in section 2.8.3.

Laws: In this problem you don’t write new laws; you reuse existing ones. You may use any law in the
Basic Laws10 handout, which includes laws for o, curry, and map. (If it simplifies your proof, you may
also introduce new laws, provided that you prove each new law is valid.)

10../handouts/initial-laws.html

12

../handouts/initial-laws.html

Ordered lists
O. Ordered lists. Like natural numbers, the forms of a list can be viewed in different ways. In almost all
functions, we examine just two ways a list can be formed: '() and cons. But in some functions, we need
a more refined view. Here is a problem that requires us to divide a list of values into three forms.

Define a function ordered-by? that takes one argument—a comparison function that represents a tran-
sitive relation—and returns a predicate that tells if a list of values is totally ordered by that relation.
Assuming the comparison function is called precedes?, here is an inductive definition of a list that is
ordered by precedes?:

• The empty list of values is ordered by precedes?.

• A singleton list containing one value is ordered by precedes?.

• A list of values in the form (cons x (cons y zs)) is ordered by precedes? if the following
properties hold:

– x is related to y, which is to say (precedes? x y).

– List (cons y zs) is ordered by precedes?.

Here are some examples. Note the parentheses surrounding the calls to ordered-by?.

-> ((ordered-by? <) '(1 2 3))
#t
-> ((ordered-by? <=) '(1 2 3))
#t
-> ((ordered-by? <) '(3 2 1))
#f
-> ((ordered-by? >=) '(3 2 1))
#t
-> ((ordered-by? >=) '(3 3 3))
#t
-> ((ordered-by? =) '(3 3 3))
#t

Hints:

• The entire 9-step software-design process applies, and it starts with the three forms of data in the
definition of “list ordered by” above.

• For the code itself, you will need letrec.

• We recommend that your submission include the following unit tests, which help ensure that your
function has the correct name and takes the expected number of parameters.

(check-assert (procedure? ordered-by?))
(check-assert (procedure? (ordered-by? <)))
(check-error (ordered-by? < '(1 2 3)))

Related reading: Section 2.9, which starts on page 135. Especially the polymorphic sort in sec-
tion 2.9.2—the lt? parameter to that function is an example of a transitive relation. Section 2.7.2.
Example uses of map in section 2.8.1. The definition of map in section 2.8.3.

13

Laws: Write algebraic laws for ordered-by?, including at least one law for each of the three forms of
data used in the definition of “list ordered by” above.

Extra credit
VX. For extra credit, answer the questions below.

(a) Which of the following equations are valid properties of the fault-validation functions?

• (faults/both faults/none 𝐴) ≡ 𝐴?

• (faults/both (faults/always 𝐹) 𝐴) ≡ (faults/always 𝐹)?

(b) For each of the equations in part (a),

• If the equation is a valid property, present a calculational proof using your laws from problems
V1, V2, and V4.

• If the equation is not a valid property, present a counterexample. That is, present examples of
𝐴, 𝐹 (if necessary), and a response such that, when applied to the response, the two analyzers
produce different fault sets.

What and how to submit
You must submit four files:

• A README file containing

– The names of the people with whom you collaborated
– A list identifying which problems you solved
– A note identifying any extra-credit work you did

• A cqs.hofs.txt containing the reading-comprehension questions11 with your answers edited in

• A PDF files semantics.pdf containing the solutions to Exercises M and VX. (Exercise VX is
extra credit and is optional.) If you already know LaTeX, by all means use it. Otherwise, write
your solution by hand and scan it. Do check with someone else who can confirm that your work is
legible—if we cannot read your work, we cannot grade it.

• A file solution.scm containing the solutions to Exercises 14 (b–f,h,j), 15, 19, A, F, V1 to V6,
and O. You must precede each solution by a comment that looks like something like this:

;;
;; Problem A
;;

As soon as you have the files listed above, run submit105-hofs to submit a preliminary version of your
work. Keep submitting until your work is complete; we grade only the last submission.

11./cqs.hofs.txt

14

./cqs.hofs.txt

Avoid common mistakes
Listed below are some common mistakes, which we encourage you to avoid.

Passing unnecessary parameters. In this assignment, a very common mistake is to pass unnecessary
parameters to a nested helper function. Here’s a silly example:

(define sum-upto (n)
(letrec ([sigma (lambda (m n) ;;; UGLY CODE

(if (> m n) 0 (+ m (sigma (+ m 1) n))))])
(sigma 1 n)))

The problem here is that the n parameter to sigma never changes, and it is already available in the
environment. To eliminate this kind of problem, don’t pass the parameter:

(define sum-upto (n)
(letrec ([sum-from (lambda (m) ;;; BETTER CODE

(if (> m n) 0 (+ m (sum-from (+ m 1)))))])
(sum-from 1)))

I’ve changed the name of the internal function, but the only other things that are different is that I have
removed the formal parameter from the lambda and I have removed the second actual parameter from the
call sites. I can still use n in the body of sum-from; it’s visible from the definition.

An especially good place to avoid this mistake is in your definition of ordered-by? in problem O.

Another common mistake is to fail to redefine predefined functions like map and filter in exercise 15.
Yes, we really want you to provide new definitions that replace the existing functions, just as the exercise
says.

How your work will be evaluated

Structure and organization
The criteria in the general coding rubric12 apply. As always, we emphasize contracts and naming. In par-
ticular, unless the contract is obvious from the name and from the names of the parameters, an inner
function defined with lambda and a let form needs a contract. (An anonymous lambda that is returned
from a function like faults/both does not need a contract—the behavior of that lambda is part of the
contract of the function that returns it.)

There are a few new criteria related to let, lambda, and the use of basis functions. The short version is
use the functions in the initial basis; except when we specifically ask you to, don’t redefine initial-basis
functions.

12../coding-rubric.html

15

../coding-rubric.html

Exemplary Satisfactory Must Improve
Structure • Short problems are solved

using simple anonymous
lambda expressions, not
named helper functions.
• When possible, inner
functions use the
parameters and let-bound
names of outer functions
directly.
• The initial basis of
μScheme is used effectively.

• Most short problems are
solved using anonymous
lambdas, but there are some
named helper functions.
• An inner function is
passed, as a parameter, the
value of a parameter or
let-bound variable of an
outer function, which it
could have accessed
directly.
• Functions in the initial
basis, when used, are used
correctly.

• Most short problems are
solved using named helper
functions; there aren’t
enough anonymous lambda
expressions.
• Functions in the initial
basis are redefined in the
submission.

Functional correctness
In addition to the usual testing, we’ll evaluate the correctness of your translation in problemA. We’ll also
want appropriate list operations to take constant time.

16

Exemplary Satisfactory Must Improve
Correctness • The translation in

problem A is correct.
• Your code passes every
one of our stringent tests.
• Testing shows that your
code is of high quality in all
respects.

• The translation in
problem A is almost correct,
but an easily identifiable
part is missing.
• Testing reveals that your
code demonstrates quality
and significant learning, but
some significant parts of the
specification may have been
overlooked or implemented
incorrectly.

• The translation in problem
A is obviously incorrect,
• Or course staff cannot
understand the translation
in problem A.
• Testing suggests evidence
of effort, but the
performance of your code
under test falls short of
what we believe is needed
to foster success.
• Testing reveals your work
to be substantially
incomplete, or shows
serious deficiencies in
meeting the problem
specifications (serious
fault).
• Code cannot be tested
because of loading errors,
or no solutions were
submitted (No Credit).

Performance • Empty lists are
distinguished from
non-empty lists in constant
time.

• Distinguishing an empty
list from a non-empty list
might take longer than
constant time.

Proofs and inference rules
For your calculational proof, use induction correctly and exploit the laws that are proved in the book.

17

Exemplary Satisfactory Must Improve
Proofs • Proofs that involve

predefined functions appeal
to their definitions or to
laws that are proved in the
book.
• Proofs that involve
inductively defined
structures, including lists
and S-expressions, use
structural induction exactly
where needed.

• Proofs involve predefined
functions but do not appeal
to their definitions or to
laws that are proved in the
book.
• Proofs that involve
inductively defined
structures, including lists
and S-expressions, use
structural induction, even if
it may not always be
needed.

• A proof that involves an
inductively defined
structure, like a list or an
S-expression, does not use
structural induction, but
structural induction is
needed.

18

	Overview
	Setup
	Dire Warnings
	Reading Comprehension (10 percent)
	Programming and Proof (90 percent)
	Overview
	Book problems
	Relating imperative code to functional code
	A function that returns a function
	Input validation
	Calculational reasoning about functions
	Ordered lists
	Extra credit

	What and how to submit
	Avoid common mistakes
	How your work will be evaluated
	Structure and organization
	Functional correctness
	Proofs and inference rules

