
Lambda Calculus

COMP 105 Assignment

Due Wednesday, April 17, 2019 at 11:59PM

Contents
Overview 2

Setup 2

Learning about the lambda calculus 3

Introduction to the lambda interpreter 4
Syntax . 4

The syntax of definitions . 4
The syntax of terms . 5

A short example transcript . 6

Software provided for you 6

All questions and problems 7
Reading comprehension . 7
Programming in the lambda calculus (individual problems) 9
Implementing the lambda calculus (possibly with a partner) 11
Hints on the implementation of reduction . 16

Notes on the higher-order option . 17
Debugging support . 18
Even more debugging support . 18

More Extra Credit 19

What and how to submit: Individual work 19

What and how to submit: Pair work 19

Avoid common mistakes 20
Common mistakes with Church numerals . 20
Common mistakes with the lambda interpreter . 20

How your work will be evaluated 21

1

Overview
Lambda calculus is not just a universal model of computation—it is also a language you can use to
communicate with educated people around the world. In this assignment,

• You use lambda calculus to write simple functions
• You implement lambda calculus using substitution, reduction, and alpha-conversion

Substitution, reduction, and alpha-conversion are found all over programming-language semantics, not
just in lambda calculus.

Setup
TL;DR: download the template solution1 and compile with compile105-lambda. Everything will be
fine.

Behind the curtain: For the first part, coding in lambda calculus, you will code things from scratch.
For the second part, implementing lambda calculus, you will extend an interpreter I’ve written. But
because you can work with ML modules now, you won’t be stuck modifying a huge pile of code. Instead,
you’ll define several modules, for both implementation and testing, and you’ll use several of my interfaces.

The ML module system is nice, but Moscow ML’s module bureaucracy is not at all nice. I’ve hidden the
bureaucracy behind a shell script, compile105-lambda. This script lives in /comp/105/bin, and if you
run use comp105 at the command line, you have access to it. But if something goes wrong, you may
wish to know about the pieces of the assignment. Here are the source codes:2

church.lam Your solutions to the first part
solution.sml Your module implementing terms, substitution, and reduction
client.sml Your module demonstrating term functions
string-tests.sml Test cases for your classmates’ code
subst-tests.sml Test cases for substitution
link-lambda.sml Instructions for linking your code with mine
link-lambda-a.sml More instructions for linking your code with mine
link-lamstep.sml Even more instructions for linking your code with mine

Using these sources, the compile105-lambda script will create binaries:

./run-solution-unit-tests Runs some of your unit tests

./run-client-unit-tests Runs more unit tests

./run-string-tests Runs more unit tests

./run-subst-tests Runs the last of your unit tests

./linterp Runs your complete interpreter (normal-order reduction)

./lamstep Runs your interpreter, showing each reduction

./linterp-applicative Runs your complete interpreter (applicative-order reduction)

1./solution.sml
2Files link-lambda.sml and link-lambda-a.sml are copied into your directory by the compile105-lambda script. The others

are created by you.

2

./solution.sml

Learning about the lambda calculus
There is no book chapter on the lambda calculus. Instead, we refer you to these resources:

1. The edited version of Raúl Rojas’s “A Tutorial Introduction to the Lambda Calculus3” is short,
easy to read, and covers the same points that are covered in lecture:

• Syntax
• Free and bound variables
• Capture-avoiding substitution
• Addition and multiplication with Church numerals
• Church encoding of Booleans and conditions
• The predecessor function on Church numerals
• Recursion using the Y combinator

Rojas doesn’t provide many details, but he covers everything you need to know in 9 pages, with
no distracting theorems or proofs.

When you want a short, easy overview to help you solidify your understanding, Rojas’s tutorial is
your best source.

2. I have written a short guide to coding in Lambda calculus4. It shows how to translate ML-like
functions and data, which you already know how to program with, into lambda calculus.

When you are solving the individual programming problems, this guide is your best source.

3. Prakash Panangaden’s “Notes on the Lambda-Calculus5” cover the same material as Rojas, but
with more precision and detail. Prakash is particularly good on capture-avoiding substitution and
change of bound variables, which you will implement.

Prakash also discusses more theoretical ideas, such as how you might prove inequality (or inequiv-
alence) of lambda-terms. And instead of just presenting the Y combinator, Prakash goes deep into
the ideas of fixed points and solving recursion equations—which is how you achieve recursion in
lambda calculus.

When you are getting ready to implement substitution, Prakash’s notes are your best source.

4. I have also written a short guide to reduction strategies6. It is more useful than anything that could
be found online in 2018. As a bonus, it also explains eta-reduction, which is neglected by other
sources.

When you have finished implementing substitution and are ready to implement reduction, this
guide is your best source.

5. Wikipedia offers two somewhat useful pages:7

3https://www.cs.tufts.edu/comp/105/readings/rojas.pdf
4../handouts/lambda-coding.pdf
5https://www.cs.tufts.edu/comp/105/readings/prakash.pdf
6https://www.cs.tufts.edu/comp/105/readings/reduction.pdf
7They were more useful in 2017 then they are now—as always, Wikipedia pages are subject to change without notice.

3

https://www.cs.tufts.edu/comp/105/readings/rojas.pdf
../handouts/lambda-coding.pdf
https://www.cs.tufts.edu/comp/105/readings/prakash.pdf
https://www.cs.tufts.edu/comp/105/readings/reduction.pdf

• The Lambda Calculus8 page covers everything you’ll find in Rojas and much more besides.
(If you wish, you can read what Wikipedia says about reduction strategies and evaluation
strategies. But do not expect to be enlightened.)

• The Church Encoding9 page goes into more detail about how to represent ordinary data as
terms in the lambda calculus. The primary benefit relative to Rojas is that Wikipedia de-
scribes more kinds of arithmetic and other functions on Church numerals.

You need to know that the list encoding used on Wikipedia is not the list encoding used in
COMP 105. In order to complete the homework problems successfully, you must use the list
encoding described in the guide to coding in lambda calculus10.

Introduction to the lambda interpreter
Youwill implement the key components of an interactive interpreter for the lambda calculus. This section
explains how to use the interpreter and the syntax it expects. A reference implementation of the interpreter
is available in /comp/105/bin/linterp-nr.

Syntax
The syntax of definitions

Like the interpreters in the book, the lambda interpreter processes a sequence of definitions. The concrete
syntax is very different from the “bridge languages” in the book. Every definition must be terminated
with a semicolon. Comments are line comments in C++ style, starting with the string // and ending at
the next newline.

The interpreter supports four forms of definition: a binding, a term, the extended definition “use”, and
an extended definition “check-equiv”.

Bindings

A binding is something like a val form in 𝜇Scheme. A binding has one of two forms: either

noreduce name = term;

or

name = term;

In both forms, every free variable in the term must be bound in the environment—if a right-hand side
contains an unbound free variable, the result is a checked run-time error. The first step of computation
is to substitute for each of the free variables: each occurrence of each free variable is replaced by that
variable’s definition.

In the first form, where noreduce appears, no further computation takes place. The substituted right-hand
side is simply associated with the name on the left, and this binding is added to the environment.

The noreduce form is intended only for terms that cannot be normalized, such as
8https://en.wikipedia.org/wiki/Lambda_calculus
9https://en.wikipedia.org/wiki/Church_encoding

10../handouts/lambda-coding.pdf

4

https://en.wikipedia.org/wiki/Lambda_calculus
https://en.wikipedia.org/wiki/Church_encoding
../handouts/lambda-coding.pdf

noreduce bot = (\x.x x)(\x.x x);
noreduce Y = \f.(\x.f(x x))(\x.f(x x));

The noreduce form is also needed for definitions that use terms like bot and Y.

If noreduce is absent, the interpreter substitutes for free variables, then reduces the term on the right
until there are no more beta-redexes or eta-redexes. (You will implement the two reduction strategies
presented in class.) If reduction doesn’t terminate, the interpreter might loop.

Loading files with use

The use extended definition loads a file into the interpreter as if it had been typed in directly. It takes the
form

use filename;

Comparing normal forms with check-equiv

The check-equiv form immediately reduces two terms to normal form and compares them for equiva-
lence. It has the form

check-equiv term = term;

And here are some examples:

-> check-equiv x = x;
The test passed
-> check-equiv \x.x = \y.y;
The test passed
-> check-equiv \x.x = \y.x;
The test failed: terms \x.x and \y.x do not have equivalent normal forms
-> check-equiv (\x.x)(\y.y) = \z.z;
The test passed
-> check-equiv \f.f = \f.\x.f x;
The test passed

Unlike the check-expect in the other interpreters, check-equiv is not “saved for later”—the given terms
are normalized right away.

Terms as definitions

As in the book, a term can be entered at the read-eval-print loop, just as if it were a definition. Every
free variable in the term is checked to see if it is bound in the environment; if so, each free occurrence
is replaced by its binding. Free variables that are not bound in the environment are permissible; they are
left alone.11 The term is reduced to normal form (if possible) and the result is printed.

-> term;

The syntax of terms

A lambda term can be either a variable, a lambda abstraction, an application, or a parenthesized lambda
term. Precedence is as in ML.

11Try, for example, (\x.\y.x) A B;.

5

A lambda abstraction abstracts over exactly one variable; it is written as follows:

\name.term

Application of one term to another is written:

term1 term2

The lambda interpreter is very liberal about names of variables. A name is any string of characters that
contains neither whitespace, nor control characters, nor any of the following characters: \ () . = /. Also,
the string use is reserved and is therefore not a name. But a name made up entirely of digits is OK; the
lambda calculus has no numbers, and names like 105 have no special status.

As examples, all the following definitions are legal:

<1> = \f.\x.f x;
1 = \f.\x.f x;
True = \x.\y.x;
one = True 1;

A short example transcript
A healthy lambda interpreter should be capable of something like the following transcript:

-> true = \x.\y.x;
-> false = \x.\y.y;
-> pair = \x.\y.\f.f x y;
-> fst = \p.p (\x.\y.x);
-> snd = \p.p (\x.\y.y);
-> true;
\x.\y.x
-> fst (pair true false);
\x.\y.x
-> snd (pair true false);
\x.\y.y
-> if = \x.\y.\z.x y z;
if
-> (if true fst snd) (pair false true);
\x.\y.y
-> (if false fst snd) (pair true false);
\x.\y.y

For more example definitions, see the predefined.lam12 file distributed with the assignment.

Software provided for you
Both capture-avoiding substitution and normal-order reduction can be tricky to implement.13 So that you
may have a solid foundation on which to write your lambda code, I provide an interpreter linterp-nr.
Running use comp105 should give you access to that interpreter.

12https://www.cs.tufts.edu/comp/105/homework/predefined.lam
13I have botched capture-avoiding substitution multiple times.

6

https://www.cs.tufts.edu/comp/105/homework/predefined.lam

Even with a correct interpreter, lambda code can be hard to debug. So I also provide an interpreter called
lamstep-nr, which shows every reduction step. Some computations require a lot of reduction steps and
produce big intermediate terms. Don’t be alarmed.

All questions and problems
• There are four problems on programming with Church numerals, which you’ll do on your own.

• There are four problems on implementing the lambda calculus, which you can do with a partner.
Your solutions will go into a Standard ML module, which you will link with the rest of the inter-
preter.

Reading comprehension
These problems will help guide you through the reading. We recommend that you complete them before
starting the other problems below. You can download the questions14.

1. (NOT ON THE READING.) Throughout the term, your code’s functional correctness has been
assessed by automated testing. The automated test scripts are intended not only to assign a grade
but to identify the most important fault in the code. Please answer these two questions:

(a) How did you benefit from the feedback you received about functional correctness?

(b) What were the drawbacks, if any, of the feedback you received about functional correctness?

2. Syntax of lambda terms. In this assignment, or in Rojas or Panangaden, read about the concrete
syntax of lambda-terms.
Now define, in Standard ML, an algebraic data type term that represents the abstract syntax of
terms. Your data type should have one value constructor for a variable, one for a lambda abstraction,
and one for an application.

You are ready for exercise 5, and you have a foundation for exercises 6 and 8.

3. Recognizing redexes. Read about redexes in Wikipedia15. (You will then follow up with Panan-
gaden16.)

(a) Wikipedia mentions two kinds of redex. What are their names?

(b) In Panangaden, Definition 1.7 defines a redex. Which of the two redexes mentioned in
Wikipedia is being defined here?

Your code will have to recognize redexes, and it starts with knowing the form of each kind. As of
Spring 2019, both forms are shown inWikipedia. But if Wikipedia changes, one form can be found
in Panangaden; for the other, look in the last section of my guide to reduction strategies.

(c) For each of the two kinds of redex, use the concrete syntax for our lambda interpreter (see
above) to show what form every redex of that kind takes.

(d) For each of the two kinds of redex, use your algebraic data type from the preceding question
to write a pattern that matches every redex of that kind.

14./cqs.lambda.txt
15https://en.wikipedia.org/wiki/Lambda_calculus#Reduction
16https://www.cs.tufts.edu/comp/105/readings/prakash.pdf

7

./cqs.lambda.txt
https://en.wikipedia.org/wiki/Lambda_calculus#Reduction
https://www.cs.tufts.edu/comp/105/readings/prakash.pdf

You are getting ready for exercise 8 (reductions).

4. Practicing reduction. Read about reduction17 on Wikipedia. Then in Panangaden18, be sure you
have an idea about each of these concepts:

• Capture-avoiding substitution (Definition 1.3)

• Reduction (Definition 1.5), including the example reduction (Example 1.3)

• Redex, contractum, and normal form (Definitions 1.7 and 1.8)

Showing each reduction step, reduce the following term to normal form. At each step, choose a
redex and replace the redex with its contractum. Do not expand or replace the names ZERO and
NONZERO.

(\n.(n(\z.NONZERO))ZERO)(\f.\x.f x)
→
...

The term contains more than one redex, but no matter which redex you choose at each step, you
should reach the normal form after exactly four reductions.

You are preparing to complete exercise 8.

5. Reduction: the general case. For each kind of redex, repeat the general form of the redex from
question 2(c) 3(c) above, then show what syntactic form the redex reduces to (in just a single
reduction step).

You are getting ready for exercise 8 (reductions).

6. When to reduce. Read my handout on reduction strategies19. Using the concrete syntax accepted
by the interpreter (and defined above), write a lambda term that contains exactly two redexes, such
that normal-order reduction strategy reduces one redex, and applicative-order reduction strategy
reduces the other redex.

You are (finally!) ready for exercise 8.

7. Understanding Church numerals. You may recognize the practice reduction above as a computa-
tion that tells if a Church numeral is zero. Read about Church numerals, either on pages 9 and 10
of Panangaden or in Section 2 of Rojas (“Arithmetic”). Then, say whether each of the following
lambda-calculus terms is a Church numeral. If so, write the corresponding decimal representation.
If not, write “not a Church numeral”.

\f.x
\f.\x.x
\f.\x.f
\f.\x.f x
\x.\x.f (f (f (f (f x))))

You are ready for exercises 1 to 4.
17https://en.wikipedia.org/wiki/Lambda_calculus#Reduction
18https://www.cs.tufts.edu/comp/105/readings/prakash.pdf
19../readings/reduction.pdf

8

https://en.wikipedia.org/wiki/Lambda_calculus#Reduction
https://www.cs.tufts.edu/comp/105/readings/prakash.pdf
../readings/reduction.pdf

Programming in the lambda calculus (individual problems)
These problems give you a little practice programming in the lambda calculus. Most functions must ter-
minate in linear time, and you must do these exercises by yourself. You can use the reference interpreter
linterp-nr.

Lambda-calculus programs work at the same intellectual level as assembly-language programs. There-
fore, every new helper function must be well named and must be accompanied by a contract. Detailed
guidance can be found below.

Helper functions listed in the assignment are exempt from the contract requirement, as are the helper
functions in predefined.lam.

Complete all four problems below, and place your solutions in file church.lam.

Not counting code copied from the lecture notes, my solutions to all four problems total less than fifteen
lines of code. And all four problems rely on the same related reading.

Related reading for lambda-calculus programming problems 1 to 4:

• My guide Coding in Lambda Calculus20 should explain everything you need to know to write
functional programs in lambda calculus. If not, or if the explanations there are a little too terse,
consult the additional readings below.

• Basic techniques can be found in Wikipedia on Church Encoding21 and in section 2 of Panan-
gaden22, which is titled “Computing with Lambda Calculus” (from page 8 to themiddle of page 10).
These basics are sufficient for you to tackle problems 1 and 2.

Another alternative is Section 2 of Rojas’s tutorial, entitled “arithmetic.” Rojas doesn’t mention
Church numerals by name, but that’s what he’s working with. You may find the examples useful
and the presentation more accessible than what you see from Panangaden.

• On problems 3 and 4 only, if you have the urge to write a recursive function, you may use a fixed-
point combinator. My guide ends with a few pages on recursion. You may also wish to consult the
first paragraph under “Fixed-Point Combinators” on page 10 of Panangaden23. This explanation is
by far the best and simplest explanation available—but it is very terse. For additional help, consult
the examples on page 11.

I recommend against the Wikipedia “main article” on fixed-point combinators: the article is all
math all the time, and it won’t give you any insight into how to use a fixed-point combinator.

1. Church Numerals—parity. Without using recursion or a fixed-point combinator, define a func-
tion even? which, when applied to a Church numeral, returns the Church encoding of true or false,
depending on whether the numeral represents an even number or an odd number.

Your function must terminate in time linear in the size of the Church numeral.

Ultimately, you will write your function in lambda notation acceptable to the lambda interpreter, but you
may find it useful to try to write your initial version in Typed μScheme (or ML or 𝜇ML or μScheme) to
make it easier to debug.

20../handouts/lambda-coding.pdf
21https://en.wikipedia.org/wiki/Church_encoding
22https://www.cs.tufts.edu/comp/105/readings/prakash.pdf
23https://www.cs.tufts.edu/comp/105/readings/prakash.pdf

9

../handouts/lambda-coding.pdf
https://en.wikipedia.org/wiki/Church_encoding
https://www.cs.tufts.edu/comp/105/readings/prakash.pdf
https://www.cs.tufts.edu/comp/105/readings/prakash.pdf

Remember these basic terms for encoding Church numerals and Booleans:

<0> = \f.\x.x;
succ = \n.\f.\x.f (n f x);
+ = \n.\m.n succ m;
* = \n.\m.n (+ m) <0>;

true = \x.\y.x;
false = \x.\y.y;

You can load these definitions by typing use predefined.lam; in your interpreter.

2. Church Numerals—division by two. Without using recursion or a fixed-point combinator, define
a function div2 which divides a Church numeral by two (rounding down). That is, div2 applied to the
numeral for 2𝑛 returns 𝑛, and div2 applied to the numeral for 2𝑛 + 1 also returns 𝑛.
We don’t know if this one can be done in linear time, but it is sufficient if your function terminates in time
quadratic in the size of the Church numeral.

Hint: Think about function split-list from the Scheme homework24, about the implementation of the
predecessor function on natural numbers, and about the “window” example from recitation.

3. Church Numerals—conversion to binary. Implement the function binary from the Impcore home-
work25. The argument and result must be Church numerals. For example,

-> binary <0>;
\f.\x.x
-> binary <1>;
\f.f
-> binary <2>;
\f.\x.f (f (f (f (f (f (f (f (f (f x))))))))) // f applied 10 times
-> binary <3>;
\f.\x.f (f (f (f (f (f (f (f (f (f (f x)))))))))) // f applied 11 times

For this problem, you may use the Y combinator. If you do, remember to use noreduce when defining
binary, e.g.,

noreduce binary = ... ;

This problem, although not so difficult, may be time-consuming. If you get bogged down, go forward to
the list-selection problem (nth),
which can benefit from similar skills in recursion, fixed points, and Church numerals. Then come back
to this problem.

Your function must terminate in time quadratic in the size of the Church numeral.

EXTRA CREDIT. Write a function binary-sym that takes three arguments: a name for zero, a name
for one, and a Church numeral. Function binary-sym reduces to a term that “looks like” the binary
representation of the given Church numeral. Here are some examples where I represent a zero by a
capital O (oh) and a one by a lower-case l (ell):

-> binary-sym O l <0>;

24./scheme.html
25./impcore.html

10

./scheme.html
./impcore.html

O
-> binary-sym O l <1>;
l
-> binary-sym O l <2>;
l O
-> binary-sym O l (+ <2> <4>);
l l O
-> binary-sym Zero One (+ <2> <4>);
One One Zero
-> binary-sym O l (+ <1> (* <4> (+ <1> <2>)));
l l O l

It may help to realize that l l O l is the application (((l l) O) l)—it is just like the example
𝐸1𝐸2𝐸3 … 𝐸𝑛 in the first section of Rojas’s tutorial26.

Function binary-sym has little practical value, but it’s fun. If you write it, please put it in your
church.lam file, and mention it in your README file.

4. Church Numerals—list selection. Write a function nth such that given a Church numeral n and a
church-encoded list xs of length at least n+1, nth n xs returns the nth element of xs:

-> <0>;
\f.\x.x
-> <2>;
\f.\x.f (f x)
-> nth <0> (cons Alpha (cons Bravo (cons Charlie nil)));
Alpha
-> nth <2> (cons Alpha (cons Bravo (cons Charlie nil)));
Charlie

To get full credit for this problem, you must solve it without recursion. But if you want to define nth as
a recursive function, use the Y combinator, and use noreduce to define nth.

Provided xs is long enough, function nth must terminate in time linear in the length of the list. Don’t
even try to deal with the case where xs is too short.

Hint: One option is to go on the web or go to Rojas27 and learn how to tell if a Church numeral is zero
and if not, and how to take its predecessor. There are other, better options.

Implementing the lambda calculus (possibly with a partner)
For problems 5 to 8 below, you may work on your own or with a partner. These problems help you learn
about substitution and reduction, the fundamental operations of the lambda calculus. The first problem
also gives you a little more practice in using continuation-passing to code an algebraic data type, which
is an essential technique in lambda-land.

26https://www.cs.tufts.edu/comp/105/readings/rojas.pdf
27https://www.cs.tufts.edu/comp/105/readings/rojas.pdf

11

https://www.cs.tufts.edu/comp/105/readings/rojas.pdf
https://www.cs.tufts.edu/comp/105/readings/rojas.pdf

For each problem, you will implement types and functions described below. When you are done, the
compile105-lambda script will link your code with mine to build a complete lambda interpreter. To sim-
plify the configuration, most of the functions and types you must define will be placed in a module called
SealedSolution, which you will implement in a single file called solution.sml. The module must be
sealed with this interface:

signature SOLUTION = sig

(************************* BASICS *************************)

eqtype term
val lam : string -> term -> term (* lambda abstraction *)
val app : term -> term -> term (* application *)
val var : string -> term (* variable *)
val cpsLambda : (* observer *)

(* forall 'answer . *)
term ->
(string -> term -> 'answer) ->
(term -> term -> 'answer) ->
(string -> 'answer) ->
'answer

(* These functions obey the following algebraic laws:

cpsLambda (lam x e) f g h = f x e
cpsLambda (app e e') f g h = g e e'
cpsLambda (var x) f g h = h x

*)

(********************** SUBSTITUTION **********************)

val freeIn : string -> term -> bool

val freeVars : term -> string list

val subst : string * term -> (term -> term)
(* subst (x, M) returns the capture-avoiding substitution

of M for x (”x goes to M”) *)

(****************** REDUCTION STRATEGIES ******************)

val reduceN : term Reduction.reducer (* normal order *)
val reduceA : term Reduction.reducer (* applicative order *)

end

12

You can download a template solution28.

5. Evaluation—Coding terms.

In your file solution.sml, create anML type definition for a type term, which should represent a term in
the untyped lambda calculus. Using your representation, define functions lam, app, var, and cpsLambda.

Compile this file by running compile105-lambda (with no arguments), then run any internal unit tests
by running ./run-solution-unit-tests.

My solution is under 15 lines of ML code.

Related reading: The syntax of lambda terms29 in this homework.

6. Evaluation—Substitution. In file solution.sml, implement capture-avoiding substitution on your
term representation. In particular,

• Define function freeIn of type string -> term -> bool, which tells if a given variable occurs
free in a given term. (If you adapt your solution to the pair problem on the ML homework, or my
model solution to that problem, acknowledge your sources!)

• Define function freeVars of type term -> string list, which returns the variables free in a
given term. The list must have no duplicates.

• Define function subst of type string * term -> term -> term. Calling subst (𝑥, 𝑁) M
returns the term 𝑀[𝑥 ↦ 𝑁] (“𝑀 with 𝑥 goes to 𝑁”).

Function subst obeys these algebraic laws,30 in which 𝑥 and 𝑦 stand for variables, and 𝑁 and 𝑀
stand for terms:

(a) subst (𝑥, 𝑁) 𝑥 = 𝑁
(b) subst (𝑥, 𝑁) 𝑦 = 𝑦, provided 𝑦 is different from 𝑥
(c) subst (𝑥, 𝑁) (𝑀1 𝑀2) = (subst (𝑥, 𝑁) 𝑀1) (subst (𝑥, 𝑁) 𝑀2)
(d) subst (𝑥, 𝑁) (𝜆𝑥.𝑀) = (𝜆𝑥.𝑀)
(e) subst (𝑥, 𝑁) (𝜆𝑦.𝑀) = 𝜆𝑦.(subst (𝑥, 𝑁) 𝑀), provided 𝑥 is not free in 𝑀 or 𝑦 is

not free in 𝑁 , and also provided 𝑦 is different from 𝑥
If none of the cases above apply, then subst (𝑥, 𝑁) 𝑀 should return subst (𝑥, 𝑁) 𝑀 ′,
where 𝑀 ′ is a term that is obtained from 𝑀 by renaming bound variables. Renaming a bound
variable is called “alpha conversion.”

You need to rename bound variables only if you encounter a case that is like case (e), but in which
𝑥 is free in 𝑀 and 𝑦 is free in 𝑁 . In such a case, subst (𝑥, 𝑁) (𝜆𝑦.𝑀) can be calculated only
by renaming 𝑦, which is bound in the lambda abstraction, to some new variable that is not free in
𝑀 or 𝑁 .

To help you implement subst, you may find it useful to define this helper function:

• Function freshVar, which is given a list of variables and produces a variable that is different from
every variable on the list

By using freshVar on the output of freeVars, you will be able to implement alpha conversion.
28./solution.sml
29https://www.cs.tufts.edu/comp/105/homework/lambda.html#the-syntax-of-terms
30The laws, although notated differently, are identical to the laws given by Prakash Panangaden31 as Definition 1.3.

13

./solution.sml
https://www.cs.tufts.edu/comp/105/homework/lambda.html#the-syntax-of-terms

To test this problem, you have three possible approaches:

• The next problem demands a minimal set of test cases. You can stick with this set and choose not
to worry about further testing.

• You can add Unit tests to your solution.sml file. You would then compile it by running
compile105-lambda with no arguments, and run the binary ./run-solution-unit-tests that
results.

• You can also build and run the full interpreter ./linterp, again by running compile105-lambda
without arguments. But be warned: you may see some alarming-looking terms that have extra
lambdas and applications. This is because the interpreter uses lambda to substitute for the free
variables in your terms. Here’s a sample:

-> thing = \x.\y.y x;
thing
-> thing;
(\thing.thing) \x.\y.y x

Everything is correct here except that the code claims something is in normal form when it isn’t.
If you reduce the term by hand, you should see that it has the normal form you would expect.

My solution to this problem is just under 40 lines of ML code.

Related reading:

• Panangaden32 describes free and bound variables in Definition 1.2 on page 2. He defines substitu-
tion in Definition 1.3 on page 3. (His notation is a little different from our ML code, but the laws
for subst are the same.)

• In his Definition 1.3, case 6, plus Definition 1.4, Panangaden33 explains the “change of bound
variables” that you need to implement if none of the cases for subst apply.

• Page 470 of your book defines an ML function freshName which is similar to the function fresh-
Var that you need to implement. The freshName on page 470 uses an infinite stream of candidate
variables. You could copy all the stream code from the book, but it will probably be simpler just
to define a tail-recursive function that tries an unbounded number of variables.

Don’t emulate function freshtyvar on page 517. It’s good enough for type inference, but it’s not
good enough to guarantee freshness in the lambda calculus.

7. Substitution tests. As shown in the previous problem, function subst has to handle five different
cases correctly. It also has to handle a sixth case, in which none of the laws shown above applies, and
renaming is required. In this problem, you create test cases for your subst function. They should go into
a file subst-tests.sml, which should look like this:

structure S = SealedSolution
fun toString t = S.cpsLambda t

(fn name => fn trm => ”(lambda (” ^ name ^ ”) ” ^ toString trm ^ ”)”)
(fn t1 => fn t2 => ”(” ^ toString t1 ^ ” ” ^ toString t2 ^ ”)”)
(fn name => name)

val N : S.term = S.app (S.app (S.var ”fst”) (S.var ”x”)) (S.var ”y”)

32https://www.cs.tufts.edu/comp/105/readings/prakash.pdf
33https://www.cs.tufts.edu/comp/105/readings/prakash.pdf

14

https://www.cs.tufts.edu/comp/105/readings/prakash.pdf
https://www.cs.tufts.edu/comp/105/readings/prakash.pdf

val checkExpectTerm = Unit.checkExpectWith toString
val () = checkExpectTerm ”subst, case (a)” (fn () => S.subst (”x”, N) (S.var ”x”)) N
val () = checkExpectTerm ”subst, case (b)” ...
val () = checkExpectTerm ”subst, case (c)” ...
val () = checkExpectTerm ”subst, case (d)” ...
val () = checkExpectTerm ”subst, case (e)” ...
val () = checkExpectTerm ”subst, renaming” ...

To run these tests, run compile105-lambda without arguments, then run the resulting binary ./run-
subst-tests.

8. Evaluation—Reductions. In this problem, you use your substitution function to implement two dif-
ferent reduction strategies, called reduceN and reduceA.

A reduction strategy is a function that takes a term 𝑀 and produces a one of the following two values:

• Reduction.DOESN'T_STEP, if it is not possible to reduce 𝑀
• Reduction.ONE_STEPS_TO 𝑁 , if 𝑀 reduces to 𝑁 in a single step

The relation “𝑀 reduces to 𝑁 in a single step” is written 𝑀 → 𝑁 , and it is explained in the handout on
reduction strategies34 as well as in many other sources on the lambda calculus.

Each function takes a term and tries to perform a single reduction step, using any rule that applies: Beta,
Eta, Mu, Nu, or Xi. (The rules are shown in the handout on reduction strategies.) Each function is
specified as follows:

a. Function reduceN implements normal-order reduction: it tries the leftmost, outermost redex first.
In other words, it prefers Beta over Nu and Nu over Mu).

b. Function reduceA implements applicative-order reduction: it uses the Beta rule only when the
argument is normal form. In other words, it prefers Mu over Beta.

Both functions must also implement Eta reduction.

To compile and test this code, run compile105-lambda without arguments, then test using ./linterp
(normal-order reduction), ./lamstep (normal-order reduction, showing each step), and ./linterp-
applicative (applicative-order reduction). You may also wish to consult the hints below.

I’ve written two solutions to this problem. One solution uses only first-order functions: it implements
reduceN and reduceA directly, by extensive case analysis. My first-order solution is about 30 nonblank
lines of ML code. The other solution uses higher-order functions to define reduceN and reduceA. It im-
plements each rule as its own function, then combines them using the >=> operator described below.
My higher-order solution is about 25 nonblank lines of ML code.

Related reading:

• Start with my guide, “Reduction Strategies for Lambda Calculus35.”

• For implementation, read the Hints on the implementation of reduction section below.

• Consider consulting Panangaden36, who describes the reduction relation in Definition 1.5. Al-
though he treats it as a mathematical relation, not a computational rule, you may find his definitions

34https://www.cs.tufts.edu/comp/105/readings/reduction.pdf
35../readings/reduction.pdf
36https://www.cs.tufts.edu/comp/105/readings/prakash.pdf

15

https://www.cs.tufts.edu/comp/105/readings/reduction.pdf
../readings/reduction.pdf
https://www.cs.tufts.edu/comp/105/readings/prakash.pdf

helpful. But some commentary is required:

– Rules 𝛼 (change of variables) and 𝜌 (reflexivity) have no computational content and should
therefore play no part in reduceN or reduceA. (Rule 𝛼 plays a part in subst.)

– Rule 𝜏 (transitivity) involves multiple reductions and therefore also plays no part in reduceN
or reduceA.

The remaining rules are used in both reduceN and reduceA, but with different priorities.

– Rule 𝛽 is the key rule, and in normal-order reduction, rule 𝛽 is always preferred.

– In applicative-order reduction, rule 𝜇 (reduction in the argument position) is preferred.

– In normal-order reduction, rule 𝜈 (reduction in the function position) is preferred over rule 𝜇
but not over rule 𝛽.

Finally, Panangaden omits rule 𝜂, which like rule 𝛽 is always preferred:

– 𝜆𝑥.𝑀𝑥 → 𝑀 , provided 𝑥 is not free in 𝑀
You must implement the 𝜂 rule as well as the other rules.

• If you want to know more, or you want a different formulation, go (cautiously) to Wikipedia.
Wikipedia describes some individual reduction rules in the Reduction37 section of the lambda-
calculus page. And it briefly describes applicative-order reduction and normal-order reduction,
as well as several other reduction strategies, in the reduction strategies38 section of the lambda-
calculus page.

Hints on the implementation of reduction
The return type of reduceA and reduceN is term Reduction.result, where Reduction.result is
defined by this interface, which also defines some useful helper functions:

signature REDUCTION = sig
datatype 'a result

= ONE_STEPS_TO of 'a
| DOESN'T_STEP

val rmap : ('a -> 'b) -> ('a result -> 'b result)
(* laws: rmap f (ONE_STEPS_TO e) = ONE_STEPS_TO (f e)

rmap f DOESN'T_STEP = DOESN'T_STEP *)

type 'a reducer = 'a -> 'a result

val nostep : 'a reducer

val >=> : 'a reducer * 'a reducer -> 'a reducer
(* Sequential composition: try left, then right.

Associative, with identity nostep *)
end

37https://en.wikipedia.org/wiki/Lambda_calculus#Reduction
38https://en.wikipedia.org/wiki/Lambda_calculus#Reduction_strategies

16

https://en.wikipedia.org/wiki/Lambda_calculus#Reduction
https://en.wikipedia.org/wiki/Lambda_calculus#Reduction_strategies

The helper functions rmap, nostep, and >=> are used to implement the second of two possible implemen-
tation options:

• The first-order option is simply to take a term, break its representation down by cases, and in each
case, define a right-hand side that combines all the rules for that case, including the Eta rule. The
advantage of this option is it’s concrete, and the programming techniques are ones you’ve been
using all along—break down the data by cases, apply the rules. The disadvantage is that there are
a lot of cases, and the logic on the right hand side is complicated. Once you’ve written the code, it
will be hard to understand and hard to debug. Students choosing this option often forget cases or
botch cases.

• The higher-order option is to define each rule as its own function, then to compose the functions
using the >=> operator in the Reduction module.39 The advantage of this option is that the con-
struction of the reduction strategy makes it crystal clear what is going on and in what order—it
becomes very hard to forget or botch a case. This option also makes it easy to implement and
test one rule at a time. The disadvantage of this option is that it is abstract, and it is aggressively
higher-order: you are using the >=> arrow to compose simple functions into more complex func-
tions. Understanding the “reducer” abstraction well enough to implement it will take a little time.

Notes on the higher-order option

If you want to try the REDUCTION interface and the higher-order option, here are some notes:

• The type called 'a reducer is really a partial reducer: a function of this type implements some
sequence of rules. Function nostep implements no rules, and the composition arrow >=> combines
two functions to implement a combined sequence of rules. Your implementation task breaks down
into two steps: first, define rule functions; second, compose them.

• The rmap function is the classic mapping idea (called “homomorphic”) which you have already
seen in List.map and Option.map. It is especially useful in conjunction with curry, as in

Reduction.rmap (curry lam x) (...)

You may also find a use for flip.

• The composition arrow is mean to be used as an infix operator. In your solution file, copy these
definitions:

val >=> = Reduction.>=>
infix 1 >=>

• The most beautiful code emerges if you define functions beta, eta, nu, mu, and xi, then compose
them:

val strategy = xi >=> mu >=> beta >=> ... (* don't use this order *)

But there’s a problem here: the nu, mu, and xi rules all need the capability of doing general re-
duction on a subterm, which means they have to be mutually recursive with the reducer. Mutually
recursion can be handled in several ways, but the easiest is to define the individual rule functions
inside the reducer, in a let binding. This easy way does, however, duplicate code. If you want to
avoid the duplication, you can do something like this:

39This operator is an example of “Kleisli composition,” which is an advanced form of function composition.

17

fun xi_maker reducer term = (case term of ...) : term Reduction.result

fun reduceZZZ m =
let val this = reduceZZZ

val xi = xi_maker this
val mu = mu_maker this
...
val reduce = xi >=> mu >=> beta >=> ... (* don't use this order *)

in reduce m
end

Overall, I think the higher-order option is worth the extra effort needed to understand the reducer type
and its composition: when you split each rule into its own function, it’s much, much easier to get them
all right. And it’s easy to reuse the same functions in multiple reduction strategies.

Debugging support

As shipped, the lambda-calculus interpreter reduces each term repeatedly, until it reaches a normal form.
But when you are debugging reduction strategies, you may find it helpful to see the intermediate terms.
The compile105-lambda script should produce an executable program ./lamstep, which will show
the results of every reduction step. You can compare this interpreter with the reference version, called
lamstep-nr.

Even more debugging support

If the ./lamstep interpreter doesn’t provide enough information (or provides too much), here is a way
to print a status report after every n reductions:

fun tick show n f = (* show info about term every n reductions *)
let val count = ref 0

fun apply arg =
let val _ = if !count = 0 then

(List.app print [”[”, Int.toString (show arg), ”] ”]
; TextIO.flushOut TextIO.stdOut
; count := n - 1)

else
count := !count - 1

in f arg
end

in apply
end

I have defined a status function size that prints the size of a term. You can print whatever you like:
a term’s size, the term itself, and so on. Here is how I show the size of the term after every reduction.
Some “reductions” make terms bigger!

val reduceN_debug = tick size 1 reduceN (* show size after every reduction *)

18

More Extra Credit
Solutions to any of the extra-credit problems below should be placed in your README file. Some may
be accompanied by code in your solution.sml file.

Extra Credit. Normalization. Write a higher-order function that takes as argument a reduction strategy
(e.g., reduceA or reduceN) and returns a function that normalizes a term. Your function should also
count the number of reductions it takes to reach a normal form. As a tiny experiment, report the cost
of computing using Church numerals in both reduction strategies. For example, you could report the
number of reductions it takes to reduce “three times four” to normal form.

This function should be doable in about 10 lines of ML.

Extra Credit. Normal forms galore. Discover what Head Normal Form and Weak Head Normal Form
are and implement reduction strategies for them. Explain, in an organizedway, the differences between the
four reduction strategies you have implemented. (If you choose the higher-order option for implementing
reduction strategies, this extra credit is easy. Otherwise, not so much.)

Extra Credit. Typed equality. For extra credit, write down equality on Church numerals using Typed
uScheme, give the type of the term in algebraic notation, and explain why this function can’t be written
in ML. (By using the “erasure” theorem in reverse, you can take your untyped version and just add type
abstractions and type applications.)

What and how to submit: Individual work
Using script submit105-lambda-solo, submit

• A README file containing
– The names of the people with whom you collaborated
– Any extra credit you may have earned

• File cqs.lambda.txt, containing your answers to the reading-comprehension questions
• File church.lam containing your solutions to the Church-numeral problems, including possibly

the binary-sym extra credit

As soon as you have the files listed above, run submit105-lambda-solo to submit a preliminary version
of your work. Keep submitting until your work is complete; we grade only the last submission.

What and how to submit: Pair work
Using script submit105-lambda-pair, submit

README Collaborators, extra credit, and so on
solution.sml Your module implementing terms, substitution, and reduction
subst-tests.sml Test cases for substitution

As soon as you have the files listed above, and all the code compiles, run submit105-lambda-pair to
submit a preliminary version of your work. Keep submitting until your work is complete; we grade only
the last submission.

19

Avoid common mistakes

Common mistakes with Church numerals
Here are some common mistakes to avoid when programming with Church numerals:

• Don’t forget names and contracts for helper functions.

• Don’t forget a semicolon after each definition.

• Don’t forget the question mark in the name of even?.

• When using a fixed-point combinator to define a function, don’t forget to use noreduce in the
definition form.

• Don’t use the list representation or primitives from Wikipedia. We will test your code using the
representation and primitives from Coding in Lambda Calculus40, which you will also find in the
file predefined.lam41.

• Don’t include any use directives in church.lam.

• Don’t copy predefined terms from predefined.lam. We will load the predefined terms before
running your code.

To make sure your code is well formed, load it using

cat predefined.lam church.lam | linterp-nr

If you want to build a test suite, put your tests in file test.lam and run

cat predefined.lam church.lam test.lam | linterp-nr

Common mistakes with the lambda interpreter
Here are some common mistakes to avoid in implementing the interpreter:

• Don’t forget the Eta rule:

\x.M x --> M provided x is not free in M

Here is a reduction in two eta steps:

\x.\y.cons x y --> \x.cons x --> cons

Your interpreters must eta-reduce when possible.

• Don’t forget to reduce under lambdas (the Xi rule).

• Don’t forget that in an application 𝑀1 𝑀2, just because 𝑀1 is in normal form doesn’t mean the
whole thing is in normal form. If 𝑀1 doesn’t step, you must try to reduce 𝑀2.

• If you are using the first-order implementation option, don’t clone and modify your code for re-
duction strategies; people who do this wind up with wrong answers. The code should not be that
long; use a clausal definition with nested patterns, and write every case from scratch.

40../handouts/lambda-coding.pdf
41https://www.cs.tufts.edu/comp/105/homework/predefined.lam

20

../handouts/lambda-coding.pdf
https://www.cs.tufts.edu/comp/105/homework/predefined.lam

Do make sure to use normal-order reduction, so that you don’t reduce a divergent term unneces-
sarily.

• Don’t try to be clever about a divergent term; just reduce it. (It’s a common mistake to try to detect
the possibility of an infinite loop. Mr. Turing proved that you can’t detect an infinite loop, so please
don’t try.)

• When implementing freshVar, don’t try to repurpose function freshTyvar from section 7.6. That
function isn’t smart enough for your needs.

How your work will be evaluated
Your ML code will be judged by the usual criteria, emphasizing

• Correct implementation of the lambda calculus
• Good form
• Names and contracts for helper functions
• Structure that exploits standard basis functions, especially higher-order functions, and that avoids

redundant case analysis

Your lambda code will be judged on correctness, form, naming, and documentation, but not so much
on structure. In particular, because the lambda calculus is such a low-level language, we will especially
emphasize names and contracts for helper functions.

• This is low-level programming, and if you don’t get your code exactly right, the only way we can
recognize and reward your learning is by reading the code. It’s your job to make it clear to us that
even if your code isn’t perfect, you understand what you’re doing.

• Try to write your contracts in terms of higher-level data structures and operations. For example,
even though the following function does some fancy manipulation on terms, it doesn’t need much
in the way of a contract:

double = \n.\f.\x. n (\y.f (f y)) x; // double a Church numeral

Documenting lambda calculus is like documenting assembly code: it’s often sufficient to saywhat’s
happening at a higher level of abstraction.

• Although it is seldom ideal, it can be OK to use higher-level code to document your lambda code.
In particular, if you want to use Scheme or ML to explain what your lambda code is doing, this
can work only because Scheme and ML operate at much higher levels of abstraction. Don’t fall
into the trap of writing the same code twice—if you are going to use code in a contract, it must
operate at a significantly higher level of abstraction than the code it is trying to document.

In more detail, here are our criteria for names:

21

Exemplary Satisfactory Must Improve
Naming • Each 𝜆-calculus function

is named either with a noun
describing the result it
returns, or with a verb
describing the action it does
to its argument, or (if a
predicate) as a property
with a question mark.

• Functions’ names contain
appropriate nouns and
verbs, but the names are
more complex than needed
to convey the function’s
meaning.
• Functions’ names contain
some suitable nouns and
verbs, but they don’t convey
enough information about
what the function returns or
does.

• Function’s names include
verbs that are too generic,
like “calculate”, “process”,
“get”, “find”, or “check”
• Auxiliary functions are
given names that don’t state
their contracts42, but that
instead indicate a vague
relationship with another
function. Often such names
are formed by combining
the name of the other
function with a suffix such
as aux, helper, 1, or even _.
• Course staff cannot
identify the connection
between a function’s name
and what it returns or what
it does.

And here are our criteria for contracts:

22

Exemplary Satisfactory Must Improve
Documentation • The contract43 of each

function is clear from the
function’s name, the names
of its parameters, and
perhaps a one-line comment
describing the result.
• Or, when names alone are
not enough, each function’s
contract is documented with
a type (in a comment)
• Or, when names and a
type are not enough, each
function’s contract is
documented by writing the
function’s operation in a
high-level language with
high-level data structures.
• Or, when a function
cannot be explained at a
high level, each function is
documented with a
meticulous contract44 that
explains what 𝜆-calculus
term the function returns, in
terms of the parameters,
which are mentioned by
name.
• All recursive functions
use structural recursion and
therefore don’t need
documentation.
• Or, every function that
does not use structural
recursion is documented
with a short argument that
explains why it terminates.

• A function’s contract45
omits some parameters.
• A function’s
documentation mentions
every parameter, but does
not specify a contract46.
• A recursive function is
accompanied by an
argument about termination,
but course staff have trouble
following the argument.

• A function is not named
after the thing it returns,
and the function’s
documentation does not say
what it returns.
• A function’s
documentation includes a
narrative description of
what happens in the body of
the function, instead of a
contract47 that mentions
only the parameters and
result.
• A function’s
documentation neither
specifies a contract nor
mentions every parameter.
• A function is documented
at a low level (𝜆-calculus
terms) when higher-level
documentation (pairs, lists,
Booleans, natural numbers)
is possible.
• There are multiple
functions that are not part of
the specification of the
problem, and from looking
just at the names of the
functions and the names of
their parameters, it’s hard
for us to figure out what the
functions do.
• A recursive function is
accompanied by an
argument about termination,
but course staff believe the
argument is wrong.
• A recursive function does
not use structural recursion,
and course staff cannot find
an explanation of why it
terminates.

23

	Overview
	Setup
	Learning about the lambda calculus
	Introduction to the lambda interpreter
	Syntax
	The syntax of definitions
	The syntax of terms

	A short example transcript

	Software provided for you
	All questions and problems
	Reading comprehension
	Programming in the lambda calculus (individual problems)
	Implementing the lambda calculus (possibly with a partner)
	Hints on the implementation of reduction
	Notes on the higher-order option
	Debugging support
	Even more debugging support

	More Extra Credit
	What and how to submit: Individual work
	What and how to submit: Pair work
	Avoid common mistakes
	Common mistakes with Church numerals
	Common mistakes with the lambda interpreter

	How your work will be evaluated

