
Type Inference

COMP 105 Assignment

Due Tuesday, April 2, 2019 at 11:59PM

Contents
Overview 2

Setup 2

Dire warnings 2

Reading comprehension (10%) 2

Exercises you may do with a partner (90%) 5

Extra Credit 9

What and how to submit: Reading comprehension 9

What and how to submit: Pair problems 9

Hints and guidelines 9
Testing . 9
The nine-step design process . 10
The constraint solver . 10
Type inference . 10
Debugging . 11

Avoid common mistakes 12

How your work will be evaluated 12
Names . 13
Code structure . 14

1

Overview
Many programmers want the flexibility of an untyped scripting language and the reliability of a statically
typed language, combined. This combination is provided by type inference. You are most likely to
encounter it in Webby languages like Hack, TypeScript, and Elm, but it is also heavily used in systemsy
languages like Haskell and OCaml, as well as researchy languages like Agda, Idris, and Coq/Gallina. All
these languages, and many more to come, are based on the Hindley-Milner type system, which you will
implement in this homework.

Setup
Clone the book code:

git clone homework.cs.tufts.edu:/comp/105/build-prove-compare

The code you need is in bare/nml/ml.sml.

Dire warnings
The usual prohibitions against open, null, hd, tl, length, and so on continue to apply.

Except possibly as an argument to map (which we recommend against), none of the code you write may
use fst or snd.1 You may not define and use a helper function with the same contract as fst or snd.
Submissions violating this rule will earn No Credit.

What are you supposed to do? Pattern match:

val (left, right) = ... expression that evaluates to a pair ...

Reading comprehension (10%)
These problems will help guide you through the reading. We recommend that you complete them before
starting the other problems below. You can download the questions2.

1. (Not on the reading.) Based on feedback you received on previous homeworks, what’s one thing
you did wrong that you can correct, or one skill you’d like to improve on?

2. Read sections 7.3.2 and 7.4.1, which start on pages page 486 and page 487, respectively.
We have seen the symbols ρ, τ, and σ before, but not used exactly in this way.

Here is a list of semantic and type-related concepts you have seen written using single symbols:

• an expression
• a name
• a location
• a value
• a type
• a type scheme (new in this chapter)

1These functions are defined and used in the interpreter only to be passed to higher-order functions. They are never called
directly.

2./cqs.ml-inf.txt

2

./cqs.ml-inf.txt

• a mapping from names to locations
• a mapping from names to values
• a mapping from names to types
• a mapping from names to type schemes (new in this chapter)

There are lots of concepts and only so many symbols to go around. Please identify, from the
preceding list, what each symbol stands for in the theory of nano-ML:

(a) ρ

(b) τ

(c) σ

(d) Γ

And finally,

(e) Say briefly what, in nano-ML, is the difference between τ and σ:

You are preparing for exercise 19.

3. Read the first two pages of section 7.4.3, which explain “substitutions” and “instances.”

(a) Yes or no: does the substitution (α → sym) ∘ (β → bool) ∘ (γ → int) replace type
variable α with type sym?

(b) Yes or no: does the substitution (α → sym) ∘ (β → bool) ∘ (γ → int) replace type
variable β with type bool?

(c) Yes or no: does the substitution (α → sym) ∘ (β → bool) ∘ (γ → int) leave the type
γ list unchanged?

(d) Which of the following are instances of the polymorphic type scheme ∀α . α list → int?
For each one, please indicate whether it is an instance of the type scheme (True) or whether
it is not an instance of the type scheme (False).

int list True or False

int list list True or False

int list list → int True or False

int * int list → list True or False

You have a foundation on which to build for exercises 18 and C.

4. Read the first page of section 7.5.2, which shows the form of a constraint. Then skip to the first
page of section 7.5.3, which explains how to apply a substitution to a constraint.

We start with a substitution θ and a constraint 𝐶:

𝜃 = (α₁ ↦ int)

𝐶 = α₁ ~ α₂ /\ α₂ ~ α₃ list /\ α₄ ~ α₃ list list.

Now define 𝐶′ = 𝜃(𝐶).
(a) Write 𝐶′:

3

(b) Does 𝐶′ have a solution? Answer yes or no.

Now define 𝐶″ as the result of applying substitution (α₂ ↦ int) to 𝐶 .

(c) Write 𝐶″:

(d) Does 𝐶″ have a solution? Answer yes or no.

You are getting ready for exercises 18 and C.

5. Now read all of section 7.5.3, which explains how to solve constraints.

To demonstrate your understanding, reason about solving these four constraints:

C₁ = α ~ int

C₂ = α ~ bool

C₃ = C₁ /\ C₂

C₄ = α₁ ~ α₂ /\ α₂ list ~ α₁

(a) Write a substitution θ₁ that solves constraint C₁:

(b) Write a substitution θ₂ that solves constraint C₂:

(c) Does the composition θ₂ ∘ θ₁ solve constraint C₃ = C₁ /\ C₂? Answer yes or no.

(d) Can constraint C₃ be solved? Answer yes or no.

(e) Can constraint C₄ be solved? Answer yes or no.

You are ready for excercises 18 and C.

6. Read the first two pages of section 7.5.2, which starts on page 502. Pay special attention to the
Apply rule. Also read the footnote at the bottom of page 26 of Seven Lessons in Program Design3.

Now consider type inference for the following expression e:

(f 3 #t)

For this question, assume the following:

• Expression 3 has type int, with a trivial constraint.
• Expression #t has type bool, with a trivial constraint.
• Trivial constraints can be ignored.
• Every type variable except 'a, 'b, and 'c is “fresh.”

Answer both parts:

(a) Assume that f is bound in Γ to the type scheme ∀.'a × 'b → 'c. (The ∀ is supposed to be
empty.) In judgment C, Γ ⊢ e : τ, what does the type checker output for τ?

And what does the type checker output for C?

(b) Assume that f is bound in Γ to the type scheme ∀.'a. In judgment C, Γ ⊢ e : τ, what does
the type checker output for τ?

And what does the type checker output for C?
3../design/lessons.pdf

4

../design/lessons.pdf

You are ready for the easy parts of exercise 19.

7. Read the paragraphs that describe the nondeterministic typing rules for lambda and for “Mil-
ner’s Let”, which you will find on page 495. Especially, read the small paragraph following the
lambda rule.

Now look at the val definition of too-poly in code chunk 495. The right-hand side of the val
definition is a lambda expression with the name empty-list playing the role of x₁.

(a) The rule for lambda says that we can pick any type τ₁ for empty-list. After we’ve cho-
sen τ₁, what is the type scheme to which empty-list (playing x₁) is bound in the extended
environment which is used to check 𝑒? (Hint: this type scheme comes from the lambda rule,
as per the discussion in the small paragraph, and it is different from the type scheme of the
empty-list that appears in the top-level val binding.)

(b) Given that the rule for lambda says that we can pick any type τ₁ for empty-list, why can’t
we pick a τ₁ that makes the lambda expression type-check? Put the word YES next to the
best explanation:

• Parameter empty-list has to have type (forall ('a) (list 'a)), but τ₁ is not a
forall type.

• Parameter empty-list has type τ₁= (list 'a), which is not the same as (list bool).

• Parameter empty-list can have any type τ₁ but no τ₁ can be equivalent to both (list
int) and (list bool).

• Parameter empty-list has type τ₁ = (list bool), which is not the same as (list
int).

• Parameter empty-list has type τ₁ = (list int), which is not the same as (list
bool).

You are ready for exercise 3 and for one of the hard parts of exercise 19.

8. Now look at the definition of not-too-poly in code chunk 496. The right-hand side is an example
of Milner’s letwith empty-list playing the role of 𝑥, the literal '() playing the role of 𝑒′, and an
application of pair playing the role of 𝑒. Suppose that Γ ⊢ '() : β list, where β is a type variable
that does not appear anywhere in Γ. That is to say, the literal '() is given the type β list, which is
playing the role of τ’.

(a) If τ’ is β list, what are its free type variables?

(b) What set plays the role of { α₁, ..., αₙ }, which is ftv(τ’)-ftv(Γ)?

(c) What is the type scheme to which empty-list (playing x) is bound in the extended environ-
ment which is used to check 𝑒?

You are ready for all of exercise 19.

Exercises you may do with a partner (90%)
Either on your own or with a partner, please work Exercises 3, 18, 19, and 20 from pages 536 to 540
of Build, Prove, and Compare, and the two exercises C and T below.

5

3. Algorithmic rules for Begin and Lambda. Do exercise 3 on page 536 of Build, Prove, and Compare.
This exercise fills in a key step between the nondeterministic rules in the book and the deterministic rules
you will need to implement type inference.

Please put your solution in file rules.pdf.

Hints:

• In your Begin rule, emulate the constraint-based rules for If and TypesOf that you will find in
section 7.5.2, which starts on page 502.

• To write a Lambda rule, you will need to figure out what to put in the environment in place of the
unknown types 𝜏1, … , 𝜏𝑛, and what to do with the constraints you get back from the recursive call.

Like Let, Lambda introduces new variables into the typing environment Γ. But Lambda is much
simpler, because it does not “generalize” any types.

Related reading: The first part of section 7.5.2, which starts on page 502, up to and including the part
labeled “Converting nondeterministic rules to use constraints.”

18. Implementing and testing a constraint solver. Do exercise 18 on page 539 of Build, Prove, and
Compare. This exercise is probably the most difficult part of the assignment. Before proceeding with
type inference, make sure your solver produces the correct result on our test cases and on your test
cases. You may also want to show your solver code to the course staff.

Testing: Your constraint solver can be tested only by internal Unit tests. To help with this testing, here
are some useful functions:

val eqsubst : subst * subst -> bool (* arguments are equivalent *)
val hasSolution : con -> bool
val hasNoSolution : con -> bool
val hasGoodSolution : con -> bool
val solutionEquivalentTo : con * subst -> bool

(* solution to constraint is equivalent to subst *)

You will use these functions in Unit tests, as in the following examples:

val () = Unit.checkAssert ”int ~ bool cannot be solved”
(fn () => hasNoSolution (inttype ~ booltype))

val () = Unit.checkAssert ”bool ~ bool can be solved”
(fn () => hasSolution (booltype ~ booltype))

val () = Unit.checkAssert ”bool ~ bool is solved by the identity substitution”
(fn () => solutionEquivalentTo (booltype ~ booltype, idsubst))

val () = Unit.checkAssert ”bool ~ 'a is solved by 'a |--> bool”
(fn () => solutionEquivalentTo (booltype ~ TYVAR ”'a”,

”'a” |--> booltype))

You will want additional tests—at least one for each of the nine cases in the constraint solver. To get you
started, here are two more constraints:

TYVAR ”a” ~ TYVAR ”b” /\ TYVAR ”b” ~ TYCON ”bool”

6

CONAPP (TYCON ”list”, [TYVAR ”a”]) ~ TYCON ”int”

The useful functions are implemented by this code, which you will need to copy:

fun eqsubst (theta1, theta2) =
let val domain = union (dom theta2, dom theta1)

fun eqOn a = (varsubst theta1 a = varsubst theta2 a)
in List.all eqOn domain
end

fun hasSolution c = (solve c; true) handle TypeError _ => false
fun hasGoodSolution c = solves (solve c, c) handle TypeError _ => false
val hasNoSolution : con -> bool = not o hasSolution
fun solutionEquivalentTo (c, theta) = eqsubst (solve c, theta)

Related reading:

• Section 7.4.1, which starts on page 487. It will familiarize you with the type system.

• The second bullet in the opening of section 7.5, which introduces constraints.

• The opening of section 7.5.2, which starts on page 502. This section explains constraints and shows
them in the typing rules. If you understand the constraint-based IF rule, in both its simple form
and its TypesOf form, you can stop there.

• The explanation of constraint solving in section 7.5.3, which starts on page 511.

• The table showing the correspondence between nano-ML’s type sytem and code on page 516.

• The definition of con and the utility functions in section 7.6.4, which starts on page 520.

• The definition of function solves on page 522, which you can use to verify solutions your solver
claims to find.

C. Difficult constraints. In file constraints.sml, write three constraints that are difficult to solve. At
least two should have no solution. Write your constraints in a list in a single val definition of con-
straints:

val constraints =
[TYVAR ”a” ~ TYVAR ”b” /\ TYVAR ”b” ~ TYCON ”bool”
, CONAPP (TYCON ”list”, [TYVAR ”a”]) ~ TYCON ”int”
, TYCON ”bool” ~ TYCON ”int”
]

Supply your own test cases, different from these. You are welcome to reuse constraints from your solver’s
unit tests.

To make sure it is well formed, typecheck your file by running the Unix command

105-check-constraints constraints.sml

19. Implementing type inference. Do exercise 19 on page 540 of Build, Prove, and Compare. Submit
your solution as part of the interpreter source file ml.sml,

7

• Even though you won’t be writing all the cases yourself, recapitulate the same step-by-step proce-
dure used for Typed μScheme4. Especially remember to disable the predefined functions5 at the
start and to re-enable them at the end.

• We recommend against using Unit tests for this problem. Instead, create regression tests, which
we recommend that you adapt from the Typed μScheme homework6. But don’t use check-type;
instead, use check-principal-type.

Please put your regression tests in file regression.nml.

Related reading:

• The nondeterministic typing rules of nano-ML, which start on page 494 of Build, Prove, and
Compare.

• The constraint-based typing rules in section 7.5.2

• The summaries of the typing rules from page 543 to page 544

• Explanation and examples of check-type and check-principal-type in section 7.4.6, which
starts on page 497

T. Test cases for type inference. Create a file type-tests.nml, and in that file, write three unit tests
for nano-ML type inference. At least two of these tests must use check-type-error. The third may use
either check-type-error or check-principal-type. If you wish, your file may include val bindings or
val-rec bindings of names used in the tests. Your file must load and pass all tests using the reference
implementation of nano-ML:

nml -q < type-tests.nml

If you submit more than three tests, we will use only the first three.

Here is a complete example type-tests.nml file:

(check-type-error (lambda (x y z) (cons x y z)))
(check-type-error (+ 1 #t))
(check-type-error (lambda (x) (cons x x)))

You must supply your own test cases, different from these.

Related reading:

• Concrete syntax for types and for unit tests, in Figure 7.1 on 482

• As above, the explanation and examples of check-type and check-principal-type in
section 7.4.6, which starts on page 497.

20. Adding primitives. Do exercise 20 on page 540 of Build, Prove, and Compare.

Related reading: Read about primitives in section 7.6.7.
4typesys.html#how-to-build-a-type-checker
5typesys.html#disable_predefined
6typesys.html

8

typesys.html#how-to-build-a-type-checker
typesys.html#disable_predefined
typesys.html

Extra Credit
For extra credit, you may complete any of the following:

• Exercise 1 on page 536

• Mutation, as in exercise 23(a), (b), and possibly (c)

For 23(b), please put the code in your README file.

• Better error messages, as in exercise 24(a), (b), and possibly (c)

• Explicit types, as in exercise 25

If you work with a partner on the main problems but you complete extra credit by yourself, please let us
know in your README file.

Of these exercises, the most interesting are probably Mutation (easy) and Explicit types (not easy).

What and how to submit: Reading comprehension
Using submit105-ml-inf-solo,submit this file:

• A file cqs.ml-inf.txt containing your answers to the reading-comprehension questions

What and how to submit: Pair problems
Submit these files:

• A README file containing
– The names of the people with whom you collaborated
– The numbers of any extra credit problems you solved

• A file rules.pdf containing your constraint-based typing rules for Begin and Lambda
• File ml.sml, implementing a complete interpreter for nano-ML which includes your answers to

Exercises 18, 19, and 20.
• File regression.nml containing regression tests for your type inference
• File constraints.sml, containing your answer to Exercise C
• File type-tests.nml, containing your answer to Exercise T

As soon as you have the files listed above, run submit105-ml-inf-pair to submit a preliminary version
of your work. Keep submitting until your work is complete; we grade only the last submission.

Hints and guidelines

Testing
If you call your interpreter ml.sml, you can build a standalone version in a.out by running

mosmlc -I /comp/105/lib ml.sml

Don’t overlook the “c” at the end of mosmlc. Now you can run your interpreter with ./a.out, and you
can run tests by

9

./a.out -q < /dev/null # runs Unit tests

./a.out -q < regression.nml # runs required regression tests

./a.out -q < type-tests.nml # runs three selected tests (required)

The nine-step design process
Working on larger codes, it’s easy to lose track of the design process. Here’s what we recommend:

• For the type checker, use the specialized techniques described in design lesson 5 (program design
with typing rules).

• For the constraint solver, the standard nine-step process applies. In particular,

– There are 9 forms of simple type-equality constraint (formed with the ~ value constructor).
For most forms, You will want two examples: one that is solvable and one that is not. (Some
forms have only unsolvable examples.) You will want a unit test for each.

– There are also two other forms of constraint: conjunction constraints and the trivial constraint.
You will want many examples of conjunction constraints, but to develop these examples, you
will rely less on forms of data and more about ideas on substitution that you will explore in
recitation.

The constraint solver
A simple type-equality constraint has nine possible cases. We recommend unit testing each one. Not all
cases are solvable, but for each case that may be solvable, we recommend two tests: one on a solvable
constraint and one on an unsolvable constraint.

We also recommend unit testing the conjunction case. Examples from the book are a good place to start.

Once you have passed unit tests, we recommend an additional sanity check: The following code redefines
solve into a version that checks itself for sanity (ie, idempotence). To make sure that every solution
generated during type inference is in fact sane, use this code before typeof.

fun isIdempotent pairs =
let fun distinct a' (a, tau) = a <> a' andalso not (member a' (freetyvars tau))

fun good (prev', (a, tau)::next) =
List.all (distinct a) prev' andalso List.all (distinct a) next
andalso good ((a, tau)::prev', next)

| good (_, []) = true
in good ([], pairs)
end

val solve =
fn c => let val theta = solve c

in if isIdempotent theta then theta
else raise BugInTypeInference ”non-idempotent substitution”

end

Type inference
With your solver in place, type inference should be mostly straightforward.

10

Follow the same step-by-step procedure7 you used to build your type checker for Typed μScheme. In par-
ticular,

• Start by disabling the predefined functions8.
• Build on the partially complete implementation of typeof from the book.
• Build your implementation of literal just as you did for Typed μScheme: numbers, symbols,

and Booleans first.
• Create a file of regression tests. Start with literals.
• Look at each case in the code that raises LeftAsExercise. Fix these cases one at a time. At each

step, add to your regression suite, and run all the tests. Whenever possible, include check-type-
error tests.

• The two difficult cases are let and letrec. You can emulate the implementations for val and
val-rec, but you must split the constraint into local and global portions. The splitting is covered
in detail in the book in the section on “Generalization in Milner’s let binding”, which is part of
section 7.5.2. Look especially at the sidebar “Generalization with constraints” on page 509.

• Implement list literals toward the end.
• Before you submit your code, re-enable the predefined functions and make sure your interpreter

infers the proper types for the predefined functions of nano-ML. Write check-principal-type
tests for functions map, filter, exists?, and foldr.

It pays to create a lot of regression tests, of both the check-principal-type and the check-type-error
variety. (The check-type test also has its place, but for this assignment, you want to stick to check-
principal-type.) The most effective tests of your algorithm will use check-type-error. Assigning
types to well-typed terms is good, but most mistakes are made in code that should reject an ill-typed term,
but doesn’t. Here are some examples of the sorts of tests that are really useful:

(check-type-error (lambda (x) (cons x x)))
(check-type-error (lambda (x) (cdr (pair x x))))

Once your interpreter is rejecting ill-typed terms, if it can process the predefined functions and infer
their principal types correctly, you are doing well. As a larger integration test, I have posted a functional
topological sort9. It contains some type tests as well as a check-expect.

Debugging
If you need to look at internal data structures, I suggest using eprint and eprintln to print values. These
functions expect strings, which you can produce using these functions:

val expString : exp -> string
val defString : def -> string
val typeString : ty -> string
val constraintString : con -> string
val substString : subst -> string

The first four functions are included in the interpreter’s source code. You’ll need to define the fifth as
follows:

fun substString pairs =

7./typesys.html#how-to-build-a-type-checker
8typesys.html#disable_predefined
9../progs/tsort.nml

11

./typesys.html#how-to-build-a-type-checker
typesys.html#disable_predefined
../progs/tsort.nml

separate (”idsubst”, ” o ”)
(map (fn (a, t) => a ^ ” |--> ” ^ typeString t) pairs)

Avoid common mistakes
A common mistake is to create too many fresh variables or to fail to constrain your fresh variables.

Another surprisingly common mistake is to include redundant cases in the code for inferring the type of
a list literal. As is true of almost every function that consumes a list, it’s sufficient to write one case for
NIL and one case for PAIR.

It’s a common mistake to define a new exception and not handle it. If you define any new exceptions,
make sure they are handled. It’s not acceptable for your interpreter to crash with an unhandled exception
just because some nano-ML code didn’t type-check.

It’s not actually a common mistake, but don’t try to handle the exception BugInTypeInference. If this
exception is raised, your interpreter is supposed to crash.

It’s a common mistake to disable the predefined functions for testing and then to submit your interpreter
without re-enabling the predefined functions. Ouch!

It’s a common mistake to call ListPair.foldr and ListPair.foldl when what you really meant was
ListPair.foldrEq or ListPair.foldlEq. The same applies to zip and map; youwant ListPair.zipEq
and ListPair.mapEq.

It is a mistake to assume that an element of a literal list always has a monomorphic type.

It is a mistake to assume that begin is never empty.

How your work will be evaluated
Your constraint solving and type inference will be evaluated through extensive testing. We must be able
to compile your solution in Moscow ML by typing, e.g.,

mosmlc -I /comp/105/lib ml.sml

If there are errors or warnings in this step, your work will earn No Credit for functional correctness.

We will focus the rest of our evaluation on your constraint solving and type inference.

12

Names
We expect you to pay attention to names:

Exemplary Satisfactory Must Improve
Names • Type variables have

names beginning with a;
types have names beginning
with t or tau; constraints
have names beginning with
c; substitutions have names
beginning with theta; lists
of things have names that
begin conventionally and
end in s.

• Types, type variables,
constraints, and
substitutions mostly respect
conventions, but there are
some names like x or l that
aren’t part of the typical
convention.

• Some names misuse
standard conventions; for
example, in some places, a
type variable might have a
name beginning with t,
leading a careless reader to
confuse it with a type.

13

Code structure
We expect you to pay even more attention to structure. Keep the number of cases to a minimum!

Exemplary Satisfactory Must Improve
Structure • The nine cases of simple

type equality are handled by
these five patterns:
TYVAR/any, any/TYVAR,
CONAPP/CONAPP,
TYCON/TYCON, other.
• The code for solving
𝛼 ∼ 𝜏 has exactly three
cases.
• The constraint solver is
implemented using an
appropriate set of helper
functions, each of which
has a good name and a clear
contract.
• Type inference for list
literals has no redundant
case analysis.
• Type inference for
expressions has no
redundant case analysis.
• In the code for type
inference, course staff see
how each part of the code is
necessary to implement the
algorithm correctly.
• Wherever possible
appropriate, submission
uses map, filter, foldr,
and exists, either from
List or from ListPair

• The nine cases are
handled by nine patterns:
one for each pair of value
constructors for ty
• The code for 𝛼 ∼ 𝜏 has
more than three cases, but
the nontrivial cases all look
different.
• The constraint solver is
implemented using too
many helper functions, but
each one has a good name
and a clear contract.
• The constraint solver is
implemented using too few
helper functions, and the
course staff has some
trouble understanding the
solver.
• Type inference for list
literals has one redundant
case analysis.
• Type inference for
expressions has one
redundant case analysis.
• In some parts of the code
for type inference, course
staff see some code that
they believe is more
complex than is required by
the typing rules.
• Submission sometimes
uses a fold where map,
filter, or exists could be
used.

• The case analysis for a
simple type equality does
not have either of the two
structures on the left.
• The code for 𝛼 ∼ 𝜏 has
more than three cases, and
different nontrivial cases
share duplicate or
near-duplicate code.
• Course staff cannot
identify the role of helper
functions; course staff can’t
identify contracts and can’t
infer contracts from names.
• Type inference for list
literals has more than one
redundant case analysis.
• Type inference for
expressions has more than
one redundant case analysis.
• Course staff believe that
the code is significantly
more complex than what is
required to implement the
typing rules.
• Submission includes one
or more recursive functions
that could have been written
without recursion by using
map, filter, List.exists,
or a ListPair function.

14

	Overview
	Setup
	Dire warnings
	Reading comprehension (10%)
	Exercises you may do with a partner (90%)
	Extra Credit
	What and how to submit: Reading comprehension
	What and how to submit: Pair problems
	Hints and guidelines
	Testing
	The nine-step design process
	The constraint solver
	Type inference
	Debugging

	Avoid common mistakes
	How your work will be evaluated
	Names
	Code structure

