Core ML

COMP 105 Assignment

Due Tuesday, March 5, 2019 at 11:59PM

Contents
Overview

Prelude
Setup
MDU’sinitial basiso e
Unittesting e
Regressiontesting L e
Things you need to review before starting

What we expect from your submission
We expect theright types oL
We expect wise, well-formatted unittestso
We expect case analysis only when necessary
We don’t expect written algebraic lawso o
We expect an acceptable style
We expect you to remove redundant parentheses Lo
We expect you to avoid forbidden functions and constructs L.

Reading comprehension (10%)

Programming problems to solve individually (75%)
Defining functions using clauses and patterns
Lists . . . o e
Handling exceptions e e e e
Arithmetic by pattern matching on constructeddata
An immutable, persistent alternative to linked lists

One problem you can do with a partner (15%)
Extra credit
Avoid common mistakes

What to submit and how to submit it
Submitting your individual work oL Lo
Submitting your improved pScheme interpreter oo

p—

L W NN =

N9 A

10
10
10
11
12
17

19

21

22

How your work will be evaluated 23

Overview

Types are everywhere. All languages that aspire to reliability at scale have type systems, and one of the
programming-language stories of the 2010s has been the migration of popular languages to better, more
effective type systems (JavaScript to TypeScript, PHP to Hack, and C to Rust).

This assignment gets you started programming with types, and also with pattern matching. Pattern
matching allows most algebraic laws (just the algorithmic ones) to be executed directly as code—no
more translation, and no more null?, car, or cdr!

The combination of types and pattern matching is found in such languages as Standard ML, Haskell,
Elm, OCaml, Reason, F#, Scala, Idris, Agda, and Coq/Gallina. These languages excel at analysis and
implementation of other languages; they are the technology of choice for applications like compilers,
verification, and other static analysis, including of security properties. In the next few weeks, you will
explore such applications by using Standard ML to implement type systems and lambda calculus.

The assignment has three parts:

e To begin, you will answer some questions about reading.

e On your own, you will write many small functions.

e Possibly working with a partner, you will make a small change to the pScheme interpreter that is
written in ML (in Chapter 5).

After completing this assignment, you will be ready to tackle serious programming tasks in Standard ML.

Prelude

Setup

COMP 105 uses two different implementations of Standard ML. For the small problems, we recommend
Moscow ML, which is in /usr/sup/bin/mosml. To start Moscow ML, use

ledit mosml -P full -I /comp/105/1lib
If everything is working correctly, you should see this prompt:

Moscow ML version 2.10-3 (Tufts University, April 2012)
Enter “quit();' to quit.

If you don’t see the Tufts name, send an immediate email of complaint to staff@cs.tufts. edu!, with a
copy to nr@cs.tufts.edu.

For the large problem, we recommend a native-code compiler called mlton (pronounced “Milton”).

"mailto:staff @cs.tufts.edu

mailto:staff@cs.tufts.edu

ML’’s initial basis

Asin the hofs and continuations assignments, we expect you to use the initial basis, which is properly
known as the Standard ML Basis Library?. By the standards of popular languages, the basis is small, but
it is still much more than you can learn in a week. Fortunately, you only have to learn a few key parts:

e Type constructors list, option3, bool, int, string, and orde r*

e Modules List® and Optioné, including List.filter, List.exists, List.find, and others

e Other module functions Int.toString, Int.compare, and String.compare

e Top-level functions o, print (for debugging), map, app, foldr, foldl

e Our own Unit module, which is not part of the Basis Library but is described in our guide Learning
Standard ML’ .

The most convenient guide to the basis is the Moscow ML help system; type
- he'L p nn ;
at the mosm1 interactive prompt. The help file is badged incorrectly, but as far as I know, it is up to date.

If you have Jeff Ullman’s book, you need to know that Chapter 9 describes the 1997 basis, which is out
of date: today’s compilers use the 2004 basis, which is a standard. But there are only a few differences,
primarily in I/O and arrays. The most salient difference is in the interface to TextI0.inputLine®.

Unit testing

Regrettably, standard ML does not have check-expect and friends built in. Unit tests can be simulated
by using higher-order functions, but it’s a pain in the ass. Here are some examples of tests written with
our Unit module:

val () =
Unit.checkExpectWith Int.toString "2 means the third”
(fn () => List.nth ([1, 2, 3], 2))
3

val () = (* this test fails *)
Unit.checkExpectWith Bool.toString "2 is false”
(fn () => List.nth ([true, false, truel, 2))
false

val () = Unit.reportWhenFailures ()

If you include these tests in your warmup.sml file,” you can run them on the Unix shell command line,
using mosmlc (with a “c”):

Zhttp://www.sml-family.org/Basis/

3http://sml-family.org/Basis/option.htmI#SIG:OPTION.option: TY

“http://sml-family.org/Basis/general htmI#SIG:GENERAL .order: TY

Shttp://sml-family.org/Basis/list. htmI#List:STR:SPEC

Shttp://sml-family.org/Basis/option.html#Option:STR:SPEC

7. ./readings/ml.html#unit-testing

8http://sml-family.org/Basis/text-i0.html#SIG: TEXT_IO.inputLine:VAL

9Using Unit tests at the interactive prompt is a little wacky. If you really want to do it, you can figure out how, but I'm going to
discourage you—the mechanism you would need could creep into a . sml file, and if used there, it will create chaos and confusion.
Just leave your Unit tests in files, where they belong.

http://www.sml-family.org/Basis/
http://sml-family.org/Basis/option.html#SIG:OPTION.option:TY
http://sml-family.org/Basis/general.html#SIG:GENERAL.order:TY
http://sml-family.org/Basis/list.html#List:STR:SPEC
http://sml-family.org/Basis/option.html#Option:STR:SPEC
../readings/ml.html#unit-testing
http://sml-family.org/Basis/text-io.html#SIG:TEXT_IO.inputLine:VAL

$ mosmlc -0 a.out -I /comp/105/1ib warmup.sml && ./a.out
In test '2 is false', expected value false but got true
One of two internal Unit tests passed.

$

You’ll use Unit.checkExpectWith to write your own unit tests. You’ll also use Unit.checkAssert and
Unit.checkExnWith. The details are in Learning Standard ML'°.

Each call to Unit.checkExpectWith needs to receive a string-conversion function. These functions are
written using the string-conversion builders in the Unit module. Here are some examples of code you
can use:

val checkExpectInt = Unit.checkExpectWith Unit.intString
val checkExpectIntList = Unit.checkExpectWith (Unit.listString Unit.intString)
val checkExpectStringlList = Unit.checkExpectWith (Unit.listString Unit.stringString)
val checkExpectISList =

Unit.checkExpectWith (Unit.listString

(Unit.pairString Unit.intString Unit.stringString))

val checkExpectIntlListList =

Unit.checkExpectWith (Unit.listString (Unit.listString Unit.intString))

Regression testing

A common mistake is to run your regression tests against my working nml interpreter. To help you test
your own code, we provide a script called test-my-nml. If you're running on the server and have run
use compl05, then just run the command

test-my-nml

The script searches the current working directory for your compiled nano-ML interpreter, then runs it on
your regression.nml file. (If the interpreter or the regression tests are missing, the script complains.)
Or you can supply another test file:

test-my-nml moretests.nml

Things you need to review before starting
We provide a guide to Learning Standard ML"'. Learning Standard ML will guide you to other reading.

The fourth Lesson in Program Design'? explains how to apply our nine-step design process with types
and pattern matching. This lesson includes the key code excerpts needed to design and program with
standard type constructors list, option bool, int, string, and order, as well as the tree constructor
on the homework and the exp constructor from pScheme. Immediately following the lesson, you will
find a one-page summary of ML syntax.

10_ /readings/ml.html#unit-testing
1 jreadings/ml.pdf
12 /design/lessons.pdf

../readings/ml.html#unit-testing
../readings/ml.pdf
../design/lessons.pdf

What we expect from your submission

We expect you will submit code that compiles, has the types given in the assignment, is acceptably styled,
is tested, avoids redundant case analysis, and avoids forbidden functions and constructs. Code that does
not compile, that has the wrong types, or that uses forbidden functions or constructs will earn No Credit.
Code that is untested or has redundant case analysis may earn disappointing grades for structure and
organization.

We expect the right types

As always, your code is assessed in part through automated testing. To be testable, each function must
not only have the correct name; it must also have the correct type. Your type definitions must also match
the type definitions given in the assignment.

To help you check types, I provide a script that analyzes your solution and reports on any type mismatches
that it finds. On the command line, run

ml-sanity-check warmup.sml

The “sanity check” reports both missing and ill-typed functions. Any function that does not pass the
sanity check will earn No Credit. The sanity check looks at the types listed here:

(* first declaration for sanity check *)
val firstVowel : char list -> bool

val mynull : 'a list -> bool

val reverse : 'a list -> 'a list

val minlist : int list -> int

exception Mismatch

val zip : 'a list * 'b list -> ('a * 'b) list
val ziptoo : 'a list * 'b list -> ('a * 'b) list
val pairfoldrEq : ('a * 'b * 'c -> 'c) -> 'c -> 'a list * 'b list -> 'c

val concat : 'a list list -> 'a list
type 'a env = string -> 'a
exception NotFound of string
val emptyEnv : 'a env
val bindVar : string * 'a * 'a env -> 'a env
val lookup : string * 'a env -> 'a
val isBound : string * 'a env -> bool
datatype nat
= ZERO
| TIMES1OPLUS of nat * int
val timeslOplus : nat * int -> nat
val intOfNat : nat -> int
val natOfInt : int -> nat
val natString : nat -> string
val carryIntoNat : nat * int -> nat
val addWithCarry : nat * nat * int -> nat
val addNats : nat * nat -> nat
exception Negative
val borrowFromNat : nat * int -> nat

val subWithBorrow : nat * nat * int -> nat
val subNats : nat * nat -> nat

val mulNats : nat * nat -> nat

val singletonOf : 'a -> 'a ilist

val indicated : 'a ilist -> 'a
val indicatorLeft : 'a ilist -> 'a ilist
val indicatorRight : 'a ilist -> 'a ilist

val deletelLeft
val deleteRight :

ilist -> 'a ilist

ilist -> 'a ilist

val insertlLeft * 'a ilist -> 'a ilist

val insertRight : * 'a ilist -> 'a ilist

val ifoldl : ('a * 'b -> 'b) -> 'b -> 'a ilist -> 'b
val ifoldr : ('a * 'b -> 'b) -> 'b -> 'a ilist -> 'b
(* last declaration for sanity check *)

'a
'a
'‘a
'a

We don’t promise to have remembered all the functions and their types here. The ml-sanity-check
script will help you, but making sure that every function has the right type is your job, not ours.

We expect wise, well-formatted unit tests

By this time, we expect that you understand the value of unit tests. Grading will focus on your code;
except where specifically requested below (natural-number arithmetic, free-variable analysis), your unit
tests won’t be graded. But we still expect the following:

e You will indent all unit tests by eight spaces. This indentation will enable graders to focus on
your code.

e You will use unit tests wisely. If a function is simple, do take a minute to validate it with a unit
test. If a function is not so simple, develop unit tests in the same way you have done for the past
three assignments: one unit test per case in the code.

e If you need debugging help during office hours, we expect that your code will be accompanied by
failing unit tests. (If you cannot get your code to typecheck, we will help you do this without unit
tests. But if you need help getting code to produce right answers, we will demand to see your unit
tests.)

We expect case analysis only when necessary

Case analysis is the enemy. All the more so when it is not necessary. Redundant case analysis is a problem
in all levels of programming, but as you are learning ML, it is especially easy to fall into. Redundant case
analysis typically manifests in one of two ways:

1) Two cases are present in a fun, or case, but one is completely subsumed by the other. The most
common example is one case to handle the empty list and another case that handles all lists. The
empty-list case is often redundant.

Example:

fun append ([], ys)
| append (xs, ys)

ys
foldr op :: ys xs

In this code, the first case is subsumed by the second. It can be eliminated without changing the
meaning of the code, and eliminating it typically improves performance.

2) A case analysis is performed where no case analysis is needed.

fun sum [] =0
| sum (n :: ns) = foldl op + n ns

These two cases should be replaced by a single case:
fun sum ns = foldl op + 0 ns

We expect you to examine your code carefully and to remove all redundant case analyses.

We don’t expect written algebraic laws

We expect you to continue using a systematic design process, but because ML code is so close to algebraic
laws, we don’t expect you to write algebraic laws separately. If you come to office hours, however, we do
expect you to be able to talk about algebraic laws and to write them on the board.

We expect an acceptable style

Nobody can learn good style in a week. But you can learn to imitate somebody else’s style, and we
expect you to be judicious about what style you imitate. You have access to books by Ullman, Ramsey,
and Harper, and to a technical report by Tofte. These sources are not equally good:

e Ullman provides the most gentle introduction to ML, and he provides the most information
about ML. His book is especially good for programmers whose primary experience is in C-like
languages. But, to put it politely, Ullman’s code is not idiomatic. Much of what you see from
Ullman should not be imitated.

e Ramsey’s code, starting in Chapter 5, is a better guide to what ML should look like. Harper’s code
is also very good, and Tofte’s code is reasonable.

On this assignment, we expect you to devote a little effort to good style. Focus on getting your code
working first. Then submit it. Then pick up our “Style Guide for Standard ML Programmers”'?, which
contains many examples of good and bad style. Edit your code lightly to conform to the style guide, and
submit it again.

In the long run, we expect you to master and follow the guidelines in the style guide'4.

We expect you to remove redundant parentheses

As a novice, you’ll be uncertain about where to put parentheses—and you may wind up putting them
everywhere. We are fine with parentheses used to disambiguate infix operators, but other redundant
parentheses are not OK. To help you find and remove redundant parentheses, we provide a tool called
sml-1lint. We expect you to run

sml-lint warmup.sml
sml-lint mlscheme.sml

13, /handouts/mlstyle.pdf
14 /handouts/mlstyle.pdf

../handouts/mlstyle.pdf
../handouts/mlstyle.pdf

and to remove the parentheses that are named there. (The sml-1int program is also run as part of the
submission process.)

We expect you to avoid forbidden functions and constructs

While not everybody can learn good style quickly, everybody can learn to avoid the worst faults. In ML,
you must avoid these functions and idioms:

Unlike pScheme, Standard ML provides a length function in the initial basis. It is banned. The
entire assignment must be solved without using length.

Solutions that use length will earn No Credit.

Use function definition by pattern matching. Do not use the functions null, mynull, hd, and t1;
use patterns instead.

Solutions that use hd or t1 will earn No Credit.

Except for functions given below, do not define auxiliary functions at top level. Use local or
let. You will find it useful to use local to define functions for use in unit tests.

Solutions that define auxiliary functions at top level will earn No Credit.

Do not use open; if needed, use short abbreviations for common structures. For example, if you
want frequent access to the ListPair structure, you can write

structure LP = ListPair

and from there on you can refer to, e.g., LP.map.

Solutions that use open may earn No Credit for your entire assignment.
Unless the problem explicitly says it is OK, do not use any imperative features.

Unless explicitly exempted, solutions that use imperative features will earn No Credit.

Reading comprehension (10%)

These problems will help guide you through the reading. We recommend that you complete them before

starting the other problems below. You can download the questions .

1.

15

(Not on the reading.) Based on feedback you received on previous homeworks, what’s one thing
you did wrong that you can correct, or one skill you’d like to improve on?

Read section 5.1 of Harper!'® about tuple types and tuple patterns. Also look at the list examples
in sections 9.1 and 9.2 of Harper.

Now consider the pattern (x::y::zs, w). For each of the following expressions, tell whether the
pattern matches the value denoted. If the pattern matches, say what values are bound to the four
variables X, y, zs, and w. If it does not match, explain why not.

(a ([1, 2, 3], ("COMP”, 1@5))
(b) ((”comp”, 105), [1, 2, 31)

15 jegs.ml.txt
1Shttp://www.cs.cmu.edu/~rwh/isml/book.pdf

./cqs.ml.txt
http://www.cs.cmu.edu/~rwh/isml/book.pdf

(¢) ([("comp”, 105)1, (1, 2, 3))
(d) (["COMP", "105"1, true)
(e) ([true, false], 2.718281828)

Answers here:
(a)
(b)
(©
(d)
(e
You are starting to be ready to use pattern matching.

3. Read the descriptions of patterns and example values (steps 3 and 2) in the fourth “Lesson in
Program Design'’.” Look at Table 4.1, including the Types of parts column. Using the ideas you
find there, prepare to answer questions about this expression:

case T (x, y, z)
of [1] => raise Empty
| w:: ws =>if p w then SOME w else NONE

You are told that the subexpression f (x, y, z) hastype 'a list. Using that information, give
the type of each of these code fragments, which are built from parts of patterns:

(a) The type of the patternw :: ws
—
(b) The type of the variable ws
-
(c) The type of the expression SOME w
-
You are ready to use pattern matching on common ML types.

4. Read the section on unit testing in the guide to learning ML'®. Read about infix function names in
step 3 of the “design steps” section of the handout “Program Design with ML Types and Pattern
Matching”!®. And read the section on unit testing in this homework.

Now, using the interpreter to be sure your answer is well typed, translate the following failing unit
test into ML:

(check-expect (foldl + 0 '(1 2 3)) 7)
Your translation:

-

17. /design/lessons.pdf
18 /readings/ml.pdf
19 /handouts/mIproofs.pdf

../design/lessons.pdf
../readings/ml.pdf
../handouts/mlproofs.pdf

You are ready to write unit tests.

. In chapter 5 of Programming Languages: Build, Prove, and Compare, the eval code for ap-
plying a function appears in code chunk 371d. In evaluating APPLY (f, args), if expression f
does not evaluate to either a primitive function or a closure, the code raises the RuntimeError
exception.

(a) Show a piece of pScheme code that would, when evaluated, cause chunk 371d to raise the
RuntimeError exception. We are asking for pScheme code that the interpreter runs, not
for ML code.

—

(b) When exception RuntimeError is raised, what happens from the user’s point of view? That
is, if a person is interacting with the pScheme interpreter at the read/eval/print loop, and
evaluating an expression raises the RuntimeError exception, what user-visible actions will
the interpreter take?

You are ready to write zip and to write environment functions that use exceptions.

. “Free” variables are those that are not bound to a value in the current scope. You can find a longer
discussion and precise definition in section 5.11 of Build, Prove, and Compare, which starts on
page 382. Read the section and identify the free variables of the expressions below. Remember
that a name occurring in function position can be a free variable.

(a) Free variables of (lambda (x) (lambda (y) (equal? x y)))
-

(b) Free variables of (lambda (y) (equal? x y))
-

(c) Free variables of

(lambda (sl s2)
(if (or (atom? sl) (atom? s2))
(= s1 s2)
(and (equal? (car sl) (car s2))
(equal? (cdr sl) (cdr s2)))))

—

You are ready to improve the uScheme interpreter. You may do this with a partner. You and
your partner will turn your answers to parts (a) and (b) into unit tests.

Programming problems to solve individually (75%)

Working on your own, please solve the problems below. Place your solutions in file warmup.sml. At the
start of each problem, please place a short comment, like

(***** Problem A *****)

At the very end of your warmup. sml, please place the following line:

val () = Unit.reportWhenFailures () (* put me at the end *)

10

This placement will ensure that if a unit test fails, you are alerted.

To receive credit, your warmup. sml file must compile and execute in the Moscow ML system, and your
functions must have the right types. At minimum, your code must compile without warnings or errors,
it must pass our sanity tests, and it must not have redundant parentheses:

% /usr/sup/bin/mosmlc -toplevel -I /comp/105/1ib -c warmup.sml
% ml-sanity-check warmup.sml
% sml-lint warmup.sml

Defining functions using clauses and patterns

Related Reading for problems A and B: In Learning Standard ML read about Expressions (sections
I, II, and III), Data (I, II, and II), Inexhaustive pattern matches, Types (I), Definitions (III, IV), and Ex-
pressions (VIII).

A. Define a function mynull : 'a list -> bool, which when applied to a list tells whether the list
is empty. Avoid if, and make sure the function takes constant time. Do not use any functions from the
Standard Basis. Make sure your function has the same type as the null in the Standard Basis.

B. Define a function firstVowel : char list -> bool that takes a list of lower-case letters and returns
true if the first character is a vowel (aeiou) and false if the first character is not a vowel or if the list is
empty. Use the wildcard symbol _ whenever possible, and avoid if.

Lists

Related Reading for problems C to F: In Learning Standard ML?*', in addition to the section noted above,
read about Types (III), and Exceptions. You will need to understand lists and pattern matching on lists
(see Data III). You may also wish to read the section on Curried Functions.

C. Functions foldl and foldr are predefined with type
(‘a*'b ->"'b) -> 'b -> 'a list -> 'b
They are like the pScheme versions except the ML versions are Curried.

1. Define reverse : 'a list -> 'a list using foldl or foldr.
(In ML, the reverse function is in the initial basis as rev.)

When you are testing reverse, you may get a warning message about “value polymorphism.” This
message is explained in Learning Standard ML (Type pitfall 11??).

2. Implement minlist : int list -> int, which returns the smallest element of a nonempty list
of integers. Use foldl or foldr.

If given an empty list of integers, your solution must fail (e.g., by raise Match).

Your solution should work regardless of the representation of integers: it should not matter how
many bits are used to represent a value of type int. (Hint: The course solution max* from the

20_ /readings/ml.html
21 jreadings/ml.html
22 /readings/ml.html#type-pitfall-ii- value- polymorphism

11

../readings/ml.html
../readings/ml.html
../readings/ml.html#type-pitfall-ii-value-polymorphism

hofs?* homework works regardless of the representation of integers. Perhaps you can steal an idea
from it.)

You may find a use for function Int.min, which is part of the initial basis of Standard ML.
Do not use recursion in either part of this problem.

D. Define a function zip: 'a list * 'b list -> ('a * 'b) list that takes a pair of lists (of equal
length) and returns the equivalent list of pairs. If the lengths don’t match, raise the exception Mismatch,
which you must define. Do not use any functions from the Standard Basis Library.

You are welcome to translate a solution from pScheme, but you must either use a clausal definition or
write code containing at most one case expression. Do not use if.

E. Define a function

val pairfoldrEq : ('a * 'b * 'c -> 'c) -> 'c -> 'a list * 'b list -> 'c

that applies a three-argument function to a pair of lists of equal length, using the same order as foldr.
Do not use any functions from the Standard Basis Library. If pairfoldrEq’s contract is violated (by call-
ing it on lists of unequal lengths), it must raise an exception.

Define a function ziptoo : 'a list * 'b list -> ('a * 'b) list which does exactly the same
things as zip but which uses pairfoldrEq for its implementation.

F. Define a function
val concat : 'a list list -> 'a list

which takes a list of lists of 'a and produces a single list of 'a containing all the elements in the correct
order. For example,

- concat [[1], [2, 3, 4], [1, [5, 6]];
> val it = [1, 2, 3, 4, 5, 6] : int list

Do not use if. You may use functions from the Standard Basis Library, except for List.concat—code
that uses List.concat will earn No Credit.

To get full credit for this problem, your function should use no unnecessary cons cells. Keep in mind the
cost of appending two lists.

Handling exceptions

Related Reading for problem G: In Learning Standard ML**, read the section on Curried functions.
Read the sections on Types (II) and Data (IV). Make sure you understand the difference between type
abbreviations (type) and algebraic data types (datatype)—both are called “types.” Read the section on
Exceptions, and make sure you know both how to raise and how to handle an exception.

G. Environments with exceptions.
(For this problem, it is OK to use imperative features.)

Define type 'a env as an abbreviation for a function type, and define exception NotFound, both as follows:

23 /hofs.html
24 Jreadings/ml.html

12

./hofs.html
../readings/ml.html

type 'a env = string -> 'a
exception NotFound of string

Now define these functions:

val emptyEnv : 'a env = (* ... *)
val bindVar : string * 'a * 'a env -> 'a env = (* ... *)
val lookup : string * 'a env -> 'a = (* ... *)

such that you can use 'a env for a type environment or a value environment. On an attempt to look up
an identifier that doesn’t exist, raise the exception NotFound. Don’t worry about efficiency.

Now define a function
val isBound : string * 'a env -> bool
that tells if a name is bound in the environment. Calling isBound must never raise an exception.

Hint: Review the “sets as characteristic functions” from the hofs assignment.

Arithmetic by pattern matching on constructed data

Languages like C and C++ enable you to do arithmetic only on as many bits as are in a machine word.
More civilized languages allow arithmetic on as many bits as will fit in memory.”> Every computer
scientist should know how this feature is implemented. In this assignment, we’ll implement arithmetic
on natural numbers only, where a natural number is represented as a list of digits.

Our representation is based on the Decimal proof system from the proof-systems handout?®. To make the
rules readable on the web and not just in the printout, I recapitulate them in informal English:

e A digit is an integer in the range 0 to 9 inclusive.

e Zero is a natural number (rule DecimalZero).

e If m is a natural number and d is a digit, then 10 X m + d is a natural number (rule DecimalNat).
I choose to represent a natural number as a data structure defined by an algebraic data type:

datatype nat = ZERO
| TIMES1OPLUS of nat * int

(This data structure is equivalent to a list of digits with the least-significant digit first.) The meaning of
the data structure is determined by an abstraction function and representation invariants:

e The abstraction function says that ZERO stands for the natural number zero, and if m is a natural
number and d is a digit, then TIMES10PLUS (m, d) stands for the natural number m x 10 + d.

e The representation invariants say that in any value of the form TIMES10PLUS (m, d),

- m and d are not both zero.
- d is a machine integer in the range 0 < d < 10.

The first representation invariant is maintained by the following function, which is called a “smart con-
structor””:

25By this criterion, Standard ML is not civilized, because the so-called “large-integer arithmetic” is optional.
26_ /handouts/natproofs.pdf

13

../handouts/natproofs.pdf

fun times10plus (ZERO, 0)
| timeslOplus (m, d)

ZERO
TIMES10PLUS (m, d)

If you like, you can add code to the second case to enforce the invariant on d.

Here are a couple of useful special cases:

(* timeslO : nat -> nat *)

fun timesl1® n = timeslOplus (n, 0)

(* nat0OfDigit : int -> nat *)

fun nat0fDigit d = timeslOplus (ZERO, d)

Put the definitions of nat, times10plus, and the special-case functions into your code.
You will define functions for conversion, addition, subtraction. Multiplication is extra credit.

For testing, you will find it useful to convert a list of decimal digits to a natural number. You are welcome
to use this code:

fun flip f (x, y) = f (y, x)
(* nat0OfDigits : int list -> nat *)
fun nat0fDigits ds = foldl (flip timesl1Oplus) ZERO ds

You may also find it useful to convert a natural number to a string. Here is a function you can pass to
Unit.checkExpectWith:

fun rawNatString ZERO = "ZERO”
| rawNatString (TIMES10PLUS (m, d)) =
"(" ~ rawNatString m ~ " * 10 + " ~ Int.toString d ~ ")"”

Related Reading:
e If needed, review the reading on pattern matching you’ve already done.

e In Learning Standard ML*", read the section on datatypes—Data IV. Make sure you understand
how to pattern match on constructed values.

e For detailed descriptions of algorithms for addition and subtraction, with examples, read Pro-
gramming Languages: Build, Prove, and Compare, section 9.10.2, which starts on page 729.
Chapter 9 is not fully included in your abridged edition, but the pages containing this section are
there.

e To understand how op is used in the unit-test examples, consult Expressions VII: Infix operators
as functions®® in Learning Standard ML.

H. Natural-number conversions.
You will convert between natural numbers, machine integers, and strings.

1. Define a function

val intOfNat : nat -> int

27 jreadings/ml.html
28 /readings/ml.html#expressions- vii-infix-operators-as-functions

14

../readings/ml.html
../readings/ml.html#expressions-vii-infix-operators-as-functions

that converts a natural number into a machine integer, or if the natural number is too large, raises
Overflow. (Use the built-in operators + and *, which do machine arithmetic and which automati-
cally raise Overflow when needed.)

Example:

- intOfNat (natOfDigits [1, 2, 3]);
> val it = 123 : int

2. Write a unit test confirming what the example shows: that int0OfNat (natO0fDigits [1, 2, 3])
is 123.

3. Define a function
val natOfInt : int -> nat
that converts a nonnegative machine integer into a natural number.
Example:

- natOfInt 2018;
> val it = TIMES10PLUS(TIMES10PLUS(TIMES10PLUS(TIMES10PLUS(ZERO, 2), 0), 1), 8)
. nat

Use pattern matching, not if.

A nonnegative machine integer is either zero or it has the form n = 10 x m + d. In the second
case, dis (n mod 10) and mis (n div 10).

4. Write a unit test confirming the nat0fInt example.

5. Define function natString, which converts a nat to a string the way we normally write it (with
the most significant digit first).

val natString : nat -> string
Examples:

- natString (natOfDigits [3, 2, 11);

> val it = "321"” : string

- natString (natOfDigits [2, 0, 1, 8]);
> val it = "2018"” : string

Function natString must never return an empty string.

To earn a passing grade, natString must work on 30-digit numbers. 1t is safe to use
Int.toString on a single digit, but if you try to use it on a natural number, the code will fail.
INSTRUCTOR: Change the classifier.

Hint: Go back to the handout on proof systems for natural numbers. The representation above is
based on the Decimal system. But the natString function needs to be based on the DecNumeral
system. Find a way to deal with the difference.

6. Write a unit test confirming the natString example.

My solutions take 7 lines of code and 18 lines of (paranoid) unit tests.

15

L. Natural-number arithmetic.
You will add and subtract natural numbers.

1. Define function carryIntoNat : nat * int -> nat. This function takes a natural number n
and a carry bit c, and it returns n + c. A carry bit is a machine integer that is either O or 1.

The function is defined by these algebraic laws:

carryIntoNat (n, 0) ==n
carryIntoNat (0, c) == ¢
carryIntoNat (10 * m + d, 1) ==
10 * carryIntoNat (m, (d + 1) div 10)
+ ((d + 1) mod 10)

To convert these laws into code, you will need to write the natural-number patterns for 0 and for
10 * m + d as constructed-data patterns ZERO and TIMES10PLUS (m, d). And you will need to write
the natural-number arithmetic on the right-hand side using the smart constructor times1@plus.

2. Define function addwithCarry : nat * nat * int -> nat. This function takes two natural
numbers n; and ny, and a carry bit c, and it returns n; 4+ n, + c. To earn a passing grade, it must
be capable of adding 30-digit numbers, regardless of the number of bits available in a machine
integer.

The function is defined by these algebraic laws:

addwithCarry (nl, 0, c) = carryIntoNat (nl, c)
addwithCarry (0, n2, c) = carryIntoNat (n2, c)
addwWithCarry (10 * ml + d1, 10 * m2 + d2, c) =
let vald = (dl + d2 + c) mod 10
val ¢' = (d1 + d2 + c¢) div 10 (* the "carry out” *)
in 10 * addwWithCarry (ml, m2, c') +d
end

To convert these laws into code, you will need to write the natural-number patterns as constructed-
data patterns, and you will need to write the final operation between in ... end using the smart-
constructor function.

3. Define function addNats : nat * nat -> nat, as follows:
fun addNats (nl, n2) = addWithCarry (nl, n2, 0)

4. Define function borrowFromNat : nat * int -> nat. This function takes a natural number n
and a borrow bit b, and it returns n — b, provided that n — b is a natural number. If n — b is not
a natural number, borrowFromNat raises the exception Negative, which you will need to define.
The borrow bit, like a carry bit, is a machine integer that is either O or 1.

The function is defined by these algebraic laws:

borrowFromNat (n, 0) ==
borrowFromNat (10 * m + 0, 1) == 10 * borrowFromNat (m, 1) + 9
borrowFromNat (10 * m + d, 1) == 10 * m + (d - 1), where d > 0

Notice there is no law for the left-hand side borrowFromNat (0, 1). That’s because 0 — 1 is not
a natural number—so if your code encounters this case, it should raise the Negative exception.

16

To convert these laws into code, you will need to write the natural-number patterns as constructed-
data patterns, and you will need to write some of the arithmetic on the right-hand side using the
smart-constructor function.

5. Define function subWithBorrow : nat * nat * int -> nat. This function takes two natural
numbers 1, and ny, and a borrow bit b, and if n, —n,—b is a natural number, it returns n; —ny—b.
Otherwise it raises the Negative exception.

Like addwWithCarry, subWithBorrow must be capable of subtracting 30-digit numbers.
The function is defined by these algebraic laws:

subWithBorrow (nl, 0, b) = borrowFromNat (nl, b)
subWithBorrow (10 * ml + dl1, 10 * m2 + d2, b) =
let val d = (dl - d2 - b) mod 10
val b' = if d1 - d2 - b < 0 then 1 else 0 (* the "borrow out” *)
in 10 * subWithBorrow (ml, m2, b') + d
end

Alert: These laws assume the Standard ML definition of mod, which is not what you get from the
hardware. The result of k mod 10 is always nonnegative.

To convert these laws into code, you will need to write the natural-number patterns as constructed-
data patterns, and you will need to write the final operation between in ... end using the smart-
constructor function.

6. Define function subNats : nat * nat -> nat, as follows:
fun subNats (nl, n2) = subWithBorrow (nl, n2, 0)

Here is a unit test to confirm that subtracting too large a number raises the proper exception:
it should raise Negative and not Match:

val () =
Unit.checkExnSatisfiesWith natString "1 - 5”
(fn () => subNats (natOfDigits [1], natOfDigits [5]))
("Negative”, fn Negative => true | _ => false)

If you trust your conversion functions from the previous problem, you can write unit tests using higher-
order functions. Here is an example:

fun opsAgree name intop natop nl n2 =
Unit.checkExpectWith Int.toString name
(fn () => intOfNat (natop (natOfInt nl, natOfInt n2)))
(intop (nl, n2) handle Overflow => 0)

This function has type

val opsAgree :
string -> (int * int -> int) -> (nat * nat -> nat) ->
int -> int -> unit

And it is used as follows

val () opsAgree "123 + 2018” (op +) addNats 123 2018
val () = opsAgree "2018 - 123" (op -) subNats 2018 123

17

val () = opsAgree "2018 * 123" (op *) mulNats 2018 123
val () = opsAgree "100 - 1 " (op -) subNats 100 1

(Multiplication is for extra credit.)

My addition functions total 14 lines of code, not counting unit tests. My subtraction functions also total
14 lines of code, not counting unit tests.

Hints:

e Exploit the representation invariant. If a natural number matches the pattern TIMES10PLUS (_,),
the representation invariant guarantees that the number is not zero.

e To maintain the representation invariant, use TIMES10PLUS only in pattern matching. On the right-
hand side of any algebraic law, build natural numbers using the smart constructor times10ptlus.

An immutable, persistent alternative to linked lists

Related Reading for problem J: In Learning Standard ML*, read the section on datatypes—Data IV.
Make sure you understand how to pattern match on constructed values.

J. For this problem I am asking you to define your own representation of a new abstraction: the list with
indicator. A list with indicator is a nonempty sequence of values, together with an “indicator” that
points at one position in the sequence. The abstraction provides constant-time insertion and deletion at
the indicator.

This is a challenge problem. The other problems on the homework all involve old wine in new bottles.
To solve this problem, you have to think of something new.

1. Define a representation for type 'a ilist. (Before you can define a representation, you will want
to study the rest of the parts of this problem, plus the test cases.)

Document your representation by saying, in a short comment, what sequence is meant by any value
of type 'a ilist, and to what element the indicator points.
2. Define function
val singletonOf 'a -> 'a ilist
which returns a sequence containing a single value, whose indicator points at that value.
3. Define function

val indicated : 'a ilist -> 'a
which returns the value that the indicator points at.
4. Define functions

val indicatorLeft : 'a ilist -> 'a ilist
val indicatorRight : 'a ilist -> 'a ilist

Calling indicatorLeft xs creates a new list that is like xs, except the indicator is moved one
position to the left. If the indicator belonging to xs already points to the leftmost position, then

2. /readings/ml.html

18

../readings/ml.html

7.

indicatorLeft xs should raise the predefined Subscript exception, which is what the Basis
Library raises for accesses out of bounds. Function indicatorRight is similar. Both functions
must run in constant time and space.

Please think of these functions as “moving the indicator”, but remember no mutation is involved.
Instead of changing an existing list, each function creates a new list.

. Define functions

val deletelLeft : 'a ilist -> 'a ilist
val deleteRight : 'a ilist -> 'a ilist

Calling deleteLeft xs creates a new list that is like xs, except the value x to the left of the indicator
has been removed. If the indicator points to the leftmost position, then deleteLeft should raise
the predefined Subscript exception. Function deleteRight is similar. Both functions must run
in constant time and space. As before, no mutation is involved.

Define functions

val insertLeft : 'a * 'a ilist -> 'a ilist
val insertRight : 'a * 'a ilist -> 'a ilist

Calling insertLeft (x, xs) creates a new list that is like xs, except the value x is inserted to the
left of the indicator. Function insertRight is similar. Both functions must run in constant time
and space. As before, no mutation is involved. (These functions are related to “cons”.)

Define functions

val ifoldl : ('a * 'b -> 'b) -> 'b -> 'a ilist -> 'b
val ifoldr : ('a * 'b -> 'b) -> 'b -> 'a ilist -> 'b

which do the same thing as foldl and foldr, but ignore the position of the indicator.

Here is a simple test case, which should produce a list containing the numbers 1 through 5 in order. You
can use ifoldr to confirm.

val
val
val
val
val
val

test = singletonOf 3

test = insertLeft (1, test)
test = insertLeft (2, test)
test = insertRight (4, test)
test = indicatorRight test
test = insertRight (5, test)

You’ll want to test the delete functions as well.

Here are some properties you can use for testing:

deleteleft (insertLeft (x, xs)) == xs
indicatorLeft (insertLeft (x, xs)) ==

indicatorRight (insertRight (x, indicatorLeft xs))

Properties like these can be converted to functions:

val
val

propl = fn (x, xs) => deleteLeft (insertLeft (x, Xxs)) = xs
prop2 = fn (x, xs) => indicatorLeft (insertLeft (x, xs)) =
indicatorRight (insertRight (x, indicatorLeft xs))

19

Property propl holds of any list with indicator. Property prop2 holds only if it is possible to move the
indicator to the left—otherwise it raises an exception.

Hints: The key is to come up with a good representation for “list with indicator.” Once you have a
good representation, the code is easy: over half the functions can be implemented in one line each, and
no function requires more than two lines of code. The biggest risk is that you copy/paste something
incorrectly for left/right, and you can mitigate this risk through testing.

One problem you can do with a partner (15%)

As noted above, ML-like languages excel at analyzing and manipulating programs. In the coming month,
you will write many functions that analyze expressions; this problem will get you off to a good start.

The problem is numbered 2 because that’s the problem number in the book. You won’t be doing exercise 1,
so you’re not missing anything.

Related Reading for exercise 2: Build, Prove, and Compare, section 5.11, which starts on page 382.
Focus on the proof system for judgment y € fv(e); it is provable exactly when freeIn e vy, where
freeln is the most important function in exercise 2. Also read function eval in section 5.4. You will
modify the case for evaluating LAMBDA.

2. Improving closures.

When a compiler translates a lambda expression, it doesn’t store the entire environment in the closure;
it stores only the free variables of the lambda expression. Interpreters for languages like Lua and Python
work in the same way. You’ll implement this code improvement in an interpreter for pScheme.

This problem appears in Build, Prove, and Compare as exercise 2 on page 389, and you’ll solve it in a
prelude and four parts:

e The prelude is to get a fresh copy of the book code:
git clone homework.cs.tufts.edu:/comp/105/build-prove-compare
(If you use an old copy, it will have redundant parentheses.)

Now copy the file build-prove-compare/bare/uscheme-ml/mlscheme.sml to your working di-
rectory. (This file contains all of the interpreter from Chapter 5.) Then make another copy and
name it mlscheme-improved.sml. You will edit mlscheme-improved.sml.

o The first part is to implement the free-variable predicate
val freeln : exp -> name -> bool.

This predicate tells when a variable appears free in an expression. It implements the proof rules in
section 5.11 of the book, which starts on page 382.

During this part I recommend that you compile early and often using
/usr/sup/bin/mosmlc -c -toplevel -I /comp/105/1ib mlscheme-improved.sml

We also require unit tests for freeIn. At minimum, write two tests for each short example in the
reading-comprehension questions: one for a variable that is free, and one for a variable that appears
in the expression but is not free. Unit tests for LET forms are recommended but not required.

20

e The second part is to write a function that takes a pair consisting of a LAMBDA body and an environ-
ment, and returns a better pair containing the same LAMBDA body paired with an environment that
contains only the free variables of the LAMBDA. (In the book, in exercise 1 starting on page 388, this
environment is explained as the restriction of the environment to the free variables.) I recommend
that you call this function improve, and that you give it the type

val improve : (name list * exp) * 'a env -> (name list * exp) * 'a env

e The third part is to use improve in the evaluation case for LAMBDA, which appears in the book on
page 371c. You simply apply improve to the pair that is already there, so your improved interpreter
looks like this:

(* more alternatives for [[ev]] for \uscheme 371c *)

| ev (LAMBDA (xs, e)) = (errorIfDups (”"formal parameter”, xs, "lambda”)
; CLOSURE (improve ((xs, e), rho))
)

If there’s a fault in improve, your measurements won’t mean anything, and your code won’t pass
our tests. So at this point, you must fest the interpreter on your Scheme homework.

The source code you have doesn’t include implementations of record definitions or short-circuit
Booleans, but these forms can be “desugared” into core pScheme. We provide a script for that, so
you can test as follows:

mosmlc -o improve-test -I /comp/105/1ib mlscheme-improved.sml
desugar-uscheme solution.scm | ./improve-test -q

o The fourth and final part is to see if it makes a difference. You will compile both versions of the
pScheme interpreter using MLton, which is an optimizing, native-code compiler for Standard ML.
The compiler requires some annoying bureaucracy, but it compensates by providing native-code
speeds.

The original file, which has no unit tests, can be compiled without bureaucracy:
mlton -verbose 1 -output mlscheme mlscheme.sml
(If plain mlton doesn’t work, try /usr/sup/bin/mlton.)
Compiling your improved version requires some bureaucracy to incorporate the Unit module.

copy-105-ml-files-here
mlton -verbose 1 -output mlscheme-improved mlscheme-with-unit.mlb

The filemlscheme-with-unit.mlb tells MLton to compile your code with our Unit module. If you
wish to do this on your own computer, you will also need files unit.mlb and unit-mlton.sml from
/comp/105/1ib, and you will have to edit mlscheme-with-unit.mlb to refer to your local copy
of unit.mlb, not the one in /comp/105/1ib.

Once compiled, you will run both versions and see if the “improvement” is measurable. For measurement,
I have provided a script you can use. I also recommend that you compare the performance of the ML
code with the performance of the C code in the course directory.

To get a good measurement, you will need to turn off the “CPU throttling” feature that is built into our
interpreters. Use the following arcane Unix commands:

21

env BPCOPTIONS=nothrottle time run-exponential-arg-max 22 ./mlscheme
env BPCOPTIONS=nothrottle time run-exponential-arg-max 22 ./mlscheme-improved
env BPCOPTIONS=nothrottle time run-exponential-arg-max 22 /comp/105/bin/uscheme

(If you get an error message along the lines of “CPU time exhausted,” something is wrong.)
Hints:

e Focus on function freeIn. This is the only recursive function and the only function that requires
case analysis on expressions. And it is the only function that requires you to understand the concept
of free variables. All of these concepts are needed for future assignments.

Understanding free variables is hard, but once you understand, the coding is easy.

e In Standard ML, the pScheme function exists? is called List.exists. You’ll have lots of op-
portunities to use it. If you don’t use it, you’re making extra work for yourself.

In addition to List.exists, you may find uses for map, foldr, foldl, or List.filter.
You might also find a use for these functions, which are already defined for you:
fun fst (x, y) = x
fun snd (x, y) =y
fun member x =
List.exists (fn y => vy = x)

e The case for LETSTAR is gnarly, and writing it adds little to the experience. Here are two algebraic
laws which may help:

freeIn (LETX (LETSTAR, [1, e)) y = freeIney

freeln (LETX (LETSTAR, b::bs, e)) y = freeIn (LETX (LET, [b], LETX (LETSTAR, bs, e))) vy

e It’s easier to write freeln if you use nested functions. Use nesting to avoid passing the variable
¥, which rarely changes. You’ll see the same technique used in the eval and ev functions in the
chapter, as well as the model solution for eval on the continuations homework.

e If you can apply what you have learned on the scheme and hofs assignments, you should be able
to write improve on one line, without using any explicit recursion.

o Let the compiler help you: compile early and often.

e Once you have the interpreter working, test it by running it on your solutions from the scheme,
hofs, or continuation assignments. (It’s possible to get freeIn right but to break everything by
making a bad mistake in improve. Testing on a full solution set will reveal the problem.)

My implementation of freeInis 21 lines of ML.

Extra credit

There are two extra-credit problems: MULTIPLY and VARARGS.

MULTIPLY. Multiplication of natural numbers.
Define a function

22

val mulNats : nat * nat -> nat

that multiplies two natural numbers. Multiplication obeys these algebraic laws:

0 *n==20

n*o==20

(106 * m1 + d1) * (10 * m2 + d2) ==
dl * d2 +

10 * (m1 * d2 + m2 * dl1) +
100 * (ml1 * m2)

Each of the summands has to be represented as a natural number:
e Number d1 * d2 can be computed using machine multiplication and nat0fInt.

e You can multiply m1 * d2 and m2 * d1 using natOfInt and mulNats. The recursive call is
guaranteed to terminate because at least one argument is getting smaller.

e You can multiply m1 * m2 using mulNats. The recursive call is guaranteed to terminate because
both arguments are getting smaller.

My implementation of mulNats is seven lines of ML, plus a couple of one-line helper functions.

VARARGS. Variadic functions in Scheme.
Extend pScheme to support procedures with a variable number of arguments. This is Exercise 8 on
page 391 of Build, Prove, and Compare.

Avoid common mistakes

It’s a common mistake to use any of the functions length, hd, and t1. Instant No Credit.

If you redefine a type that is already in the initial basis, code will fail in baffling ways. (If you find
yourself baffled, exit the interpreter and restart it.) If you redefine a function at the top-level loop, this is
fine, unless that function captures one of your own functions in its closure.

Example:

fun f x = ... stuff that is broken ...
fun g (y, z) = ... stuff that uses 'f'
fun f x = ... new, correct version of 'f'

You now have a situation where g is broken, and the resulting error is very hard to detect. Stay out of
this situation; instead, load fresh definitions from a file using the use function.

If you redefine Subscript, your “list with indicator” code will fail its tests. Subscript is predefined,
don’t mess with it.

Never put a semicolon after a definition. I don’t care if Jeff Ullman does it—don’t you do it. It’s wrong!
Write a semicolon only when you are deliberately using imperative features.

It’s a common mistake to become very confused by not knowing where you need to use op. Ullman
covers op in Section 5.4.4, page 165.

23

It’s a common mistake to include redundant parentheses in your code. To avoid this mistake, use
the sml-1int tool, and consult the checklist in the section Expressions VIII (Parentheses) in Learning
Standard ML.

It’s a common mistake to do both your pair work and your solo work in the same directory. The submit
scripts will balk.

It’s not a common mistake, but it can be devastating: when you’re writing a type variable, be sure to use
an ASCII quote mark, as in 'a, not with a Unicode right quote mark, as in 'a. Some text editors, web
browsers, or Bluetooth keyboards may use or display Unicode without being asked. Thanks, Apple!

It’s not a common mistake, but do not copy Unit.sml into your submission directory—you won’t be able
to submit.

What to submit and how to submit it

Submitting your individual work

Please submit a README file containing the names of the people with whom you collaborated and a list
identifying which problems that you solved—including any extra credit.

For your individual work, please submit the files cqs.ml. txt and warmup.sml. If you have implemented
mulNats, please include it in warmup.sml. If you have done either of other the extra-credit problems,
please submit them as varargs.sml or fives.sml.

In comments at the top of your warmup.sml file, please include your name and the names of any collab-
orators, and a note about any extra-credit work you have done.

As soon as you have awarmup. sml file, run submit105-ml-solo to submit a preliminary version of your
work. As you edit your files, keep submitting; we grade only the last submission.

Submitting your improved pScheme interpreter

For your your improved pScheme interpreter, which you may have done with a partner, please submit the
file mlscheme-improved. sml, using the script submit105-ml-pair.

How your work will be evaluated

The criteria are mostly the same as for the scheme and hofs assignments, but because the language is

different, we’ll be looking for indentation and layout as described in the Style Guide for Standard ML

Programmers>!.

30_ /readings/ml.html#expressions- viii-parentheses
31 /handouts/mlstyle.pdf

24

../readings/ml.html#expressions-viii-parentheses
../handouts/mlstyle.pdf

	Overview
	Prelude
	Setup
	ML's initial basis
	Unit testing
	Regression testing
	Things you need to review before starting

	What we expect from your submission
	We expect the right types
	We expect wise, well-formatted unit tests
	We expect case analysis only when necessary
	We don't expect written algebraic laws
	We expect an acceptable style
	We expect you to remove redundant parentheses
	We expect you to avoid forbidden functions and constructs

	Reading comprehension (10%)
	Programming problems to solve individually (75%)
	Defining functions using clauses and patterns
	Lists
	Handling exceptions
	Arithmetic by pattern matching on constructed data
	An immutable, persistent alternative to linked lists

	One problem you can do with a partner (15%)
	Extra credit
	Avoid common mistakes
	What to submit and how to submit it
	Submitting your individual work
	Submitting your improved μScheme interpreter

	How your work will be evaluated

