
Assignment: Operational Semantics

COMP 105

Due Tuesday, February 5, 2019 at 11:59PM

Contents
Part A: Reading comprehension (individual work, 10 percent) 1
Part B: Adding local variables to the interpreter (work with a partner, 23 percent) 3
Part C: Operational semantics, derivations, and metatheory (individual work, 67 percent) . . 5
Organizing the answers to Part C . 7
Extra credit: Eliminating begin . 7
How to organize and submit your work . 8
How your work will be evaluated . 8

Adding local variables to Impcore (exercise 33) . 8
Operational semantics . 9

If you’re going to talk about languages you’ve never seen before, you need a vocabulary. This assignment
introduces you to the basics of operational semantics, inference rules, and syntactic proof technique.
You will use these skills heavily throughout the first two-thirds of the course, and after 105 is over, when
you want to understand a new language idea, you will use them again.

Some of the essential skills are

• Understanding what judgment forms mean, how to read them, and how to write them

• Understanding what constitutes a valid syntactic proof, known as a derivation

• Understanding how a valid derivation in the operational semantics relates to a successful, termi-
nating evaluation of an expression

• Proving facts about families of programs by reasoning about derivations, a technique known as
metatheory

• Using operational semantics to express language features and language-design ideas

• Connecting operational semantics with informal English explanations of language features

• Connecting operational semantics with code in compilers or interpreters

Few of these skills can be mastered in a single assignment. When you’ve completed the assignment,
I hope you will feel confident of your knowledge of exactly the way judgment forms, inference rules, and
derivations are written. On the other skills, you’ll have made a start.

1

Part A: Reading comprehension (individual work, 10 percent)
Before starting the other problems below, answer these questions. You can download them1.

For questions 1–7, please read pages 18–26 (the book sections on environments and on operational se-
mantics of expressions). These questions are multiple-choice. Questions 1 to 3 offer one set of choices,
and questions 4 to 6 offer another set of choices.

1. 𝜉 is an environment that maps names to

(a) only user-defined functions.
(b) only the values of formal parameters.
(c) both primitive and user-defined functions.
(d) the values of both global variables and formal parameters.
(e) only primitive functions.
(f) only the values of global variables.

2. 𝜙 is an environment that maps names to

(a) only user-defined functions.
(b) only the values of formal parameters.
(c) both primitive and user-defined functions.
(d) the values of both global variables and formal parameters.
(e) only primitive functions.
(f) only the values of global variables.

3. 𝜌 is an environment that maps names to

(a) only user-defined functions.
(b) only the values of formal parameters.
(c) both primitive and user-defined functions.
(d) the values of both global variables and formal parameters.
(e) only primitive functions.
(f) only the values of global variables.

4. In the operational semantics, what kind of a thing does the metavariable 𝑒 stand for?

(a) an environment
(b) an Impcore variable
(c) an elaboration
(d) an expression
(e) a value
(f) a function

5. In the operational semantics, what kind of a thing does the metavariable 𝑣 stand for?

(a) an environment
(b) an Impcore variable
(c) an elaboration
(d) an expression
(e) a value
(f) a function

1./cqs.opsem.txt

2

./cqs.opsem.txt

6. In the operational semantics, what kind of a thing does the phrase 𝜌{𝑥 ↦ 7}(𝑥) stand for?

(a) an environment
(b) an Impcore variable
(c) an elaboration
(d) an expression
(e) a value
(f) a function

7. In the operational semantics, what kind of a thing does the phrase 𝜌{𝑥 ↦ 7}{𝑥 ↦ 8} stand for?

(a) an environment
(b) an Impcore variable
(c) an elaboration
(d) an expression
(e) a value
(f) a function

Questions 8 and 9 are also based on pages 18–26. Please answer a number.

8. How many rules have the IF syntactic form in the conclusion?

9. How many rules have the APPLY syntactic form in the conclusion? (Look at all the rules in the
section, not just the summary on page 81.)

Now let’s understand a subtle point about rules. Study the FormalVar and FormalAssign rules starting on
page 21. In FormalVar, the initial and final states have the same 𝜌. But in the FormalAssign rule, there
is an initial state with 𝜌, an intermediate state with 𝜌′, and a final state with 𝜌′{𝑥 ↦ 𝑣}. Answer these
questions:

10. In FormalVar, the initial and final state have the same 𝜌 because

(a) Evaluating 𝑥 might change the value of some formal parameter.
(b) Evaluating 𝑥 might not change the value of any formal parameter.
(c) Evaluating 𝑥 doesn’t change the value of any formal parameter.

11. In FormalAssign, there is an intermediate state with 𝜌′ (rho-prime) because

(a) Evaluating 𝑒 might change the value of some formal parameter.
(b) Evaluating 𝑒 might not change the value of any formal parameter.
(c) Evaluating 𝑒 doesn’t change the value of any formal parameter.

When a rule is used in a derivation, it doesn’t look exactly the way it looks in isolation. Regrettably,
section 1.6.1, which starts on page 58 does not really explain how to construct a derivation. But look at
the example derivation on page 59, and answer this question:

12. The same 𝜌 is used throughout the derivation because

(a) Every subexpression is known, and because there is no unknown subexpression, there is no
need for a 𝜌′ (rho-prime).

(b) No part of the evaluation changes the value of a formal parameter.
(c) The example derivation takes a shortcut and doesn’t actually conform to the rules.

3

Part B: Adding local variables to the interpreter (work with a partner, 23 percent)
Related reading: section 1.5, particularly section 1.5.2, which starts on page 44. These pages walk you
through the implementation of the operational semantics.

We use operational semantics in part because it’s a superior way to write things we’d like to code. This
exercise helps you understand how operational semantics is coded, and how language changes can be
realized in C code. You will do exercise 33 from page 87 of the Build, Prove, and Compare book. We
recommend that you solve this problem with a partner, but this solution must be kept separate from
your other solutions. Your programming partner, if any, must not see your other work.

Here’s an example of a function that uses a local variable:

; (sqrt n) approximates the square root of natural number n.
; It returns the largest integer whose square is no greater than n.

(define sqrt (n)
[locals i]
(begin

(while (<= (* i i) n)
(set i (+ i 1)))

(- i 1)))

For information on pair programming, consult the syllabus2, the reading3, and some timeless advice for
pair programmers4.

• Get your copy of the code from the book by running

git clone homework.cs.tufts.edu:/comp/105/build-prove-compare

or if that doesn’t work, from a lab or linux machine, try

git clone /comp/105/build-prove-compare

You can find the source code from Chapter 1 in subdirectory bare/impcore or com-
mented/impcore. The bare version, which we recommend, contains just the C code from
the book, with simple comments identifying page numbers. The commented version, which you
may use if you like, includes part of the book text as commentary.

• We provide new versions of all.h, definition-code.c, parse.c, printfuns.c, and
tableparsing.c that handle local variables. These versions are found in subdirectory
bare/impcore-with-locals. There are not many changes; to see what is different, try running

diff -r bare/impcore bare/impcore-with-locals

You may wish to try the -u or -y options with diff. You may also wish to try colordiff.

In the directory bare/impcore-with-locals, you can build an interpreter by typing make. The in-
terpreter you build will parse definitions containing local variables, but it will ignore the local
variables. To get local variables working, you’ll make these changes:

2../syllabus.html#how-do-pair-programming-interactions-work
3../readings/pairs.pdf
4http://www.cs.tufts.edu/comp/40-2011f/readings/other-pair.html

4

../syllabus.html#how-do-pair-programming-interactions-work
../readings/pairs.pdf
http://www.cs.tufts.edu/comp/40-2011f/readings/other-pair.html

– In eval.c, youwill modify the evaluator to give the right semantics to local variables. A local
variable that has the same name as a formal parameter should hide that formal parameter, as
in C.

– You may also modify other files as you see fit.

To build a list of values, you may wish to use function mkVL in file list-code.c.

• This exercise is not “coding a function from scratch.” It is modifying a large, existing program.
Therefore, the nine-step design process that we usually recommend does not apply to this
exercise. We do not expect you to submit anything beyond the modified interpreter.

• Create a file called README in your impcore-with-locals directory. Describe your solution in
the README.

Part C: Operational semantics, derivations, and metatheory (individual work,
67 percent)
Related reading:

• For an example of a derivation tree, see page 59.
• For rules of operational semantics, see section 1.4, which starts on page 18. The most important

rules are summarized on pages 81–82.
• For metatheory, see section 1.6.2, which starts on page 59.

These exercises are intended to help you become fluent with operational semantics. Do not share your
solutions with any programming partners. We encourage you to discuss ideas, but no other student
may see your rules, your derivations, or your code. If you have difficulty, find a TA, who can help you
work a couple of similar problems.

Do exercise 13 on page 82 of Build, Prove, and Compare. The purpose of the exercise is to develop
your understanding of derivations, so be sure to make your derivation complete and formal. You can
write out a derivation like the ones in the book, as a single proof tree with a horizontal line over each
node. If you prefer, you can write a sequence of judgments, number each judgment, and write a proof
tree containing only the numbers of the judgments, which you will find easier to fit on the page.

In this exercise, or in writing any derivation, the most common mistake made is to copy judgments
blindly from the rules of the semantics. This kind of copying results in superfluous primes. In the rules,
the primes in 𝜉′ and 𝜌′ are a way of saying “I don’t know.” In particular, what’s unknown is the exact
nature of the subexpressions, and therefore the results of evaluating them. (Notice that the syntactic forms
Var and Literal don’t have any subexpressions, and their rules don’t have any primes.) In the expression
(begin (set x 3) x), all of the subexpressions are known, and a correct derivation doesn’t have any
primes.

Do exercise 14 on page 82 of Build, Prove, and Compare. Now that you know how to write a derivation,
in this exercise you start reasoning about derivations. This problem calls for a math-class proof about
formal semantics, so any formal derivations you write need to be supplemented by a fewwords explaining
what the formal derivation is and what role it plays in the proof.

As in the previous exercise, be wary of primes. The 𝜉′, 𝜌′, 𝜉″ and 𝜌″ in the problem are not necessar-
ily different from the initial environments or from each other. The primes say only that they might be
different.

5

Do exercises 21 and 22 on page 83 of Build, Prove, and Compare. This is an exercise in language
design. The exercise will give you a feel for the kinds of choices a language designer might have made
in a language you have never seen before. It will also give you a tool you can use to think about the
consequences of language-design choices even without an implementation.

To complete these exercises, you must analyze three variations on a design: the Impcore standard and two
alternatives, which resemble the languages Awk and Icon. For the Impcore standard, you can confirm the
results of your analysis using the Impcore implementation. But for the Awk-like and Icon-like variations,
you don’t have an implementation that you can use to verify the results of your analysis. To get the
problem right, you have two choices: think carefully about the semantics you have designed and the
program you have written—or build two more interpreters, so that you can actually test your code. (Each
new interpreter requires only a two-line change to file eval.c, so if you wanted to build new interpreters,
you wouldn’t be crazy.)

Exercise 22 does involve coding from scratch, and it could involve new functions. However, these func-
tions are not trying to do anything useful with data; instead, they are trying to tease out differences in
language semantics. Moreover, unless you choose to build interpreters, you cannot run unit tests of the
Awk-like and Icon-like semantics. For these reasons, the only steps we expect from our recommended
design process are a name and a contract for each function you choose to write (steps 3 and 4).

In exercise 22, we will assess your results by running your code in three interpreters. This assessment
leaves you vulnerable to these common mistakes:

• You might define a function and forget to call it. If you forget to call your function, then when we
run your code, the last thing the interpreter does will probably not be to print 0 or 1, which is what
is called for in the exercise.

• You might forget that after evaluating an expression, the interpreter prints the result of the expres-
sion.

• You might use print or printu where you really meant println.

• You might include unit tests in your code. In that case, the last thing the interpreter prints will be
the results of running the unit tests.

Do exercise 20 on page 83 of Build, Prove, and Compare. In this exercise you prove that given a set of
environments, the result of evaluating any expression 𝑒 is completely determined. That is, in any given
starting state, evaluation produces the same results every time. This proof requires you to raise your
game again, reasoning about the set of all valid derivations. It’s metatheory. Metatheoretic proofs are
probably unfamiliar, but you will have a crack at them in lecture and in recitation.

Why do metatheory? If somebody is trying to sell you a language you have never seen before, they might
try to sell it on the basis of some kind of guarantee. For example, in the Singularity project, Microsoft
tried to sell the language “Sing#” on security and reliability grounds: that any program written in “Sing#”
would meet their reliability claims. If you know metatheory, you’ll know whether to buy what somebody
is selling about “any program.”

These proofs are stylized. To tackle the problem, assume you have two valid derivations with the same
𝑒 and the same environments on the left, but different 𝑣’s on the right—let’s call them 𝑣1 and 𝑣2. You
then prove that if both derivations are valid, 𝑣1 = 𝑣2. In other words, no matter what 𝑒 is, you show that
whenever ⟨𝑒, 𝜉, 𝜙, 𝜌⟩ ⇓ ⟨𝑣1, 𝜉′, 𝜙, 𝜌′⟩ and ⟨𝑒, 𝜉, 𝜙, 𝜌⟩ ⇓ ⟨𝑣2, 𝜉″, 𝜙, 𝜌″⟩, it is also true that 𝑣1 = 𝑣2.

The structure of your proof will resemble the structure given in section 1.6.3, which starts on page 61,

6

but because your proof involves reasoning about two derivations, it will be a little more complex. Your
proof will proceed by induction on just one of the two derivations. You pick which one.

Note well that the theorem you are setting out to prove applies only to valid derivations that begin with
the same initial state, including environments. But the conclusion of the theorem tells you only that the
values are the same—it says nothing about the environments. If you set out naively, you’ll find yourself
in trouble on some of the induction steps. I know of two ways forward:

• Write a separate proof about the environments (not recommended).

• Find a stronger theorem that can also serve as an induction hypothesis, prove it, and then show
that “Impcore is deterministic” follows as a corollary (recommended).

Whichever you choose, be explicit about your induction hypothesis.

To reduce bureaucracy, you will do this proof in Theoretical Impcore. Theoretical Impcore is a restricted
subset of Impcore in which:

• There are no while or begin expressions.
• Every function application has exactly two arguments.
• The only primitive function is +.

Using Theoretical Impcore reduces the number of cases to a manageable number. This step will relieve
some of the tedium (which, in this sort of proof, is regrettably common).

Organizing the answers to Part C
For these exercises you will turn in two files: theory.pdf and awk-icon.imp. For file theory.pdf, you
could consider using LaTeX, but unless you already have experience using LaTeX to typeset mathematics,
it’s a bad idea. We recommend that you write your theory homework by hand, then scan or photograph it5.

If you do already know LaTeX and you wish to use it, you may benefit by emulating our LaTeX source
code for a simple proof system6 or SamGuyer’s LaTex source code for typesetting operational semantics7.
You might also like Matthew Ahrens’s video tutorial on typesetting proof trees8.

To help us read your answers to Part C, we need for you to organize them carefully:

• The answer to each question must start on a new page.

• The theory answers must appear in this order: exercises 13, 14, 21, and finally 20.

• Your answer to exercise 22 must be in file awk-icon.imp.

Extra credit: Eliminating begin

Theoretical Impcore has neither while nor begin. You already have an idea that you can often replace
while with recursion. For extra credit, show that you can replace begin with function calls.

Assume that 𝜙 binds the function second according to the following definition:

(define second (x y) y)

5http://www.cs.tufts.edu/comp/105/syllabus.html#then-how-should-theory-homework-be-written
6../handouts/noset.tex
7../handouts/latexexample.tex
8https://www.youtube.com/watch?v=zxVAi4L3y4Y&t=232s

7

http://www.cs.tufts.edu/comp/105/syllabus.html#then-how-should-theory-homework-be-written
../handouts/noset.tex
../handouts/latexexample.tex
https://www.youtube.com/watch?v=zxVAi4L3y4Y&t=232s

I claim that if 𝑒1 and 𝑒2 are arbitrary expressions, you can always write (second 𝑒1 𝑒2) instead of
(begin 𝑒1 𝑒2). For extra credit, answer any or all of the following questions:

• X1. Using evaluation judgments, take the claim “you can always write (second 𝑒1 𝑒2) instead
of (begin 𝑒1 𝑒2)” and restate the claim in precise, formal language.

Hint: The claim is related to the claims in exercises 14 and 15 on page 82 in the Impcore chapter.

• X2. Using operational semantics, prove the claim.

• X3. Define a translation for (begin 𝑒1 ⋯ 𝑒𝑛) such that the translated code behaves exactly the
same as the original code, but in the result of the translation, every remaining begin has exactly
two subexpressions. For example, you might translate

(begin e1 e2 e3)

into

(begin e1 (begin e2 e3))

You may use any notation you like, but the cleanest way to define the translation is by using alge-
braic laws.

Once you’ve defined the translation in step X3, you’ll be ready to write a translation that eliminates begin
entirely. But that translation is more appropriate to next week’s homework.

How to organize and submit your work
Before submitting code, test what you can. We do not provide any tests; you write your own. All code
can be fully tested except the code for exercise 22.

• To complete part A, which you do by yourself, download the questions9, then edit the answers
into the file cqs.opsem.txt. If your editor is not good with Greek letters, you can spell out their
names: 𝜉 is “xi,” 𝜙 is “phi,” and 𝜌 is “rho.”

You won’t submit part A until you also have the files for part C.

• To submit part B, which you may have done with a partner, cd into bare/impcore-with-locals.
The directory should contain your code and a README file that documents your solution.

As soon as you have these files, run submit105-opsem-pair to submit a preliminary version of
your work. Keep submitting until your work is complete; we grade only the last submission. Only
one partner should submit.

• To complete part C, which you do by yourself, create files awk-icon.imp and theory.pdf. Please
leave your name out of your PDF—that will enable your work to be graded anonymously.

Please also create a file called README, in which you tell us anything else you think is useful for us to
know. We provide a template for your README at http://www.cs.tufts.edu/comp/105/homework/
opsem-README-template.

As soon as you have the files for parts A and C, cd into the appropriate directory and run
submit105-opsem-solo to submit a preliminary version of your work. You’ll need files README,
cqs.opsem.txt, awk-icon.imp, and theory.pdf, but preliminary versions are good enough.
Keep submitting and resubmitting until your work is complete; we grade only the last submission.

9./cqs.opsem.txt

8

http://www.cs.tufts.edu/comp/105/homework/opsem-README-template
http://www.cs.tufts.edu/comp/105/homework/opsem-README-template
./cqs.opsem.txt

When you submit theory.pdf, the provide program should email you a copy of the PDF. Check the
email and be sure that the PDF opens and displays what you expect. If there is a problem with the PDF,
resubmit the file or ask for help on Piazza.

How your work will be evaluated
Adding local variables to Impcore (exercise 33)

Everything in the general coding rubric10 applies, but we will focus on three areas specific to this exercise:

Exemplary Satisfactory Must Improve
Locals • Change to interpreter

appears motivated either by
changing the semantics as
little as possible or by
changing the code as little
as possible.
• Local variables for
Impcore pass simple tests.

• Course staff believe they
can see motivation for
changes to interpreter, but
more changes were made
than necessary.
• Local variables for
Impcore pass some tests.

• Course staff cannot
understand what ideas were
used to change the
interpreter.
• Local variables for
Impcore pass few or no
tests.

Naming • Where the code
implements math, the
names of each variable in
the code is either the same
as what’s in the math (e.g.,
rho for 𝜌), or is an English
equivalent for what the code
stands for (e.g., parameters
or parms for 𝜌).

• Where the code
implements math, the
names don’t help the course
staff figure out how the code
corresponds to the math.

• Where the code
implements math, the
course staff cannot figure
out how the code
corresponds to the math.

Structure • The code is so clear that
course staff can instantly
tell whether it is correct or
incorrect.
• There’s only as much code
as is needed to do the job.
• The code contains no
redundant case analysis.

• Course staff have to work
to tell whether the code is
correct or incorrect.
• There’s somewhat more
code than is needed to do
the job.
• The code contains a little
redundant case analysis.

• From reading the code,
course staff cannot tell
whether it is correct or
incorrect.
• From reading the code,
course staff cannot easily
tell what it is doing.
• There’s about twice as
much code as is needed to
do the job.
• A significant fraction of
the case analyses in the
code, maybe a third, are
redundant.

10../coding-rubric.html

9

../coding-rubric.html

Exemplary Satisfactory Must Improve

Operational semantics

Below is an extensive list of criteria for judging semantics, rules, derivations, and metatheoretic proofs.
As always, you are aiming for the left-hand column, you might be willing to settle for the middle column,
and you want to avoid the right-hand column.

Changed rules of Impcore (exercise 21)

10

Exemplary Satisfactory Must Improve
Rules • Every inference rule has a

single conclusion which is a
judgment form of the
operational semantics.
• In every inference rule,
every premise is either a
judgment form of the
operational semantics or a
simple mathematical
predicate such as equality or
set membership.
• In every inference rule, if
two states, two
environments, or two of any
other thing must be the
same, then they are notated
using a single metavariable
that appears in multiple
places. (Example: 𝜌 or 𝜎)
• In every inference rule, if
two states, two
environments, or two of any
other thing may be different,
then they are notated using
different metavariables.
(Example: 𝜌 and 𝜌′)
• New language designs use
or change just enough rules
to do the job.
• Inference rules use one
judgment form per syntactic
category.

• In every inference rule,
two states, two
environments, or two of any
other thing must be the
same, yet they are notated
using different
metavariables. However,
the inference rule includes a
premise that these
metavariables are equal.
(Example: 𝜌1 = 𝜌2)
• A new language design
has a few too many new or
changes a few too many
existing rules.
• Or, a new language design
is missing a few rules that
are needed, or it doesn’t
change a few existing rules
that need to be changed.

• Notation that is presented
as an inference rule has
more than one judgment
form or other predicate
below the line.
• Inference rules contain
notation above the line that
does not resemble a
judgment form and is not a
simple mathematical
predicate.
• Inference rules contain
notation, either above or
below the line, that
resembles a judgment form
but is not actually a
judgment form.
• In every inference rule,
two states, two
environments, or two of any
other thing must be the
same, yet they are notated
using different
metavariables, and nothing
in the rule forces these
metavariables to be equal.
(Example: 𝜌 and 𝜌′ are both
used, yet they must be
identical.)
• In some inference rule,
two states, two
environments, or two other
things may be different, but
they are notated using a
single metavariable.
(Example: using 𝜌
everywhere, but in some
places, 𝜌′ is needed.)
• In a new language design,
the number of new or
changed rules is a lot
different from what is
needed.
• Inference rules contain a
mix of judgment forms even
when describing the
semantics of a single
syntactic category.11

Exemplary Satisfactory Must Improve

12

Program to probe Impcore/Awk/Icon semantics (exercise 22)

Exemplary Satisfactory Must Improve
Semantics • The program which is

supposed to behave
differently in Awk, Icon,
and Impcore semantics
behaves exactly as specified
with each semantics.

• The program which is
supposed to behave
differently in Awk, Icon,
and Impcore semantics
behaves almost exactly as
specified with each
semantics.

• The program which is
supposed to behave
differently in Awk, Icon,
and Impcore semantics gets
one or more semantics
wrong.
• The program which is
supposed to behave
differently in Awk, Icon,
and Impcore semantics
looks like it is probably
correct, but it does not meet
the specification: either
running the code does not
print, or it prints two or
more times.

13

Derivations (exercises 13 and 14)

14

Exemplary Satisfactory Must Improve
Derivations • In every derivation, every

utterance is either a
judgment form of the
operational semantics or a
simple mathematical
predicate such as equality or
set membership.
• In every derivation, every
judgement follows from
instantiating a rule from the
operational semantics.
(Instantiating means
substituting for meta
variables.) The judgement
appears below a horizontal
line, and above that line is
one derivation of each
premise.
• In every derivation, equal
environments are notated
equally. If both 𝜌 and 𝜌′

appear, they must not be
known to be equal.
• Every derivation takes the
form of a tree. The root of
the tree, which is written at
the bottom, is the judgment
that is derived (proved).
• In every derivation, new
bindings are added to an
environment exactly as and
when required by the
semantics.

• In one or more
derivations, there are a few
horizontal lines that appear
to be instances of inference
rules, but the instantiations
are not valid. (Example:
rule requires two
environments to be the
same, but in the derivation
they are different.)
• In a derivation, the
semantics requires new
bindings to be added to
some environments, and the
derivation contains
environments extended with
the right new bindings, but
not in exactly the right
places.

• In one or more
derivations, there are
horizontal lines that the
course staff is unable to
relate to any inference rule.
• In one or more
derivations, there are many
horizontal lines that appear
to be instances of inference
rules, but the instantiations
are not valid.
• Environments in
intermediate or final states
have primes or subscripts
not found in the initial
environment, and there is
no unknown derivation (or
unknown subexpression)
whose result could account
for a prime or a subscript.
• A derivation is called for,
but course staff cannot
identify the tree structure of
the judgments forming the
derivation.
• In a derivation, the
semantics requires new
bindings to be added to
some environments, and the
derivation contains
environments extended with
new bindings, but the new
bindings in the derivation
are not the bindings
required by the semantics.
(Example: the semantics
calls for a binding of
answer to 42, but instead
answer is bound to 0.)
• In a derivation, the
semantics requires new
bindings to be added to
some environments, but the
derivation does not contain
any environments extended
with new bindings.

15

Exemplary Satisfactory Must Improve

16

Metatheory (exercise 20)

Exemplary Satisfactory Must Improve
Metatheory • Metatheoretic proofs

operate by structural
induction on derivations,
and derivations are named.
• Metatheoretic proofs
classify derivations by case
analysis over the final rule
in each derivation. The case
analysis includes every
possible derivation, and
cases with similar proofs
are grouped together.

• Metatheoretic proofs
operate by structural
induction on derivations,
but derivations and
subderivations are not
named, so course staff may
not be certain of what’s
being claimed.
• Metatheoretic proofs
classify derivations by case
analysis over the final rule
in each derivation. The case
analysis includes every
possible derivation, but the
grouping of the cases does
not bring together cases
with similar proofs.

• Metatheoretic proofs don’t
use structural induction on
derivations (serious fault).
• Metatheoretic proofs have
incomplete case analyses of
derivations.
• Metatheoretic proofs are
missing many cases
(serious fault).
• Course staff cannot figure
out how metatheoretic proof
is broken down by cases
(serious fault).

17

	Part A: Reading comprehension (individual work, 10 percent)
	Part B: Adding local variables to the interpreter (work with a partner, 23 percent)
	Part C: Operational semantics, derivations, and metatheory (individual work, 67 percent)
	Organizing the answers to Part C
	Extra credit: Eliminating begin
	How to organize and submit your work
	How your work will be evaluated
	Adding local variables to Impcore (exercise 33)
	Operational semantics

