
Functional programming in 𝜇Scheme

COMP 105 Assignment

Due Tuesday, February 12, 2019 at 11:59PM

Contents
Overview 1

Setup 2

Diagnostic tracing 2

Dire Warnings 2

Reading Comprehension (10 percent) 3

Programming and Proof Problems (90 percent) 6
Problem Details (Theory) . 6
Our expectations for your code: Algebraic laws and unit tests 7

A checklist for your laws . 7
A checklist for your code . 8
A checklist for your tests . 8

Problem Details (Code) . 8
Lists and S-expressions . 8
Classic list functions . 9
Properties of lists . 10
Programming with nonempty lists . 11
A toolkit for sorting . 12

Extra credit, programming: Merge sort . 14
Extra credit, theory: take and drop . 15

What and how to submit 15

How your work will be evaluated 15
Programming in 𝜇Scheme . 15

Laws must be well formed and algorithmic . 15
Code must be well structured . 17
Code must be well laid out, with attention to vertical space 17
Code must load without errors . 18
Costs of list tests must be appropriate . 19

Your proofs . 19

1

This assignment is all individual work. There is no pair programming.

Overview
This assignment develops new skills that you can use to write one kind of code from scratch: code that
inspects and manipulates lists, trees, or other linked data structures. You already know how to manipu-
late these structures using machine-level abstractions that operate on one word and one pointer at a time.
You will start to develop a flexible, powerful vocabulary of functions that enable you to manipulate a
whole list in just one or two operations. These skills come from the discipline of functional program-
ming.

The key thing that’s new this week is that no data structure is ever mutated—instead of changing an
existing list or tree, code allocates a new list or tree with the desired values and structure. This discipline
of programming has benefits for testing, specification, and coding:

• Tests are easy to write, require no setup, and can be repeated without fear of failure.

• Contracts are written without having to refer to multiple states of execution: a function’s contract
mentions only the inputs and the result.

• Because unchanging data structures can safely be shared, the functions in your vocabulary can
easily be composed.

You will learn more about composition of functions next week.

In addition to programming, you will get more practice with programming-language theory and proofs.
You will see that algebraic laws are built on top of operational semantics, and you will learn that on top
of algebraic laws, we can build calculational proofs of program properties. This “cheap and cheerful”
way of assuring program correctness is another benefit of functional programming.

This week’s assignment is based primarily on material from sections 2.1 to 2.6 of Programming Lan-
guages: Build, Prove, and Compare. You will also need to know the syntax in section 2.11, which
starts on page 147, and the initial basis (also in section 2.11). The table on page 159 lists all the functions
found in the basis—it is your lifeline. Finally, although it is not necessary, you may find some problems
easier to solve if you read ahead from section 2.7 to section 2.9.

You will define many functions and write a few proofs. The functions are small; most are in the range
of 4 to 8 lines, and none of my solutions is more than a dozen lines. If you don’t read ahead, a couple of
your functions will be a bit longer, which is OK.

Setup
The executable 𝜇Scheme interpreter is in /comp/105/bin/uscheme; once you have run use comp105
(or set it up to run automatically on login), you should be able to run uscheme as a command. The inter-
preter accepts a -q (“quiet”) option, which turns off prompting. When using the interpreter interactively,
you may find it helpful to use ledit, as in the command

ledit uscheme

Please also download our template for solution.scm1. It contains a skeleton version of each function you
1http://www.cs.tufts.edu/comp/105/homework/solution-template.scm

2

http://www.cs.tufts.edu/comp/105/homework/solution-template.scm

must define, but the body of the function calls error. Each call to error should be replaced with a correct
implementation.

Diagnostic tracing
𝜇Scheme does not ship with a debugger. But in addition to the println and printu functions, it does
ship with a tracing facility. The tracing facility can show you the argument and results to every function
call, or you can dial it back to show just a limited number.

The tracing facility is described in exercise 74 on page 237 of Build, Prove, and Compare. Our facility
takes the approach sketched in part (b). Here are a couple of example calls for you to try:

-> (val &trace 5)
-> (append '(a b c) '(1 2 3))
-> (set &trace 500)
-> (append '(a b c) '(1 2 3))

Used carefully, &trace can save you a lot of time and effort. But do not leave even an unexecuted
reference to &trace in your submission.

Dire Warnings
Since we are studying functional programming, the 𝜇Scheme programs you submit must not use any
imperative features. Banish set, while, println, print, printu, and begin from your vocabulary! If
you break this rule for any problem, you will get No Credit for that problem. You may find it useful
to use begin and println while debugging, but they must not appear in any code you submit. As a
substitute for assignment, use let or let*.

Helper functions may be defined at top level only if they meet these criteria:

• Each helper function has a meaningful name2.

• Each helper function is given an explicit contract—or, as described in the general coding rubric3,
we can infer the contract by looking at the names of the function and its formal parameters.

• Each helper function is specified by algebraic laws.

• Each helper function is tested by check-expect or check-assert, and possibly check-error.

As an alternative to helper functions, you may read ahead and define local functions using lambda along
with let, letrec, or let*. If you do define local functions, avoid passing them redundant parameters—a
local function already has access to the parameters and let-bound variables of its enclosing function.

Except as specified, functions without algebraic laws will earn failing grades.

Your solutions must be valid 𝜇Scheme; in particular, they must pass the following test:

/comp/105/bin/uscheme -q < myfilename

without any error messages or unit-test failures. If your file produces error messages, wewon’t test your
solution and you will earn No Credit for functional correctness. (You can still earn credit for structure

2../coding-rubric.html
3../coding-rubric.html

3

../coding-rubric.html
../coding-rubric.html

and organization). If your file includes failing unit tests, you might possibly get some credit for functional
correctness, but we cannot guarantee it.

Case analysis involving lists and S-expressionsmust be structural. That is, your case analysis must involve
the results of functions like null?, atom?, pair?, and so on, all of which are found in the initial basis.
Please note that the length function from the book is not in the initial basis, and code submitted for this
assignment must not compute the length of any list.

Code you submit must not even mention &trace. We recommend that you use &trace only at the inter-
active prompt.

We will evaluate functional correctness by automated testing. Because testing is automated, each func-
tion must be named be exactly as described in each question. Misnamed functions earn No Credit.
You may wish to use the template4 provided above, which has the correct function names.

Reading Comprehension (10 percent)
These problems will help guide you through the reading. Complete them before starting the other prob-
lems below. You can download the questions5.

1. Read Sections 2.1 and 2.2 (the first part of the second lesson) in Seven Lessons in Program De-
sign6.

You are tasked with writing a function that consumes a list of numbers:

(a) How many cases must you consider?

(b) To tell the cases apart, what condition or conditions will you use in if expressions? (List
one fewer condition than cases.)

You are tasked with writing a function that consumes an ordinary S-expression.

(c) How many cases must you consider?

(d) To tell the cases apart, what condition or conditions will you use in if expressions? (List
one fewer condition than cases.)

You are ready to write algebraic laws using Scheme data.

2. In the main textbook, review section 2.2 on values, S-expressions, and primitives, and say what is
the value of each of the expressions below. If a run-time error would occur, please say so.

(car '(a b 1 2))
(cdr '(a b 1 2))
(= 'a 'b)

Write your answers as S-expression literals, like '(a b c), #t, or 17.

You are on your way to being ready for exercise F.
4http://www.cs.tufts.edu/comp/105/homework/solution-template.scm
5./cqs.scheme.txt
6../design/lessons.pdf

4

http://www.cs.tufts.edu/comp/105/homework/solution-template.scm
./cqs.scheme.txt
../design/lessons.pdf

3. In Programming Languages: Build, Prove, and Compare, review the first few pages of sec-
tion 2.3, through the end of section 2.3.2, and also section 2.3.5, which starts on page 103. Which
of the following expressions evaluates to #t for every list of ordinary S-expressions xs?

(= (reverse (reverse xs)) xs)
(equal? (reverse (reverse xs)) xs)

(a) Only the first
(b) Only the second
(c) Both the first and the second
(d) None

4. Read about association lists in section 2.3.8, which starts on page 106. Given the definition

(val mascots
'((Tufts Jumbo) (MIT Beaver) (Northeastern Husky) (BU Terrier)))

Say what is the value of each of these expressions:

(find 'Tufts mascots)
(find 'MIT mascots)
(find 'Harvard mascots)
(find 'MIT (bind 'MIT 'Engineer mascots))

5. Read section 2.3 (another part of the second lesson) in Seven Lessons in Program Design7, and
also the first part of section 2.4 in the main textbook, up to and including section 2.4.4.

Now complete the following law, which should represent a true property of the association-list
functions find and bind:

(find x (bind ...)) = ...

You may use variables, and you may use forms of data made with '() and with cons. You may
not use any atomic literals. Write your property in the style of section 2.4.4.

You are now prepared for the algebraic laws in exercises A, B, and C.

6. In Programming Languages: Build, Prove, and Compare, read the two laws for append (which
we will call “append-nil” and “append-cons”) on page 99, and then study the proof at the bottom
of page 111, which shows that (append (cons x '()) ys) equals (cons x ys).

Now answer this question: The proof on page 111 proceeds by expanding the definition of append.
Suppose that you simplify the proof by instead applying the “append-cons” law to the very first
expression. How many steps in the original proof does this one step replace? (Count one step for
each = sign.)

Your answer:

7. Read section 2.5, which explains let, let*, and letrec. This question asks you to decide if any
or all these forms can appropriately express the following function (written in C):

bool parity(int m) {
int half_m = m / 2;
int other_half = m - half_m;

7../design/lessons.pdf

5

../design/lessons.pdf

return half_m == other_half;
}

Scheme does not have local variables, so to translate this function into 𝜇Scheme, you must use
let, let*, or letrec. For each of these syntactic forms, we ask you if a translation sensibly and
faithfully captures the intent and behavior of the original C function.

;; Translation A
(define parity (m)

(let ([half_m (/ m 2)]
[other_half (- m half_m)])

(= half_m other_half)))

Is translation A sensible and faithful (yes or no)?

;; Translation B
(define parity (m)

(let* ([half_m (/ m 2)]
[other_half (- m half_m)])

(= half_m other_half)))

Is translation B sensible and faithful (yes or no)?

;; Translation C
(define parity (m)

(letrec ([half_m (/ m 2)]
[other_half (- m half_m)])

(= half_m other_half)))

Is translation C sensible and faithful (yes or no)?

You are now ready to program using let, let*, and letrec.

8. Read section 2.16.6, which starts on page 194. Imagine that 𝜇Scheme is given the following
definition:

(record 3point (x y z))

This definition puts five functions into the environment ρ. What are their names?

You are now mostly ready for exercise E.

9. Read section 2.3 in the second Lesson in Program Design8—in particular, the last part, on un-
derstanding and using properties. Assuming that x is different from y, complete the following
property:

(member? x (add-element y xs)) == ...,
where x differs from y

You are ready to use properties to test split-list.
8../design/lessons.pdf

6

../design/lessons.pdf

Programming and Proof Problems (90 percent)
For the “programming and proof” part of this assignment, you will do exercises 1, 2, 10, and 37 in the
book, plus the problems A through H, LP, and N below—but not in that order. There are also two extra-
credit problems: problems M and TDP.

Problem Details (Theory)
1. A list of S-expressions is an S-expression. Do exercise 1 on page 207 of Build, Prove, and Compare.
Do this proof before tackling exercise 2; the proof should give you ideas about how to implement the code.

Related Reading: The definitions of LIST (A) and SEXPFG are on page 116.

37. Calculational proof. Do exercise 37 on page 221 of Build, Prove, and Compare, proving that
appending lists is an associative operation.

This problem yields to structural induction, but there are three lists involved. The hard part is to identify
which list or lists have to be broken down by cases and handled inductively, and which ones can be treated
as variables and not scrutinized. Hint: it is not necessary to break down all three lists.

Related Reading:

• The proof technique is described in section 2.4.5, which starts on page 110.

• Section 2.3.1, which starts on page 98, develops append, and it states these two laws:

(append '() ys) == ys
(append (cons z zs) ys) == (cons z (append zs ys))

You will find additional laws for append on page 110, but you may not use those additional laws—
in particular, the third law is what you are trying to prove.

• We have summarized basic laws of 𝜇Scheme9 in a web page10.

A. From operational semantics to algebraic laws. This problem has two parts:

a) The operational semantics for 𝜇Scheme includes rules for cons, car, and cdr. Assuming that x
and xs are variables and are defined in 𝜌 (rho), use the operational semantics to prove that

(cdr (cons x xs)) == xs

b) The preceding law applies only to variables x and xs. In this part, you determine if a similar law
applies to expressions.

Use the operational semantics to prove or disprove the following conjecture: if 𝑒1 and 𝑒2 are
arbitrary expressions, in any context where the evaluation of 𝑒1 terminates and the evaluation
of 𝑒2 terminates, then both of the following are true:

• The evaluation of (cdr (cons 𝑒1 𝑒2)) terminates, and

• (cdr (cons 𝑒1 𝑒2)) == 𝑒2

The conjecture says that two independent evaluations, starting from the same initial state, produce
the same value as a result.

9../handouts/initial-laws.html
10../handouts/initial-laws.html

7

../handouts/initial-laws.html
../handouts/initial-laws.html

If you believe the conjecture, you can establish it by proving that it’s true for every choice of
𝑒1 and 𝑒2, in any context in which both 𝑒1 and 𝑒2 terminate. If you disbelieve the conjecture, you
need only to find one choice of 𝑒1, 𝑒2, and context such that both 𝑒1 and 𝑒2 terminate but at least
one of the desired conclusions does not hold.

Related Reading: The operational semantics for cons, car, and cdr can be found on page 157.

Our expectations for your code: Algebraic laws and unit tests
For each function you define, you must specify not only a contract but also algebraic laws and unit tests.
Even helper functions! For some problems, algebraic laws are not needed or are already given to you.
Those problems are noted below.

Laws and tests make it easy to write code and easy for readers to be confident that code is correct. To get
your laws, code, and tests right, use the checklists below.

A checklist for your laws

A good set of algorithmic laws satisfies all these requirements:

• The left-hand sides break the inputs down by cases. In each case, each argument is a variable or
is a form of data such as (cons y ys). A good left-hand side never has a call to a non-primitive
function like list2 or append.

• Cases are mutually exclusive. Mutual exclusion is usually accomplished by using mutually exclu-
sive forms of data on distinct left-hand sides, but occasionally, mutual exclusion may be accom-
plished via side conditions.

• You can tell which case is which via a constant-time test, like (null? xs) or (= n 0).

• Each left-hand side is equal to some right-hand side, and the right-hand side can be computed as a
function of the variables named on the left-hand side. Every variable that appears on a right-hand
side also appears on the corresponding left-hand side.

• If a variable on the left-hand side stands for a part of an argument, then on the right-hand side that
variable stands for the same part of the same argument—not the whole argument.

• No algebraic law is completely redundant. That is, no law is fully implied by a combination of
other laws. (It is OK if some inputs are covered by more than one law, which we call “overlapping.”
Overlapping laws are handy, but you must be sure that on the overlapping inputs, all laws agree on
the result.)

• If, given a particular input, the function’s contract says that a value is returned, there must be some
algebraic law that specifies what the value is.

• In every recursive call on every right-hand side, some input is getting smaller.

A checklist for your code

Your laws will be evaluated not just in isolation but in the context of your code. (The whole purpose of
laws is to help write code.) In particular, your laws must be consistent with your code.

• The number of cases in your code is equal to the number of algebraic laws.

8

It is always possible to structure your code so it has one case per law. But it is acceptable to take
shortcuts with things like short-circuit && and ||. It is also acceptable, if unusual, to use if on the
right-hand side of an algebraic law, in which case that law would cover two cases in the code.

• The names of formal parameters are consistent with the names used in algebraic laws. If there is no
case analysis on a parameter, its name is the same everywhere it appears. If there is case analysis,
a parameter’s name is different from the names of its parts. Example: parameter xsmight take the
form (cons y ys).

A checklist for your tests

While it is often useful to write additional tests for corner cases, here is a checklist for our minimum
expectations.

• Every algebraic law is tested.

• If the function returns a Boolean, each algebraic law is tested using check-assert. Otherwise,
each algebraic law is tested using check-expect.

• If the function returns a Boolean, then when possible, each algebraic law is tested twice: once
with a true result and once with a false result. (Such testing is not always possible; for example,
the empty list is always a sublist of any other list, and it is not possible to test that case with a false
result.)

• A function is tested using check-error if and only if the function’s contract says that certain
inputs cause a checked run-time error.

Problem Details (Code)
Related Reading: Many of the following problems ask you to write recursive functions on lists. You can
sometimes emulate examples from section 2.3, which starts on page 98. And you will definitely want to
take advantage of 𝜇Scheme’s predefined and primitive functions (the initial basis). These functions are
listed in section 2.13, which starts on page 158.

Lists and S-expressions

In this set of problems, you work with lists, and you also work with ordinary S-expressions, which are
“lists all the way down.”

2. Recursive functions on lists of S-expressions. Do parts c, d, and e of exercise 2 on page 207 of
Build, Prove, and Compare (mirror, flatten, and contig-sublist?). Expect to write some recursive
functions, but you may also read ahead and use the higher-order functions in sections 2.7 through 2.9.

Each function you define, including helper functions, must be accompanied by algebraic laws and by unit
tests written using check-expect or check-assert, with this exception:

• The algebraic laws for contig-sublist? may be too challenging for beginners, so you may omit
them. But do write laws for all other functions, including helper functions.

Related reading:

• The rules for ordinary S-expressions are shown in Figure 2.1 on page 95.

9

• The first section of the second Lesson in Program Design11 describes several ways to break down
S-expressions. Look at the “expanded” version at the end of the section.

Hints:

• It is acceptable to extend the contracts of the LIST(SEXP) functions so that they can also accept
an SEXP. For example, you might extend the contract of mirror so that if it receives an atom,
it returns that atom. Extending a contract in this way can simplify code. But in some cases it may
be unnecessary or even counterproductive.

• Once you extend a contract, you can profitably break SEXP down by three cases: empty list, cons,
and atom different from empty list.

• Themost difficult function here is probably contig-sublist?. Think how youwould implement it
in C++: probably with a doubly nested loop. In Scheme, therefore, you probably will implement it
using two recursive functions: one corresponding to the outer loop and one corresponding to the
inner loop. The additional function, like every function, will need a good name and contract.

Classic list functions

In this set of problems, you write some classic functions for manipulating whole lists, or for chopping
lists into big pieces.

10. Taking and dropping a prefix of a list (takewhile and dropwhile). Do exercise 10 on page 212 of
Build, Prove, and Compare.

Each function you define, including helper functions, must be accompanied by algebraic laws and by unit
tests written using check-expect or check-assert.

B. Take and drop. Function (take n xs) expects a natural number and a list of values. It returns the
longest prefix of xs that contains at most n elements.

Function (drop n xs) expects a natural number and a list of values. Roughly, it removes n elements from
the front of the list. When acting together, take and drop have this property: for any list of values xs and
natural number n,

(append (take n xs) (drop n xs)) == xs

Implement take and drop.

Each function you define, including helper functions, must be accompanied by algebraic laws and by
unit tests written using check-expect or check-assert. Be aware that the property above (the “ap-
pend/take/drop” law) is not algorithmic. Therefore, it cannot be used as the sole guide to implementa-
tions of take and drop. Before defining take, you must write laws that define only what take does. And
before defining drop, you must write more laws that define only what drop does.

C. Zip and unzip. Function zip converts a pair of lists to a list of pairs by associating corresponding
values in the two lists. (If zip is given lists of unequal length, its behavior is not specified.) Function
unzip converts a list of pairs to a pair of lists. In both functions, a “pair” is represented by a list of length
two, e.g., a list formed using predefined function list2.

-> (zip '(1 2 3) '(a b c))
((1 a) (2 b) (3 c))
11../design/lessons.pdf

10

../design/lessons.pdf

-> (unzip '((I Magnin) (U Thant) (E Coli)))
((I U E) (Magnin Thant Coli))

The standard use cases for zip and unzip involve association lists, but these functions are well defined
even when keys are repeated:

-> (zip '(11 11 15) '(Guyer Sheldon Korman))
((11 Guyer) (11 Sheldon) (15 Korman))

As further specification, provided lists xs and ys are the same length, zip and unzip satisfy these prop-
erties:

(zip (car (unzip pairs)) (cadr (unzip pairs))) == pairs
(unzip (zip xs ys)) == (list2 xs ys)

Neither of these properties is algorithmic. You are excused from writing algebraic laws for unzip, but
you must write algorithmic laws for zip.

Implement zip and unzip.

Each function you define, including helper functions, must be accompanied by algebraic laws and by unit
tests written using check-expect or check-assert, with this exception:

• The algebraic laws for unzip are too challenging for beginners, so you may omit them.

Related Reading: Information on association lists can be found in section 2.3.8, which starts on page 106.

Properties of lists

Programmers who are first working with lists are often tempted to ask questions about a list’s length.
But if you have a list of a million elements, computing the length is expensive, and in many situations,
a property of even a very long list can be computed quickly (sometimes in constant time). The problem
below asks you to write predicates that test properties about the length of a list—without ever computing
a length.12

LP. Length predicates. Here are four predicates that give information about length, of which you will
implement the last three:

• When xs is a list of values, (null? xs) tells if the length of xs is 0.

(You don’t implement null?; it is part of the initial basis.)

• When xs is a list of values, (singleton? xs) tells if the length of xs is 1.

Implement singleton?, and make sure it runs in constant time.

• When xs is a list of values and n is a natural number, (has-n-elements? xs n) tells if the length
of xs is n. That is, it tells if xs has exactly n elements.

Implement has-n-elements?, and make sure its running time is proportional to the smaller of
these two numbers: the length of xs, and the magnitude of the natural number n.

• When xs and ys are both lists of values, (nearly-same-lengths? xs ys) tells if the length of xs
and the length of ys differ by at most 1.

12As noted above, on this assignment, any code that computes a length will earn No Credit.

11

Implement nearly-same-lengths?, and make sure its running time is proportional to length of
the shorter list.

If the caller of any of these functions violates a contract, say by passing an non-list or a negative number,
the function has no obligations, either toward running time or anything else.

Each function you define, including helper functions, must be accompanied by algebraic laws and by unit
tests written using check-expect or check-assert.

Hints: All these functions yield to the standard method of breaking the inputs down by cases, with
one case for each form of data. If you follow the design process, you will wind up with two laws for
singleton? and four each for has-n-elements? and nearly-same-lengths?. But when you go to
write the code, some funny things might happen:

• You might find yourself using && or ||, which makes the number of cases in the code less obvious
than using if.

• You might find yourself writing an expression of the form (if 𝑒 #t #f). Such an expression is
never acceptable; it should always be written as just 𝑒. This rewrite might reduce the total number
of cases in your code so that your code has fewer cases than laws. If so, you can consider rewriting
your laws so that you have fewer laws—or you could just leave the laws alone. Either tactic is OK.

Programming with nonempty lists

There are many computations, like “find the smallest,” that work only on nonempty lists. In this set of
problems, you define the forms of a nonempty list (two different ways), and you implement two functions
that work only on nonempty lists.

N. Define nonempty lists. Many useful functions operate on nonempty lists. A nonempty list of 𝐴’s is
notated LIST1(A).13 The usual forms of data don’t work here: '() is not a nonempty list. In this problem,
you define nonempty lists in two different ways:

1. Define LIST1(A) in terms of LIST(A). You may use set notation, a proof system, or the style of “An
informal alternative” in the first section of the second lesson on program design. This definition
must not be inductive.14

If there are multiple cases in your definition, say what code you would write to distinguish the
cases of a value xs in LIST1(A).

Warning: a useful definition says what LIST1(A) is, not what it isn’t. Saying “a LIST1(A) is a
LIST(A) that is not empty” is not useful. Your definition must be useful.

2. Define LIST1(A) inductively,15 without any reference to LIST(A). You may use set notation,
a proof system, or the style of “An informal alternative” in the first section of the second lesson on
program design. This definition must not mention LIST(A).

If there are multiple cases in your definition, say what code you would write to distinguish the
cases of a value xs in LIST1(A).

Both definitions are useful for writing code—different definitions for different functions.

Place your definitions with your code, in file solution.scm.
13Because it has at least one element.
14That’s math talk for “the definition must not be recursive.” That is, this definition of LIST1(A) must not refer to LIST1(A).
15That’s math talk for “recursively”.

12

D. Arg max. This problem gives you a taste of higher-order functions, which we’ll explore in more detail
in the next homework assignment. Function arg-max expects two arguments: a function f that maps a
value in set A to a number, and a nonempty list as of values in set A. It returns an element a in as for
which (f a) is as large as possible. This function is commonly used in machine learning to predict the
most likely outcome from a model.

-> (define square (a) (* a a))
-> (arg-max square '(5 4 3 2 1))
5
-> (arg-max car '((105 PL) (160 Algorithms) (170 Theory)))
(170 Theory)

Implement arg-max. Be sure your implementation does not take exponential time.16

Each function you define, including helper functions, must be accompanied by algebraic laws and by unit
tests written using check-expect or check-assert.

E. Rightmost point. Page 194 of the book defines a point record. Copy that definition into your code.
Define a function rightmost-point that takes a nonempty list of point records and returns the one with
the largest 𝑥 coordinate. Break ties arbitrarily.

For this problem, you need not write any algebraic laws. Write unit tests as usual.

To earn full credit for this problem, define rightmost-point without defining any new recursive func-
tions (which means that rightmost-point itself must not be recursive).

A toolkit for sorting

Sorting is classic. In this set of problems, you define properties that can be used to test sorting functions
(“a sorted list is a permutation of the original list”) as well as functions that can be useful in sorting (“split
a list into two nearly equal parts”). These tools can be combined into one of the most efficient sorting
algorithms known: merge sort. (The merge sort itself is extra credit.)

F. Copy removal. Function (remove-one-copy sx sxs) expects an S-expression and a list of S-
expressions. The list sxs contains one or more copies of sx. The function returns a new list which
is like sxs except that one copy of sx is removed.

• An S-expression is considered a copy if it is equal? to another S-expression.

• If the caller violates the contract by calling (remove-one-copy sx sxs) where sxs does not
contain a copy of sx, remove-one-copy causes a checked run-time error. (One option is to call
the primitive function error.)

This behavior should be tested using check-error.

• If there are multiple copies, the specification does not say which copy is removed.

-> (remove-one-copy 'a '(a b c))
(b c)
-> (remove-one-copy 'a '(a a b b c c))
(a b b c c)
-> (remove-one-copy 'a '(x y z))
Run-time error: removed-an-absent-item

16It is sufficient (but not necessary) to ensure that the body of arg-max contains only one call to arg-max.

13

-> (remove-one-copy '(b c) '((a b) (b c) (c d)))
((a b) (c d))

Implement remove-one-copy.

Each function you define, including helper functions, must be accompanied by algebraic laws and by unit
tests written using check-expect or check-assert. In addition, you must write at least one unit test
which verifies that in response to the contract violation mentioned above, remove-one-copy correctly
signals a checked run-time error. For that test, use check-error.

G. Permutations. Lists xs and ys are permutations if and only if they have exactly the same elements—
but possibly in different orders. Repeated elements must be accounted for. Write function permutation?,
which tells if two lists of atoms are permutations.

-> (permutation? '(a b c) '(c b a))
#t
-> (permutation? '(a b b) '(a a b))
#f
-> (permutation? '(a b c) '(c b a d))
#f

Hint: Plan to use remove-one-copy.

Each function you define, including helper functions, must be accompanied by algebraic laws and by unit
tests written using check-expect or check-assert.

H. Splitting a list of values in two. Function split-list takes a list of values xs and splits it into
two lists of nearly equal length. More precisely (split-list xs) returns a two-element list (cons ys
(cons zs '()) such that these properties hold:

• (append ys zs) is a permutation of xs
• ys and zs have nearly the same length; that is, their lengths differ by at most 1

You can choose how to split the xs. Here are a couple of examples:

-> (split-list '())
(() ())
-> (split-list '(a b))
((b) (a)) ;; ((a) (b)) would be equally good here

Nomatter how you choose to split the list, you should be able to test it with the following three properties,
each of which is embodied in a function:

(define split-list-returns-two? (xs)
(let ([result (split-list xs)])

(has-n-elements? result 2)))

(define split-list-splits? (xs)
(&& (split-list-returns-two? xs)

(let ([result (split-list xs)])
(permutation? xs (append (car result) (cadr result))))))

(define split-list-splits-evenly? (xs)
(&& (split-list-splits? xs)

14

(let ([result (split-list xs)])
(nearly-same-lengths? (car result) (cadr result)))))

With these properties, you can write tests that track down failure, as in

(check-assert (split-list-splits-evenly? '(a b c)))

Implement split-list.

Each recursive function you define, including helper functions, must be accompanied by algebraic laws.
Your algebraic laws for split-list are likely to be more specific than the problem definition—they
describe not the problem as a whole, but your particular implementation.

Each top-level function, whether recursive or not, must be accompanied by unit tests written using check-
expect or check-assert. (Inner functions defined with letrec can have algebraic laws, but they cannot
be unit tested.) If you have a working version of permutation?, it is acceptable for your test cases to
call it.

Your test cases for split-list should include one of the following:

• Tests showing that split-list-splits-evenly? is satisfied on multiple lists of S-expressions

• A note explaining why your code cannot pass such tests (e.g., explaining which functions are not
working)

Extra credit, programming: Merge sort
M. Merge and Merge sort. For extra credit, implement merge sort. Begin with function merge, which
expects two lists of numbers sorted in increasing order and returns a single list sorted in increasing order
containing exactly the same elements as the two argument lists together:

-> (merge '(1 2 3) '(4 5 6))
(1 2 3 4 5 6)
-> (merge '(1 3 5) '(2 4 6))
(1 2 3 4 5 6)

Function merge, plus any helper functions, must be accompanied by algebraic laws and by unit tests
written using check-expect or check-assert.

Now use split-list and merge to define a recursive function merge-sort, which is given a list of
numbers and returns a sorted version of that list, in increasing order. You need not write any algebraic laws
for merge-sort.

Extra credit, theory: take and drop
TDP. Proof of a take-drop law. Using the same techniques you used to solve exercise 37, plus your
algebraic laws for take and drop, prove the append-take-drop law: for any list of values xs and natural
number n,

(append (take n xs) (drop n xs)) == xs

What and how to submit
Please submit four files:

15

• A README file containing

– The names of the people with whom you collaborated
– A list identifying which problems that you solved

• A text file cqs.scheme.txt containing your answers to the reading-comprehension questions (you
can start with our file17)

• A PDF file theory.pdf containing the solutions to Exercises 1, 37, and A. If you already know
LaTeX18, by all means use it. You may benefit by emulating our LaTeX source code for a simple
proof system19 or Sam Guyer’s LaTex source code for typesetting operational semantics20. Other-
wise, write your solution by hand and scan it or photograph it. Do check with someone else who
can confirm that your work is legible—if we cannot read your work, we cannot grade it.

Please leave your name out of your PDF—that will enable your work to be graded anonymously.

• A file solution.scm containing the solutions to all the other exercises, including your written
answers in comments to the questions posed by exercise N

As soon as you have the files listed above, run submit105-scheme to submit a preliminary version of
your work. Keep submitting until your work is complete; we grade only the last submission.

How your work will be evaluated

Programming in 𝜇Scheme
The criteria we will use to assess the structure and organization of your 𝜇Scheme code, which are de-
scribed in detail below, are mostly the same as the criteria in the general coding rubric21, which we used
to assess your Impcore code. But some additional criteria appear below.

Laws must be well formed and algorithmic

17./cqs.scheme.txt
18http://www.latex-project.org/
19../handouts/noset.tex
20../handouts/latexexample.tex
21../coding-rubric.html

16

./cqs.scheme.txt
http://www.latex-project.org/
../handouts/noset.tex
../handouts/latexexample.tex
../coding-rubric.html

Exemplary Satisfactory Must Improve
Laws • When defining function 𝑓 ,

each left-hand side
applies 𝑓 to one or more
patterns, where a pattern is
a form of input (examples:
(+ m 1), (cons x xs)).
• When a law applies only
to equal inputs, those inputs
are notated with the same
letter.
• The left-hand side of each
algebraic law applies the
function being defined.
• On the left-hand side of
each algebraic law, the
number and types of
arguments in the law are the
same as the number and
types of arguments in the
code.
• The only variables used
on the right-hand side of
each law are those that
appear in arguments on the
left-hand side.
• When a variable on a
left-hand side is part of a
form-of-data argument, that
variable is used on the
right-hand side as a part of
the argument.
• For every permissible
form of the function’s input
or inputs, there is an
algebraic law with a
matching left-hand side
(and a matching side
condition, if any).
• The patterns of the
left-hand sides of laws
defining function 𝑓 are all
mutually exclusive, or
• The patterns of the
left-hand sides of laws
defining function 𝑓 are
either mutually exclusive or
are distinguished with side
conditions written on the
right-hand side.

• On a left-hand side, 𝑓 is
applied to a form of input,
but the form of input is
written in a way that is not
consistent with code.
• When a law applies only
to equal inputs, the equality
is written as a side
condition.
• Once or twice in an
assignment, a variable
appears on the right-hand
side of a law without also
appearing on the left-hand
side. The variable appears
to name an argument.
• Once or twice, a variable
on a left-hand side is part of
a form-of-data argument,
but on the right-hand side, it
is used as if it were the
whole argument.
• For every permissible
form of the function’s input
or inputs, there is an
algebraic law with a
matching left-hand side, but
some inputs might
inadvertently be excluded
by side conditions that are
too restrictive.
• Laws are distinguished by
side conditions, but the side
conditions appear on the
left-hand side.
• There are some inputs that
match more than one
left-hand side, and these
inputs are not distinguished
by side conditions, but the
laws contain a note that the
ambiguity is intentional,
and for such inputs, the
right-hand sides all specify
the same result.

• One or more left-hand
sides contain laws that are
not applications of 𝑓 .
• On a left-hand side, 𝑓 is
applied to something that is
not a form of input, like an
arbitrary sum (+ j k) or an
append.
• The left-hand side of an
algebraic law applies some
function other than the one
being defined.
• The left-hand side of an
algebraic law the function
being defined to the wrong
number of arguments, or to
arguments of the wrong
types.
• The right-hand side of a
law refers to a variable that
is not part of the left-hand
side and which appears not
to refer to an argument.
• The assignment shows a
pattern of using argument
variables on right-hand
sides, instead of or in
addition to the variables that
appear on left-hand sides.
• The assignment shows a
pattern of using part-of-data
variables as if they were
whole arguments.
• There is permissible input
whose form is not matched
by the left-hand side of any
algebraic law.
• There is at least one input
to which it is ambiguous
which law should apply: the
input matches more than
one left-hand side, and
either there are no side
conditions, or the side
conditions are insufficient to
distinguish the ambiguous
laws. And there is no note
explaining that the
ambiguity is intentional and
OK.

17

Exemplary Satisfactory Must Improve

Code must be well structured

We’re looking for functional programs that use Boolean and name bindings idiomatically. Case analysis
must be kept to a minimum.

Exemplary Satisfactory Must Improve
Structure • The assignment does not

use set, while, print, or
begin.
• Wherever Booleans are
called for, code uses
Boolean values #t and #f.
• The code has as little case
analysis as possible (i.e., the
course staff can see no
simple way to eliminate any
case analysis)
• When possible, inner
functions use the
parameters and let-bound
names of outer functions
directly.

• The code contains case
analysis that the course staff
can see follows from the
structure of the data, but
that could be simplified
away by applying
equational reasoning.
• An inner function is
passed, as a parameter, the
value of a parameter or
let-bound variable of an
outer function, which it
could have accessed
directly.

• Some code uses set,
while, print, or begin (No
Credit).
• Code uses integers, like 0
or 1, where Booleans are
called for.
• The code contains
superfluous case analysis
that is not mandated by the
structure of the data.

Code must be well laid out, with attention to vertical space

In addition to following the layout rules in the general coding rubric (80 columns, no offside violations),
we expect you to use vertical space wisely.

18

Exemplary Satisfactory Must Improve
Form • Code is laid out in a way

that makes good use of
scarce vertical space. Blank
lines are used judiciously to
break large blocks of code
into groups, each of which
can be understood as a unit.

• Code has a few too many
blank lines.
• Code needs a few more
blank lines to break big
blocks into smaller chunks
that course staff can more
easily understand.

• Code wastes scarce
vertical space with too
many blank lines, block or
line comments, or syntactic
markers carrying no
information.
• Code preserves vertical
space too aggressively,
using so few blank lines that
a reader suffers from a “wall
of text” effect.
• Code preserves vertical
space too aggressively by
crowding multiple
expressions onto a line
using some kind of greedy
algorithm, as opposed to a
layout that communicates
the syntactic structure of the
code.
• In some parts of code,
every single line of code is
separated form its neighbor
by a blank line, throwing
away half of the vertical
space (serious fault).

Code must load without errors

Ideally you want to pass all of our correctness tests, but at minimum, your own code must load and pass
its own unit tests.

Exemplary Satisfactory Must Improve
Correctness • Your 𝜇Scheme code loads

without errors.
• Your code passes all the
tests we can devise.
• Or, your code passes all
tests but one.

• Your code fails a few of
our stringent tests.

• Loading your 𝜇Scheme
into uscheme causes an
error message (No Credit).
• Your code fails many
tests.

19

Costs of list tests must be appropriate

Be sure you can identify a nonempty list in constant time.

Exemplary Satisfactory Must Improve
Cost • Empty lists are

distinguished from
non-empty lists in constant
time.

• Distinguishing an empty
list from a non-empty list
might take longer than
constant time.

Your proofs
The proofs for this homework are different from the derivations and metatheoretic proofs from the
operational-semantics homework, and different criteria apply.

Exemplary Satisfactory Must Improve
Proofs • Course staff find proofs

short, clear, and convincing.
• Proofs have exactly as
much case analysis as is
needed (which could mean
no case analysis)
• Proofs by induction
explicitly say what data is
inducted over and clearly
identify the induction
hypothesis.
• Each calculational proof
is laid out as shown in the
textbook, with each term on
one line, and every equals
sign between two terms has
a comment that explains
why the two terms are
equal.

• Course staff find a proof
clear and convincing, but a
bit long.
• Or, course staff have to
work a bit too hard to
understand a proof.
• A proof has a case
analysis which is complete
but could be eliminated.
• A proof by induction
doesn’t say explicitly what
data is inducted over, but
course staff can figure it out.
• A proof by induction is
not explicit about what the
induction hypothesis is, but
course staff can figure it out.
• Each calculational proof
is laid out as shown in the
textbook, with each term on
one line, and most of the the
equals signs between terms
have comments that explain
why the two terms are
equal.

• Course staff don’t
understand a proof or aren’t
convinced by it.
• A proof has an incomplete
case analysis: not all cases
are covered.
• In a proof by induction,
course staff cannot figure
out what data is inducted
over.
• In a proof by induction,
course staff cannot figure
out what the induction
hypothesis is.
• A calculational proof is
laid out correctly, but few of
the equalities are explained.
• A calculational proof is
called for, but course staff
cannot recognize its
structure as being the same
structure shown in the book.

20

	Overview
	Setup
	Diagnostic tracing
	Dire Warnings
	Reading Comprehension (10 percent)
	Programming and Proof Problems (90 percent)
	Problem Details (Theory)
	Our expectations for your code: Algebraic laws and unit tests
	A checklist for your laws
	A checklist for your code
	A checklist for your tests

	Problem Details (Code)
	Lists and S-expressions
	Classic list functions
	Properties of lists
	Programming with nonempty lists
	A toolkit for sorting

	Extra credit, programming: Merge sort
	Extra credit, theory: take and drop

	What and how to submit
	How your work will be evaluated
	Programming in \muScheme
	Laws must be well formed and algorithmic
	Code must be well structured
	Code must be well laid out, with attention to vertical space
	Code must load without errors
	Costs of list tests must be appropriate

	Your proofs

