
Object-Oriented Programming in Smalltalk

COMP 105 Assignment

Due Tuesday, April 30, 2019 at 11:59PM

Contents
Overview 2

Setup 2
Getting to know 𝜇Smalltalk interactively . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
Analyzing your code for potential faults . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
Assembling documentation for the assignment . . . . . . . . . . . . . . . . . . . . . . . . 5

Reading comprehension (10 percent) 5

Individual Problem 9

Pair Problems: Bignum arithmetic 10
Big picture of the solution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
How to prepare your code for our testing . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
Unit testing bignums in Smalltalk . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

Using check-expect . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
Using check-print . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
Our unit tests . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

Details of all the problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
Two simple sanity checks for multiplication . . . . . . . . . . . . . . . . . . . . . . . . . . 17
More advice about testing natural numbers . . . . . . . . . . . . . . . . . . . . . . . . . . 19
Hints and guidelines from past students . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
Other hints and guidelines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
The whole story about division . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
Avoid common mistakes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

Extra credit 23

What and how to submit: Individual problem 24

What and how to submit: Pair problems 24

How your work will be evaluated 25

1



Overview
Object-oriented programming has been popular since the 1990s, and like lambdas, object-oriented fea-
tures are found everywhere. But these features are not always easy to tease out: many object-oriented
languages, such as Java and C++, are hybrids, which mix objects with abstract data types or other no-
tions of encapsulation and modularity. When you don’t already know how to program with objects,
hybrid designs are more confusing than helpful. For that reason, we study pure objects, as popularized
by Smalltalk: even simple algorithms send lots of messages back and forth among a cluster of cooper-
ating, communicating objects. Popular languages that use similar models include Ruby, JavaScript, and
Objective C.

The assignment is divided into three parts.

• You begin with reading comprehension.

• You do a small warmup problem, which acquaints you with pure object-oriented style and with
𝜇Smalltalk’s large initial basis.

• You implement bignums in 𝜇Smalltalk. As in the SML assignment, you will implement both
natural numbers and signed integers. You will also use object-oriented dispatch to implement
“mixed arithmetic” of large and small integers—a useful abstraction that demonstrates the “open”
nature of true object-oriented systems.

This assignment is time-consuming. Many students have experience in languages called “object-
oriented,” but few students have experience with the extensive inheritance and pervasive dynamic
dispatch that characterize idiomatic Smalltalk programs.

Setup
The 𝜇Smalltalk interpreter is in /comp/105/bin/usmalltalk. Many useful 𝜇Smalltalk sources are in-
cluded the book’s git repository, which you can clone by

git clone homework.cs.tufts.edu:/comp/105/build-prove-compare

Sources that can be found in the examples directory includes copies of predefined classes, collection
classes, shape classes, and other examples from the textbook.

Getting to know 𝜇Smalltalk interactively
Smalltalk is a little language with a big initial basis; there are lots of predefined classes and methods.
To help you work with the big basis, as well as to debug your own code, we recommend two tools:

• Every class understands the messages protocol and localProtocol. These methods are shown
in Figure 10.8 on page 826. They provide a quick way to remind yourself what messages an object
understands and how the message names are spelled.

To learn a protocol the lazy person’s way, send an object every message in its protocol, just to see
what happens. You might get a stack trace, but that will help you learn.

• The interpreter can help you debug by emitting a call trace of up to n message sends and answers.
Just enter the definition

(val &trace n)

2



at the read-eval-print loop. To turn tracing off, (set &trace 0).

Here is an (abbreviated) example trace of message new sent to class List, which is the subject of
one of the reading-comprehension questions:

-> (new List)
standard input, line 3: Sending message (new) to class List

predefined, line 478: Sending message (new) to class SequenceableCollection
predefined, line 478: (new <class List>) = <List>
predefined, line 478: Sending message (new) to class ListSentinel
predefined, line 469: Sending message (new) to class Cons
predefined, line 469: (new <class ListSentinel>) = <ListSentinel>

predefined, line 470: Sending message (pred: <ListSentinel>) to an object of class ListSentinel
predefined, line 470: (pred: <ListSentinel> <ListSentinel>) = <ListSentinel>
predefined, line 471: Sending message (cdr: <ListSentinel>) to an object of class ListSentinel
predefined, line 471: (cdr: <ListSentinel> <ListSentinel>) = <ListSentinel>

predefined, line 478: (new <class ListSentinel>) = <ListSentinel>
predefined, line 478: Sending message (sentinel: <ListSentinel>) to an object of class List
predefined, line 478: (sentinel: <List> <ListSentinel>) = <List>

standard input, line 3: (new <class List>) = <List>
<trace ends>
List( )

One warning: as usual, the interpreter responds to an expression evaluation by printing the re-
sult. But in Smalltalk, printing is achieved by sending the println message to the result object.
This interaction is also traced, and the results can be startling. Here, for example, is the result of
evaluating the literal integer 3:

-> 3
internally generated SEND node, line 1: Sending message (println) to object of class SmallInteger
internal expression ”(begin (print self) (print newline) self)”, line 1: Sending message (print) to object of class SmallInteger

3 internal expression ”(begin (print self) (print newline) self)”, line 1: (print 3<SmallInteger>) = 3<SmallInteger>
internal expression ”(begin (print self) (print newline) self)”, line 1: Sending message (print) to object of class Char
predefined classes, line 229: Sending message (printu) to object of class SmallInteger

predefined classes, line 229: (printu 10<SmallInteger>) = 10<SmallInteger>
internal expression ”(begin (print self) (print newline) self)”, line 1: (print <Char>) = 10<SmallInteger>

internally generated SEND node, line 1: (println 3<SmallInteger>) = 3<SmallInteger>

As you see, even a simple operation like printing a number involves four message sends. Don’t let
them confuse you.

Analyzing your code for potential faults
Smalltalk has no type system. But you can still check some properties of your code.

• A “wrong number of arguments” check is built into the language. A symbolic message like
+ or != expects exactly one argument, plus the receiver. An alphanumeric message like println or
ifTrue:ifFalse: expects a number of arguments equal to the number of colons in the message’s
name—plus the receiver. If these expectations aren’t met, the offending code is flagged with a
syntax error.

3



• We provide a simple static-analysis tool called lint-usmalltalk. It checks each message send to
be sure a method with that name is defined somewhere. If no such method is defined, the message
name is misspelled.

Normally, lint-usmalltalk also checks for unused methods. An unused method might be mis-
spelled, or it might just be one that isn’t used in any code or test. Here’s an example run:

% lint-usmalltalk bignum.smt
instance method compare: of class Natural is never used anywhere
instance method smod: of class Natural is never used anywhere

• There is a static analysis you can do yourself called call-graph analysis. It can help you understand
how classes work together, and it’s the best tool for diagnosing problems with infinite loops and
recursions.

Call-graph analysis works by identifying what methods transfer control to what other methods.
Every node in the call graph is a combination of class name and message name. For example,
Boolean/ifTrue: or List/select:. Each node has outgoing edges that illustrate what happens
if the node’s message is sent to an instance of the node’s class:1

1. If the message is implemented by a primitive method, like + on SmallInteger, it has no
outgoing edges.

2. If the method is inherited from the superclass, the node has a dotted edge to the same
message on the superclass. For example, node True/ifTrue: has a dotted edge to
Boolean/ifTrue:.

3. If the method is a subclass responsibility, the node has a dotted edge to each subclass.

4. If the method is defined on the class, the node has a solid outgoing edge for each message
that could be sent during the method’s execution.

You have to look at each message send and figure out what class of object it might be sent to.
This part can’t easily be determined by looking at the code; you have to know the protocol.
For example, if message & is sent to a Boolean, we know the argument is also a Boolean.
As another example, if message + is sent to a natural number, the protocol says the argument
obeys the Natural protocol.

Usually all the possibilities are covered by a superclass. For example, even though message
size could be sent to a List or an Array, you can just draw a single edge to node Col-
lection/size. Sometimes you might have more then one outgoing edge per message—for
example, if a message could be sent to an Integer or a Fraction, but not to any Number.

5. If the method is not defined and not inherited from a superclass, the message is not under-
stood, and your program is broken.

Here are some tips about call graphs:

– If you have a cycle in the graph, it represents a potential recursion. Be sure that on every
trip through the cycle, some argument or some receiver is getting smaller, or that the algo-
rithm is making progress in some other way. For example, my code for * on class Natural
can sometimes send the * message to a natural number, but on every trip through this cycle,
the receiver of * gets smaller (by a factor of 𝑏).

1If you encounter a class method, just call the message something like “class method new,” and proceed as you would otherwise.

4



– Have a goal in mind, and ignore messages that are unrelated to the goal. For example, if
you are building a call graph to study addition, you probably don’t have to include the max:
message.

– Loops and conditionals are technically message sends, but I urge you to simplify your call
graph by simply assuming that all the code is (eventually) executed.

– A call graph can help with unit testing: you want to make sure that every solid edge is
exercised by some unit test.

– Like any other analysis technique, call-graph analysis is worth it only when you have a prob-
lem. You have an infinite recursion? Or you don’t understand how the methods are supposed
to work together? Build a call graph. Otherwise, continue to apply your standard design
process, and everything will be fine.

A final note: call graphs are new this semester, and not all the TAs are skilled with them yet. You
may be learning together.

Assembling documentation for the assignment
The information you need is spread out over multiple sources:

• This handout explains everything you are expected to deliver, and it collects hints and other sup-
plementary information.

• The main textbook explains how Smalltalk works, and it has the protocols of all the classes and
the contracts of all the methods—including the protocols and contracts of methods that you are
expected to implement.

• The handout “Mastering Multiprecision Arithmetic” explains the algorithms for the arithmetic
used in this assignment and the sml assignment.

• The Smalltalk bignums handout goes deep into the details of implementing bignums using objects.
It focuses on objects and inheritance, not on algorithms.

Reading comprehension (10 percent)
These problems will help guide you through the reading. We recommend that you complete them before
starting the other problems below. You can download the questions.

1. Receivers, arguments, and messages. Read the first seven pages of chapter 10, through sec-
tion 10.1.3. Now examine these expressions from the definition of class Tikzpicture, which
should be below Figure 10.3 on page 808:

(div: w 2)
(drawOn: shape self)
(do: shapes [block (shape) (drawOn: shape self)])

In each expression, please identify the receiver, the argument, and the message:

In (div: w 2),

• The receiver is …
• The argument is …

5

sml.html
./cqs.small.txt


• The message is …

In (drawOn: shape self),

• The receiver is …
• The argument is …
• The message is …

In (do: shapes [block (shape) (drawOn: shape self)]),

• The receiver is …
• The argument is …
• The message is …

2. Colons in method names. Continuing with the analysis of Tikzpicture, in both the protocol and
the implementation, method add: has one colon in the name, method draw has no colons in the
name, and the method drawEllipseAt:width:height: has three colons in the name.

• What, if anything, does the number of colons have to do with receivers?

Your answer: …

• What, if anything, does the number of colons have to do with arguments?

Your answer: …

If you need to, review the presentation in section 10.1.1 on “Objects and Messages,” which shows
messages sent to shapes.

3. Class protocols and instance protocols. Every message is part of some protocol. As example
messages, study the transcript in code chunks 803e and 804, which puts three shapes into a picture
and then draws the picture.

(a) Of the messages used in the transcript, which ones are part of the class protocol for Tikzpic-
ture, and which are part of the instance protocol?

(b) In general, what do you do with messages in a class protocol, and how does that differ from
what you do with messages in an instance protocol?

4. Dynamic dispatch, part I: a toy class. For themechanisms ofmessage send and dynamic dispatch,
read section 10.3.4, which starts on page 820. Using the class definitions in that section, message
m1 is sent to an object of class C. What method definitions are dispatched to, in what order?

Please edit this answer to put in the correct methods and classes:

• Dispatch to method m1 on class ?
• Dispatch to method ? on class ? …

5. Dynamic dispatch, part II: number classes. Study the implementation of class Number, which
starts around page 881. Now study the implementation of class Fraction, which starts around
page 885.

When message - (minus) is sent to the Fraction (/ 1 2) with argument Fraction (/ 1 3),
the computation dispatches message to instance methods of classes Fraction, Number, and Small-
Integer, as well as a class method of class Fraction. We are interested in only some of those
dispatches—ones that meet both of these criteria:

6



• The message is sent from a method defined on class Fraction or class Number.

• The message is received by an instance of class Fraction or class Number.

These criteria rule out class methods of class Fraction, messages sent to SmallInteger, and so
on.

Starting with message - (minus) is sent to an instance of Fraction, please identify only the inter-
esting dispatches:

Message Sent from method Sent to object Method defined
defined on class of class on class

- (anywhere) Fraction Number
? Number ? ?
... complete the rest of this table ...

6. Dynamic dispatch, part III: messages to self and super. Now study the class method new
defined on class List, which appears just after page 875. The definition sends message new to
super. (Keep in mind: because new is a class method, both super and self stand for the class,
not for any instance.)

(a) When class method new is executed, what three messages are sent by the method body, in
what order? (If you like, you can also study the message trace shown above, but it may be
simpler just to look at the source code.)

(b) What does each of the three message sends accomplish?

(c) If we change new’s definition so instead of (new super) it says (new self), which of the
following scenarios best describes how the changed program behaves?

1) The new message will be dispatched to class List. The same method will run again,
and the computation will not terminate.

2) The newmessage will be dispatched to a different class, and the reply to the newmessage
will leave the sentinel pointing to the wrong value.

3) Nothing will change; in this example, there’s no difference between (new super) and
(new self).

Your answer: The best description is scenario number ?

7. Design of the numeric classes. Read about coercion in section 10.4.6 on page 839. Look at
the last part of the instance protocol for Number on page 838. Explain the roles of the methods
asInteger, asFraction, asFloat, and coerce:. If you are unsure, look at the implementations
of these methods on class Integer, starting on page 883.

The role of asInteger is …

The role of asFraction is …

The role of asFloat is …

The role of coerce: is …

You are ready to implement mixed arithmetic, with coercions, in exercise 44.

7



8. Abstract classes in principle. In section 10.11.1, which starts on page 929 (“Key words and
phrases”), you will find a short definition of “abstract class.” What is the purpose of an abstract
class? Pick one of the responses below.

(a) To hide the representation of instances so programmers can change internal details without
affecting client code

(b) To define methods that other classes inherit, so that subclasses get useful default methods

(c) The same as the purpose of a regular class: to define an abstraction

Your answer: …

9. Abstract classes in practice: magnitudes and numbers. Your natural-number class will inherit
from abstract class Magnitude, and your big-integer code will inherit from Magnitude and from
Number, which is also an abstract class.

(a) Study the implementation of class Magnitude; it is the first dozen lines of code in sec-
tion 10.7.6, which starts on page 881. List all the methods that are “subclass responsibility”:

Your answer: ...

These aremethods that youmust implement in both your Natural class and your large-integer
classes.

(b) The very next class definition is the definition of abstract class Number. Read the first code
chunk and again, list all the methods that are “subclass responsibility”:

Your answer: ...

These are the methods that you must implement in your large-integer classes. (Two of them,
+ and *, must also be implemented in class Natural.)

You are getting ready to implement large integers.

10. Double Dispatch. Read section 10.7.5, which starts on page 880. And read the section “laws for
multiple dispatch” in the 7th lesson on program design (“Program Design with Objects”). Now,
of the methods on class Number listed in the previous question, list each one that needs to know
either of the following facts about its argument (not its receiver):

• Whether the argument is large or small
• If the argument is large, whether it is “positive” or “negative”

For example, + is such a method.

(a) Please list all such methods here:

Your answer: + …

(b) Themethods in part (a) are exactly the ones that require double dispatch. The implementation
of each such method sends a message to its argument, and the exact message depends on the
class of the receiver.

Assume that the receiver is a LargePositiveInteger. Please say, for eachmethod in part (a),
what message the method implementation sends to the argument.

Your answer:

8



Method + sends addLargePositiveIntegerTo: to the argument
…

You are ready to implement large integers (exercise 43).

Individual Problem
Working on your own, please work exercise 39(a) on page 948 of Build, Prove, and Compare. This ex-
ercise is a warmup designed to prepare you for the bignum problems in the pair portion of the assignment.

39(a). Interfaces as Abstraction Barriers. Do exercise 39(a) on page 948 of Build, Prove, and Com-
pare. Put your solution in file frac-and-int.smt. Think about protocols, not implementation.

When the problem says “Arrange the Fraction and Integer classes”, the text means to revise one or
both of these classes or define a related class. If you revise an existing class, you must do so without
changing the source code. For an example, if you want to revise class SmallInteger, you must redefine
class SmallInteger using the idiom on page 950:

(class SmallInteger SmallInteger
()
... new or revised method definitions ...

)

This idiom enables you to change predefined classes without editing the source code of the 𝜇Smalltalk
interpreter. Using the idiom as needed, you should be able to put your entire solution in file frac-and-
int.smt.

Hints:

• At minimum, your solution should support addition, subtraction, and multiplication, so include at
least one check-expect unit test for each of these operations. These tests are run only on your
own code, so they do not have to be formatted in any special way.

• In a system with abstract data types, you can’t easily mix integers and fractions; they have different
types. But in an object-oriented systemwith behavioral subtyping, you just have to get one object to
“behave like” another—which means implementing its protocol. In some cases, this might include
implementing private methods.

• If you change class Integer, this change doesn’t affect class SmallInteger, which continues
to inherit from the original version of Integer. So if you change Integer, count on changing
SmallInteger as well.

Related reading:

• For an overview of the Magnitude class and its relationship to numbers, read the first page of
section 10.4.6, which starts on page 839. Also in that section, read about Integer and Fraction.

• For the implementation of Integer, see page 883. The implementation of class SmallInteger is
also nearby, but for the time being, you can ignore the details of how it is implemented—almost
all the methods are primitive.

• For the implementation of Fraction, see page 885. Study the implementation of method +, and
observe how it relies on the exposure of representation through private methods num and den.

9



• Read the section “forms of data, access to representation”, which describes three levels of access,
in the lesson on “Program Design with Objects”.

• If nothing comes to you, try reading about how we get access to multiple representations in the
object-oriented way: section 10.7.5, which starts on page 880. You will need to read this section
later anyway.

How big is it? You shouldn’t need to add or change more than 10 lines of code in total. The optimal
solution is no more than a few lines long.

Pair Problems: Bignum arithmetic
For these problems, you may work with a partner. Please work exercise 42 on page 949, exercise 43 on
page 949, and exercise 44 on page 950 of Build, Prove, and Compare, and exercises T and ADT below.

Sometimes you want to do computations that require more precision than you have available in a machine
word. Full Scheme, Smalltalk, Haskell, Icon, and many other languages provide “bignums,” which auto-
matically expand to as much precision as you need. Unlike languages that use abstract data types, Scheme,
Smalltalk, and Icon make the transition frommachine integers to bignums transparent—from the source
code, it’s not obvious when you’re using native machine integers and when you’re using bignums. You
will build transparent bignums in Smalltalk.

Big picture of the solution
Smalltalk code sends lots of messages back and forth, and those messages are dispatched to lots of meth-
ods, which are defined on different classes. This model shows both the power of Smalltalk—you get a lot
of leverage and code reuse—and the weakness of Smalltalk—every algorithm is smeared out over half
a dozen methods defined on different classes, making it hard to debug. But this is the object-oriented
programming model that lends power not just to Smalltalk but also to Ruby, Objective-C, Swift, Self,
JavaScript, and to a lesser extent, Java and C++. To work effectively in any of these languages, one
needs the big picture of which class is doing what. A good starting point is the Smalltalk bignums hand-
out.

How to prepare your code for our testing
Many of our tests interact directly with the 𝜇Smalltalk interpreter. Our testing infrastructure enters defini-
tions and looks at the responses. To pass our tests, you must define print methods that render numbers
as normal people expect to see them. You cannot simply send decimal to self and print the result—
you must print the individual digits, possibly preceded by a minus sign. For a Natural number, the print
operation could be as simple as

(method print ()
(do: (decimal self) [block (digit) (print digit)]))

Unit testing bignums in Smalltalk
Arithmetic comparisons should be tested using check-assert in the usual way. But other arithmetic
operations can’t easily be tested using check-expect, because the parser handles only machine integers.
You have two options:

10



• Use check-expect with the decimal method.

• Use the new check-print form, which is not documented in the textbook.

Using check-expect

The semantics of check-expect are subtle, but the tests work about the way you would hope. You might
remember that in μScheme, check-expect does not use the built-in = primitive—instead, it compares
values uses something like the equal? function. This comparison enables μScheme’s check-expect
to accept two different S-expressions that have the same structure. In much the same way, μSmalltalk
does not use the built-in = method—instead, it compares objects using the similar: method. This
comparison enables μSmalltalk’s check-expect to accept two different sequences that have the same
elements. The details are likely to be important only if you have to debug a failing check-expect, but
they can be found in section 10.3.5, which starts on page 821.

Using check-expect with the decimal method looks like this:

(check-expect (decimal (x:to: Power 10 60))
'( 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0))

(check-expect (decimal (x:to: Power 2 64))
'( 1 8 4 4 6 7 4 4 0 7 3 7 0 9 5 5 1 6 1 6 ))

(check-expect (decimal (negated (x:to: Power 2 64)))
'( - 1 8 4 4 6 7 4 4 0 7 3 7 0 9 5 5 1 6 1 6 ))

Because check-expect uses similar:, it can accept a list of decimal digits returned by decimal as
similar to (but not equal to) the array written using literal quote syntax.

Using check-print

Using check-expect is familiar, but aside from the obvious awkwardness of writing arrays of decimal
digits, it has a more serious flaw: it can’t detect bugs in your all-important print method. To help find
bugs in print, I have added a check-print unit-test form, which is not yet documented in the book.
The check-print form takes an expression and a literal result. The literal result must be a single token:
either a name or a sequence of digits. Here are some example uses:

(check-print (x:to: Power 10 60)
1000000000000000000000000000000000000000000000000000000000000)

(check-print (x:to: Power 2 64)
18446744073709551616)

(check-print (negated (x:to: Power 2 64))
-18446744073709551616)

(check-print (* (new: Natural 256492) (new: Natural 666481))
170947044652)

As soon as you have a print method working, I recommend using check-print.

Our unit tests

We provide some unit tests for class Natural and for bignums. But our tests are not like the unit tests
you are used to. We don’t hand-craft each test to exercise a particular method in a particular way. In-

11

natural-tests.smt
bignum-tests.smt


stead, we use a random-number generator to create relatively big tests that exercise many methods at
once—especially the all-important print method. If your code passes our tests, it should give you some
confidence. But if your code fails one of our tests, the failure won’t have much diagnostic value. For that
reason, our tests are meant to supplement your own unit tests, not to supplant them.

Details of all the problems
42. Implementing arbitrary-precision natural numbers. Do exercise 42 on page 949 of Build, Prove,
and Compare. Implement the protocol defined in Figure 10.17 on page 842. Put your solution in file
bignum.smt.

The algorithms are the same algorithms you would have used on the sml assignment. So please do adapt
your code from the sml assignment. Or if you prefer, you may adapt my solutions. (I provide both an
array-based solution and a list-based solution, but the best solution, and the one that is easiest to adapt
is the algebraic-datatype solution from the first ML homework.) Whatever code you adapt, be sure to
attribute the source!

The choice of a base for natural numbers is yours. But for full credit, you must choose a base 𝑏 such
that 𝑏 > 10, and small enough that (𝑏 + 1) ⋅ (𝑏 − 1) does not overflow.2

What representation should I use? You’ve got three choices:

• Array-based: Every natural number is represented by an array of digits.

• List-based: Every natural number is represented by a list of digits, where “list” means the mutable
Smalltalk List abstraction.

• Subclass-based: A natural number’s representation depends on its value:

– The natural number zero is represented by an instance of concrete class NatZero, which
represents only zero.

– A natural number of the form “𝑛 times base 𝑏 plus digit 𝑑” is represented by an instance
of class concrete class NatNonzero, which holds instance variables 𝑛 and 𝑑. Objects of
class NatNonzero represent only nonzero natural numbers, so this class has an invariant that
𝑛 and 𝑑 are not both zero.

Both concrete classes should be defined as subclasses of the class Natural, which should be an
abstract class.

Between theMLwarmup solutions and theMLmodules solutions, you can compareML solutions that use
different representations. But those comparisons may be misleading: while the array-based solutions are
roughly similar, the different way that case analysis is expressed using objects (versus pattern matching)
makes the other solutions more different.

The representations offer these tradeoffs:

• The solution based on an array is hardest to get right but easiest to get started. The easy part is
that there is no case analysis in the data: every natural number is represented by an array. Hard
parts include figuring out array lengths, managing array indices, and making sure not to confuse
the index of a digit with the digit itself.

2Test it.

12

sml.html
../solutions/index.html#ml
../solutions/index.html#sml


• The subclass-based solution, with special subclasses for zero and nonzero numbers, is the easiest
to get right but the hardest to get started. The easy part is that every method is specialized, so
almost all of the case analysis is handled for you automatically, by method dispatch. The hard part
is that you have to understand method dispatch.

• A solution based on a mutable List is possible in principle, but I recommend against it.

In my opinion, the subclass-based solution is clearly superior. (As a bonus, this representation is also the
best at helping you learn about programming with objects.) This representation makes it easy for me to
understand my own code: I can look at any method, and I am confident that I understand exactly what it
is doing. The array and list representations don’t give me that confidence.

How must I document my representation? As on the modules assignment, you must document the
abstraction function and invariant for every concrete class. (A concrete class is one that is instantiated
by sending it the new message, or by sending some other message whose method eventually sends new.)

• Document the abstraction function by writing, in a comment, an equation

A (self) = ...

and using instance variables on the right-hand side.

• Document the invariant either by writing a comment like

I (self) = ...

or by defining a private invariant method that answers a Boolean.

In each class, place your comments immediately below or to the right of the declaration of the instance
variables.

How big is it? Using the hints in the book, I’ve written two implementations of class Natural:

• Using the array representation, my solution is about 120 lines of 𝜇Smalltalk code.

• Using the subclass-based representation, my solution is about 150 lines of 𝜇Smalltalk code.

I have not written a solution that uses Smalltalk lists.

Related reading:

• There is a detailed implementation guide in the bignums handout. It discusses both array-based
and subclass-based representations.

• In a system with abstract data types, binary operations like + and * are easy: you automatically
have access to both representations. In a system with objects, not so! To learn how to get access to
multiple representations in the object-oriented way, read section 10.7.5, which starts on page 880.

• In the 7th lesson on program design, read the section on how the design steps are adapted for use
with objects. Focus on steps 6, 7, and 8: algebraic laws, case analysis, and results. In the same
lesson, you may also wish to revisit the three levels of access to representation. You will need
level C, but there is no need for double dispatch here.

• Class Natural is a subclass of Magnitude. Study the Magnitude protocol in section 10.4.6.
For information about the implementation of Magnitude, which should provide useful ideas about

13



Natural, as well as the “subclass responsibilities,” study the implementation of Magnitude on
page 881.3

• For the interface to a Smalltalk array, study the Collection protocol in section 10.4.5, which starts
on page 829. You have access to the protocol in Figure 10.10 on page 832, but you are more likely
to use the KeyedCollection protocol in Figure 10.11 on page 834, especially at: and at:put:.
Don’t overlook the Arrays section on pages 879 and 880, including its description of the Array
class methods new: and from:.

• For list construction, which you will need for the decimal method, look at the List protocol in
section 10.4.5, especially Figure 10.13 on page 836.

• For abstraction functions and invariants, you may wish to revisit the program-design lesson on
abstract data types (lesson 6).

43. Implementing arbitrary-precision integers. Do exercise 43 on page 949 of Build, Prove, and
Compare. Add your solution to file bignum.smt, following your solution to exercise 42.

Because you build large integers on top of Natural, you don’t have to think about array, list, or subclass
representations. Instead you must focus on dynamic dispatch and on getting information from where it is
to where it is needed.

The book has starter code for class LargeInteger, which you can copy (with acknowledgement) from
/comp/105/build-prove-compare/examples/usmalltalk/large-int.smt.

How must I document my representation? As on the previous exercise, you must document the ab-
straction function and invariant for every concrete class. For example if you follow the guidelines
and define an abstract class LargeInteger with two concrete subclasses LargePositiveInteger and
LargeNegativeInteger, you’ll need to document only the two concrete subclasses.

How big is it? My solutions for the large-integer classes are 30 lines apiece.

Related reading: This problem is all about dynamic dispatch, including double dispatch.

• Read section 10.7.5, which starts on page 880.

• Read the last section, “Laws for double dispatch,” in the 7th lesson on program design.

You’ll also have a chance to practice double dispatch in recitation.

Helpful code. I have no wish to torture anyone with the details of signed-integer division. For those of
you who might not wish to translate the nested conditionals found in the divide function in the 𝜇Scheme
chapter, here are some methods I have defined on my own large-integer classes.

• On class LargeInteger:

(method div: (n) (sdiv: self n))

• On class LargePositiveInteger:

(method sdiv: (anInteger)
(ifTrue:ifFalse: (strictlyPositive anInteger)

{(withMagnitude: LargePositiveInteger (sdiv: magnitude anInteger))}
{(negated (sdiv: (- (- self (new: LargeInteger anInteger))

3Note: an object of class Natural is not a Number as Smalltalk understands it. In particular, class Natural does not support
methods negated or reciprocal.

14



(new: LargeInteger 1))
(negated anInteger)))}))

• On class LargeNegativeInteger:

(method sdiv: (anInteger)
(ifTrue:ifFalse: (strictlyPositive anInteger)

{(negated (sdiv: (- (+ (negated self) (new: LargeInteger anInteger))
(new: LargeInteger 1))

anInteger))}
{(sdiv: (negated self) (negated anInteger))}))

I also don’t wish to torture anyone with two’s-complement representations. The following code on class
LargeInteger will ensure that the negated method defined on SmallInteger does not overflow:

(class-method new: (anInteger)
(ifTrue:ifFalse: (negative anInteger)

{(negated (+ (new: self 1) (new: self (negated (+ anInteger 1)))))}
{(magnitude: (new LargePositiveInteger) (new: Natural anInteger))}))

44. Modifying SmallInteger so operations that overflow roll over to infinite precision. Do exercise 44
on page 950 of Build, Prove, and Compare. Put your solution in a fresh file, mixnum.smt. On the first
line of file mixnum.smt, include your other solutions by writing (use bignum.smt).4

You must modify SmallInteger without editing the source code of the 𝜇Smalltalk interpreter. To do so,
you will redefine class SmallInteger using the idiom on page 950:

(class SmallInteger SmallInteger
()
... new method definitions ...

)

This idiommodifies the existing class SmallInteger; it can both change existing methods and define new
methods. This code changes the basic arithmetic operations that the system uses internally. If you have
bugs in your code, the system will behave erratically. At this point, you must restart your interpreter and
fix your bugs. Then use the idiom again.

How big is it? My modifications to the SmallInteger class are about 25 lines.

Related reading: Everything about dispatch and double dispatch still applies, especially the example in
the 7th lesson on program design. In addition, you need to know how overflow is handled using “exception
blocks.”

• Review the presentation of blocks, especially the parameterless blocks (written with curly braces)
in section 10.4.3, which starts on page 827.

• Read the description of at:ifAbsent: in the keyed-collection protocol in Figure 10.11 on
page 834. Now study this expression:

(at:ifAbsent: '(0 1 2) 99 {0})

4If there is a bug in your solution to exercise 44, it can break your solutions to the previous exercises. By putting the solution to
exercise 44 in its own file, we make it possible to test your other code independently.

15



This code attemps to access element 99 of the array ( 0 1 2 ), which is out of bounds because the
array only has only 3 elements. When given an index out of bounds, at:ifAbsent: sends value
to the “exception block” {0}, which ultimately answers zero.

• Study the implementation of the at: method in ⟨other methods of class KeyedCollection 871d⟩,
which uses at:ifAbsent: with an “exception block” that causes a run-time error if value is sent
to it.

• Finally, study the overflow-detecting primitive methods in exercise 44 on page 950, and study
the implementation of addSmallIntegerTo: in the code chunk immediately below. That is the
technique you must emulate.

T. Testing Bignums. In standalone file bigtests.smt, you will write 9 tests for bignums:

• 3 tests will test only class Natural.
• 3 tests will test the large-integer classes, which are built on top of class Natural.
• 3 tests will test mixed arithmetic and comparison involving both small and large integers.

These tests will be run on other people’s code, and they need to be structured and formatted as follows:

1. The test must beginwith a summary characterization of the test in at most 60 characters, formatted
on a line by itself as follows:

; Summary: .........

The summary must be a simple English phrase that describes the test. Examples might be “Acker-
mann’s function of (1, 1),” “sequence of powers of 2,” or “combinations of +, *, and - on random
numbers.”

2. Code must compute a result of class Natural, LargePositiveInteger, or LargeNegativeIn-
teger. The code may appear in a method, a class method, a block, or wherever else you find
convenient. The code must be included in file bigtests.smt.

3. The expected result must be checked using the check-print form described above.

Each test must take less than 2 CPU seconds to evaluate.

Here is a complete example containing two tests:

; Summary: 10 to the tenth power, linear time, mixed arithmetic
(class Test10Power Object

()
(class-method run: (power)

[locals n 10-to-the-n]
(set n 0)
(set 10-to-the-n 1)
(whileTrue: {(< n power)}

{(set n (+ n 1))
(set 10-to-the-n (* 10 10-to-the-n))})

10-to-the-n)
)
(check-print (run: Test10Power 10) 10000000000)

; Summary: 10 to the 30th power, mixed arithmetic

16



(check-print (run: Test10Power 30)
1000000000000000000000000000000)

Here is another complete example:

; Summary: 20 factorial
(define factorial (n)

(ifTrue:ifFalse: (strictlyPositive n)
{(* n (value factorial (- n 1)))}
{1}))

(check-print (value factorial 20) 2432902008176640000)

Related reading: No special reading is recommended for the testing problem. As long as you understand
the examples above, that should be enough.

ADT. Collect representations, abstraction functions, and invariants.

In a new file adt.txt, summarize your design work:

• For each concrete class you defined to represent natural numbers in exercise 42,

– List the instance variables.
– Copy and paste the class’s abstraction function and invariant.

• For the natural numbers, explain in one or two sentences why you chose the representation that
you did. In addition, please tell us what went well and if you have any regrets.

• For each concrete class you defined to represent large integers in exercise 43,

– List the instance variables.
– Copy and paste the class’s abstraction function and invariant.

Two simple sanity checks for multiplication
It’s comforting to have an idea that things have started to work. Here are two comforting (but limited)
tests. Here, for example, is a version of power:

(class Power Object
[]
(class-method x:to: (x n) [locals half]

(ifTrue:ifFalse: (= n 0)
{(coerce: x 1)}
{(set half (x:to: self x (div: n 2)))
(set half (* half half))
(ifTrue: (= (mod: n 2) 1)

{(set half (* x half))})
half})))

(check-expect (x:to: Power 2 3) 8)
(check-expect (x:to: Power 3 4) 81)
(check-expect (x:to: Power (/ 1 3) 3) (/ 1 27))

And here is code that computes and prints factorials:

17

./power.smt
./factorial.smt


(class Factorial Object
()
(class-method printUpto: (limit) [locals n nfac]

(set n 1)
(set nfac 1)
(whileTrue: {(<= n limit)}

{(print n) (print '!) (printu 32) (print '=) (printu 32) (println nfac)
(set n (+ n 1))
(set nfac (* n nfac))})))

As a sanity check sending (printUpto: Factorial 25) should print the following table of factorials:

1! = 1
2! = 2
3! = 6
4! = 24
5! = 120
6! = 720
7! = 5040
8! = 40320
9! = 362880
10! = 3628800
11! = 39916800
12! = 479001600
13! = 6227020800
14! = 87178291200
15! = 1307674368000
16! = 20922789888000
17! = 355687428096000
18! = 6402373705728000
19! = 121645100408832000
20! = 2432902008176640000
21! = 51090942171709440000
22! = 1124000727777607680000
23! = 25852016738884976640000
24! = 620448401733239439360000
25! = 15511210043330985984000000

Depending on your choice of base, this computation may exhaust the “CPU fuel” used to recover from
infinite loops—so you may need to test it while running

env BPCOPTIONS=nothrottle usmalltalk

These tests may be comforting, but they suffer from grave limitations:

• They only ever multiply numbers. They do not add, subtract, negate, or compare numbers.

• They multiply two large numbers. They only ever multiply a large number by a small number, or
two small numbers.

These limitations make power and factorial poor tests of correctness.

18



More advice about testing natural numbers
Try testing your class Natural by generating a long, random string of digits, then computing the corre-
sponding number using a combination of addition and multiplication by 10. You can generate a string of
random digits on the command line by launching the bash shell and running this command:

for ((i = 0; i < 20; i++)); do echo -n ' ' $((RANDOM % 10)); done; echo

You can generate a test command from a list of digits using 𝜇Scheme:

(define nat-test (ns) ; alert! μScheme code
(letrec ([exp-of (lambda (ns)

(if (null? ns)
0
(list3 '+ (car ns) (list3 '* 10 (exp-of (cdr ns))))))])

(let* ([left (lambda () (printu 40))]
[right (lambda () (printu 41))]
[space (lambda () (printu 32))]
[_ (left)]
[_ (print 'check-print)]
[_ (space)]
[_ (print (exp-of (reverse ns)))]
[_ (space)]
[_ (app print ns)]
[_ (right)]
[_ (printu 10)])

'Printed!)))

For example,

-> (nat-test '(1 2 3))
(check-print (+ 3 (* 10 (+ 2 (* 10 (+ 1 (* 10 0)))))) 123)
Printed!

If you don’t have multiplication working yet, you can use the following class to multiply by 10:

(class Times10 Object
()
(class-method by: (n) (locals p)

(set p n) ; p == n
(set p (+ p p)) ; p == 2n
(set p (+ p p)) ; p == 4n
(set p (+ p n)) ; p == 5n
(set p (+ p p)) ; p == 10n
p))

This idea will test only your addition; if you have bugs there, fix them before you go on.

You can write, in μSmalltalk instead of 𝜇Scheme, a method that uses the techniques above to convert a
sequenceable collection of decimal digits into a natural number.

Once you are confident that addition works, you can test subtraction of natural numbers by generating a
long random sequence, then subtracting the same sequence in which all digits except the most significant

19

./nat-test.scm
./times10.smt


are replaced by zero.

You can create more ambitious tests of subtraction by generating random natural numbers and using the
algebraic law (𝑚 + 𝑛) − 𝑚 = 𝑛. You can also check to see that unless 𝑛 is zero, 𝑚 − (𝑚 + 𝑛) causes
a run-time error on class Natural.

It is harder to test multiplication, but you can at least use repeated addition to test multiplication by small
values. The timesRepeat: method is defined on any integer.

You can also easily test multiplication by large powers of 10.

You can use similar techniques to test large integers.

If you want more effective tests of multiplication and so on, compare your results with a working im-
plementation of bignums. The languages Scheme, Icon, and Haskell all provide such implementations.
(Be aware that the real Scheme define syntax is slightly different fromwhat we use in uScheme.) We rec-
ommend you use ghci on the command line; standard infix syntax works. If you want something more
elaborate, use StandardML of New Jersey (command sml), which has an IntInfmodule that implements
bignums.

Here’s an example of using ghci to generate numbers for testing:

$ ghci
GHCi, version 8.0.1: http://www.haskell.org/ghc/ :? for help
Prelude> 256492 * 666481
170947044652
Prelude> 170947044652 * 293847926754
50232434655713663419608
Prelude>

Hints and guidelines from past students
Student’s experiences is in italics; my responds is in the standard font.

• We found the contracts in the textbook way too late since we were mainly depending on the
specification handout and bignums handout. If we had known the contract of each method on
each class in the specification, it would have helped immensely.

The contracts in the book are crazy useful. The full details for each problem are in the related
reading, but for a quick look at some of the most useful information, consult this table:

Class Pages

Magnitude page 838
Number page 838
Natural page 842
Integer page 840
SmallInteger page 884d
LargeInteger page 949
Array5 pages 832, 834, and 836

5Class Array inherits from collections

20



• A key issue we ran into that we found out late into the process was when creating the number
zero in some arithmetic operations, we were using a constructor that did not enforce the in-
variant. I think it would be very helpful if the specification put this as a common error or a
grave mistake, because most of the logic was correct.

Enforcing the invariant is a really good idea. You can define a private method invariant and a
private method withInvariant that looks like this:

(method withInvariant ()
(ifTrue:ifFalse: (invariant self)

{self}
{(error: self 'invariant-violation)}))

• We weren’t using regression testing, so one part would work initially then fail in a later step. It
was really helpful in the previous assignments when regression tests were required. Including
unit tests as a part of the process and emphasizing the point would also help.

You’ve had two assignments with required regression tests. That’s enough for you to decide the
value of regression tests.

Other hints and guidelines
Start early. Seamless arithmetic requires in-depth cooperation among about eight different classes (those
you write, plus Magnitude, Number, Integer, and SmallInteger). This kind of cooperation requires
aggressive message passing and inheritance, which you are just learning. There is a handout online (the
“Smalltalk bignums handout”) with suggestions about which methods depend on which other methods
and in what order to tackle them.

The bignums algorithms are the same as in the ML modules assignment, and in addition to consulting
those solutions, you can consult the same references that are recommended in that assignment. In par-
ticular, if you insist on the array representation, which is not what I recommend, Dave Hanson’s book
discusses bignums and bignum algorithms at some length. It should be free online to Tufts students.
You can think about borrowing code from Hanson’s implementation (see also his distribution). Be aware
though that your assignment differs significantly from his code and unless you have read the relevant
portions of the book, you may find the code overwhelming.

• In Hanson’s code, XP_add does add with carry. XP_sub does subtract with borrow. XP_mul does
z := z + x * y, which is useful, but is not what we want unless z is zero initially.

• Hanson passes all the lengths explicitly, which would not be idiomatic in 𝜇Smalltalk.
• Hanson’s implementation uses mutation extensively, but the class Natural is an immutable type.

Your methods must not mutate existing natural numbers; you can mutate only a newly allocated
number that you are sure has not been seen by any client.

If you do emulate Hanson’s code, acknowledge him in your README file.

The whole story about division
We do implement division, but not fully. Here’s why:

• Without division and modulus, we can’t print numbers in decimal. Printing numbers is too useful
to ignore.

21

../readings/indexbody.html#cii
xp.c
http://www.cs.princeton.edu/software/cii


• Long division, in which the divisor of a large number can itself be a large number, is a huge pain
in the ass. The algorithm requires trial and error, and it’s easy to get wrong.

To enable our code to use division without requiring long division, I have invented messages sdiv:,
smod:, and sdivmod:with:. These messages accept only short divisors, and each such divisor must be
represented as an object of class SmallInteger. And in order to enable these messages to interoperate
with Smalltalk’s standard integer division, we continue to support the standard messages div: and mod:.
The resulting system design is a little confusing, but here’s what we know:

• Method mod: is inherited from class Integer, and it remains good. As long as division rounds
toward minus infinity, mod: does the right thing. This means that mod: of a large integer by a
small integer might return a large integer, even though the result is representable as a small integer.
That’s OK.

• Methods sdiv:, smod:, and sdivmod:with: are all well specified and well behaved. They don’t
have to support mixed arithmetic (the argument must be a SmallInteger, always). We just im-
plement each one according to its specification. And because the divisor is always a small integer,
there’s never a need for double dispatch.6

• We provide a limited implementation of div: that works only when the divisor is a small integer.
On large integers, method div: should delegate to sdiv:, as shown above. On small integers, the
primitive implementation of div: can be left alone. And natural numbers don’t support div:; they
only support sdiv:.

• Method reciprocal is inherited from class Integer and also remains good: it allocates a Frac-
tionwith a large-integer denominator. In a world of mixed arithmetic, arithmetic on such fractions
should “just work.”

Avoid common mistakes
Below you will find some common mistakes to avoid.

It is common to overlook class methods. They are a good place to put information that doesn’t change
over the life of your program.

It’s a terrible mistake to make decisions by interrogating an object about its class—a so-called “run-time
type test.” Run-time type tests destroy behavioral subtyping. This mistake is most commonly made in
two places:

• If you are representing a Natural number as a list of digits, you may be tempted to interrogate
the representation to ask “are you nil or cons?” This is the functional way of programming, but
in Smalltalk, it is wrong. You must make the decision by sending a message to an object, and the
method that is dispatched to will know whether it is nil or cons.

• If you are mixing arithmetic on large and small integers or on integers and fractions, you may be
tempted to interrogate an argument about its class. This interrogation is wrong. You must instead
figure out how to accomplish your goals by sendingmessages to the argument—probably including
messages from some private protocol.

There is a right way to do case analysis over representations: entirely by sending messages. For an
example, study how we calculate the length of a list: we send the size message to the list instance.
Method size is dispatched to class Collection, where it is implemented by using a basic iterator: the do:

6The Fall 2018 printing of the book gets this wrong.

22



method. If you study the implementation of do: on classes Cons and ListSentinel (which terminates
a 𝜇Smalltalk list), you’ll see the case analysis is done by the method dispatch:

• Sending do: to a cons cell iterates over the car and cdr.

• Sending do: to a sentinel does nothing (thereby terminating the iteration).

The idea of “case analysis by sending messages” applies equally well to arithmetic—and the suggestions
in the bignums handout are intended to steer you in the right direction. If you find yourself wanting to
ask an object what its class is, seek help immediately.

It is surprisingly common for students to submit code for small problems without ever even having run
the code or loaded it into an interpreter. If you run even one test case, you will be ahead of the game.

It is too common to submit bignum code without having tested all combinations of methods and argu-
ments. Your best plan is to write a program, in the language if your choice, that loops over operator and
both operands and generates at least one test case for every combination. Because 𝜇Smalltalk is written
using S-expressions, you could consider writing this program in 𝜇Scheme—but any language will do.

It is relatively common for students’ code to make a false distinction between two flavors of zero. In in-
teger arithmetic, there is only one zero, and it always prints as “0”.

It’s surprisingly common to fail to tag the test summary with the prefix Summary:, or to forget it altogether.

It’s not common, but if you rely on the recommended invariant for the subclass-based approach (𝑛 and 𝑑
are not both zero), forgetting to enforce the invariant is a bad mistake.

Extra credit
Seamless bignum arithmetic is an accomplishment. But it’s a long way from industrial. The extra-credit
problems explore some ideas you would deploy if you wanted everything on a more solid foundation.

Speed variations. For extra credit, try the following variations on your implementation of class Natural:

1. Implement the class using an internal base 𝑏 = 10. Measure the time needed to compute the first
50 factorials. And measure the time needed to compute the first 50 Catalan numbers.

The Catalan numbers, which make better test cases than factorial, are defined by these equations
(from Wikipedia):

𝐶0 = 1 𝐶𝑛+1 =
𝑛

∑
𝑖=0

𝐶𝑖 ⋅ 𝐶𝑛−𝑖

2. Determine the largest possible base that is still a power of 10. Explain your reasoning. Change
your class to use that base internally. Measure the time needed to compute the first 50 factorials,
and also the time needed to compute the first 50 Catalan numbers.

3. In both cases, measure the additional time required to print the numbers you have computed.

4. Specialize your 𝑏 = 10 code so that the decimalmethod works by simply reading off the decimal
digits, without any short division. Measure the improvement in printing speed.

23



5. Finally, try a compromise, like 𝑏 = 1000, which should use another specialized decimal method,
making both arithmetic and decimal conversion reasonably fast. Can this implementation beat the
others?

Write up your arguments and your measurements in your README file.

Long division. Implement long division for Natural and for large integers. If this changes your argument
for the largest possible base, explain how. This article by Per Brinch Hansen describes how to implement
long division.

Mixed Comparisons. Make sure comparisons work, even with mixed kinds of integers. So for example,
make sure comparisons such as (< 5 (* 1000000 1000000)) produce sensible answers.

Space costs. Instrument your Natural class to keep track of the size of numbers, and measure the space
cost of the different bases. Estimate the difference in garbage-collection overhead for computing with the
different bases, given a fixed-size heap.

Pi (hard). Use a power series to compute the first 100 digits of pi (the ratio of a circle’s circumference
to its diameter). Be sure to cite your sources for the proper series approximation and its convergence
properties. Hint: I vaguely remember that there’s a faster convergence for pi over 4. Check with a
numerical analyst.

What and how to submit: Individual problem
Submit these files:

• A README file containing

– The names of the people with whom you collaborated

• A file cqs.small.txt containing your answers to the reading-comprehension questions

• A file frac-and-int.smt showing whatever definitions you used to do exercise 39(a). It probably
includes new definitions (or redefinitions) of one or more of these classes: Fraction, Integer,
and SmallInteger. And it most definitely includes at least three unit tests.

Please identify your solutions using conspicuous comments, e.g.,

;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;;;;
;;;; Solution to Exercise XXX
(class Array ...
)

As soon as you have the files listed above, run submit105-small-solo to submit a preliminary version
of your work. Keep submitting until your work is complete; we grade only the last submission.

What and how to submit: Pair problems
Submit these files:

• A README file containing

– A description of how you tested your bignum code

24

../readings/indexbody.html#division


– The names of the people with whom you collaborated
– The numbers of the exercises you worked (including any extra credit)
– Narrative and measurements to accompany your extra-credit answers, if any

• A file bignum.smt showing your solutions to exercises 42 and 43. This file must work with an
unmodified usmalltalk interpreter. Therefore if you use results from exercise 39(a), or any other
problem, you will need to duplicate those modifications in bignum.smt.

• A file mixnum.smt showing your solution to exercise 44. This file should incorporate your other
solution by reference, using the line

(use bignum.smt)

at the beginning. Do not duplicate code from bignum.smt.

• A file bigtests.smt containing your solution to exercise T.

• A file adt.text adt.txt containing your solution to exercise ADT.

As soon as you have the files listed above, run submit105-small-pair to submit a preliminary version
of your work. Keep submitting until your work is complete; we grade only the last submission.

How your work will be evaluated
All our usual expections for form, naming, and documentation apply. But in this assignment we will
focus on clarity and structure. To start, we want to be able to understand your code.

Exemplary Satisfactory Must Improve
Clarity • Course staff see no more

code than is needed to solve
the problem.
• Course staff see how the
structure of the code
follows from the structure
of the problem.

• Course staff see somewhat
more code than is needed to
solve the problem.
• Course staff can relate the
structure of the code to the
structure of the problem,
but there are parts they
don’t understand.

• Course staff see roughly
twice as much code as is
needed to solve the
problem.
• Course staff cannot follow
the code and relate its
structure to the structure of
the problem.

Structurally, your code should hide information like the base of natural numbers, and it should use proper
method dispatch, not bogus techniques like run-time type checking.

25



Exemplary Satisfactory Must Improve
Structure • The base used for natural

numbers appears in exactly
one place, and all code that
depends on it consults that
place.
• Or, the base used for
natural numbers appears in
exactly one place, and code
that depends on either
consults that place or
assumes that the base is
some power of 10
• No matter how many bits
are used to represent a
machine integer, overflow is
detected by using
appropriate primitive
methods, not by comparing
against particular integers.
• Code uses method
dispatch instead of
conditionals.
• Mixed operations on
different classes of numbers
are implemented using
double dispatch.
• Or, mixed operations on
different classes of numbers
are implemented by
arranging for the classes to
share a common protocol.
• Or, mixed operations on
different classes of numbers
are implemented by
arranging for unconditional
coercions.
• Code deals with
exceptional or unusual
conditions by passing a
suitable exnBlock or other
block.
• Code achieves new
functionality by reusing
existing methods, e.g., by
sending messages to super.
• Or, code achieves new
functionality by adding new
methods to old classes to
respond to an existing
protocol.
• An object’s behavior is
controlled by dispatching
(or double dispatching) to
an appropriate method of its
class.

• The base used for natural
numbers appears in exactly
one place, but code that
depends on it knows what it
is, and that code will break
if the base is changed in any
way.
• Overflow is detected only
by assuming the number of
bits used to represent a
machine integer, but the
number of bits is explicit in
the code.
• Code contains one
avoidable conditional.
• Mixed operations on
different classes of integers
involve explicit
conditionals.
• Code protects itself
against exceptional or
unusual conditions by using
Booleans.
• Code contains methods
that appear to have been
copied and modified.
• An object’s behavior is
influenced by interrogating
it to learn something about
its class.

• The base used for natural
numbers appears in multiple
places.
• Overflow is detected only
by assuming the number of
bits used to represent a
machine integer, and the
number of bits is implicit in
the value of some
frightening decimal literal.
• Code contains more than
one avoidable conditional.
• Mixed operations on
different classes of integers
are implemented by
interrogating objects about
their classes.
• Code copies methods
instead of arranging to
invoke the originals.
• Code contains case
analysis or a conditional
that depends on the class of
an object.

26



Exemplary Satisfactory Must Improve

27


	Overview
	Setup
	Getting to know \muSmalltalk interactively
	Analyzing your code for potential faults
	Assembling documentation for the assignment

	Reading comprehension (10 percent)
	Individual Problem
	Pair Problems: Bignum arithmetic
	Big picture of the solution
	How to prepare your code for our testing
	Unit testing bignums in Smalltalk
	Using check-expect
	Using check-print
	Our unit tests

	Details of all the problems
	Two simple sanity checks for multiplication
	More advice about testing natural numbers
	Hints and guidelines from past students
	Other hints and guidelines
	The whole story about division
	Avoid common mistakes

	Extra credit
	What and how to submit: Individual problem
	What and how to submit: Pair problems
	How your work will be evaluated

