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Overview
To build systems at scale, we break them into modules, and we put abstraction barriers between the
modules. The most effective abstraction barrier we have is data abstraction. It’s a key element in
the design of systems implemented in Ada, C, C++, Eiffel, Go, Haskell, Java, and related languages.
Modules and abstract types are supported by concepts and mechanisms that you’ll learn in the context
of Standard ML, which, not coincidentally, has one of the most expressive and powerful system-level
abstraction mechanisms ever created.

In this assignment, you will

• Learn a bit about abstract data types
• Practice using interfaces as they are found in ML, Java, and Go
• Learn about exploratory design by writing client code for an interface that is not yet implemented
• Learn about system design by extending an existing system with new modules

You’ll accomplish these ends by completing the four parts of the assignment:

• In reading comprehension, you read about new language features (ML modules), new ideas (ab-
straction function and representation invariant), and new algorithms (arithmetic)

• In exercise N, you implement a full set of operations on natural numbers of arbitrary precision.
Natural numbers provide an ideal setting in which to explore the freedom of choice offered to you
by abstract types. You have already implemented addition, subtraction, and some conversions, and
you can build on your own code or on my solutions.

In exercise I, you use an unknown implementation of natural numbers to implement signed inte-
gers. These so-called “bignums” are an important programming-language abstraction.

• In exercise A, you implement an unsophisticated (yet unbeatable) computer opponent that can be
used to play two-player games. To help you understand and test this popular exercise, you will also
implement exercise G: one of three two-player games. The computer opponent requires careful
thought but not a lot of code: in essence, it boils down to one carefully crafted recursive function.
The games offer a range of experience, but most require less thought and more code.

• In exercise ADT, you’ll collect the abstraction functions and representation invariants from your
implementations of natural numbers, signed integers, and games.

Overall, you’ll answer reading-comprehension questions, you’ll deliver fourmodules, and you’ll assemble
the abstraction functions and the invariants from your modules. As usual, you do reading-comprehension
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questions on your own. You may tackle the modules either on your own or with a partner.

Note: Because you’re creating modules, not just functions, and you’re also learning some new technology,
you’ll do a lot of reading before you write your first line of code. This experience makes the assignment
feel time-consuming, but overall, students report spending the same amount of time on this assignment
as on other assignments.

Setup
The code in this handout is installed for you in /comp/105/lib, where you don’t have to look at it. You
will compile your own code using a special script, compile105-sml, which is available on the servers
through the usual command use comp105. This script does not produce any executable binaries. Instead,
it creates binary modules (“.uo files”) that you can load into Moscow ML, as in load ”ags”;. You can
use it to compile all files or just a single file:

compile105-sml
compile105-sml ags.sml

To be able to load the binaries that we provide, you must supply an additional argument to mosmlc and
mosml, as in

mosml -I /comp/105/lib -P full

If you run into any surprises, consult Appendix I below, which explains, in detail, your options for com-
piling.

Dire warnings
Unless otherwise noted below, functions and constructs that were forbidden on earlier assignments remain
forbidden.

• Functions length, hd, and tl are still forbidden.

• The syntactic form open is still forbidden.

• Auxiliary functions at top level are still forbidden—but inside a module, you may define as many
auxiliary functions as you like.

In addition,

• ML’s hashtag syntax for record fields is forbidden. (It is non-idiomatic, and it doesn’t really have a
type.) To earn a passing grade, your codemust not use #1, #2, #quotient, #remainder, #recom-
mendation, #expectedOutcome, or any other form of this syntax. Use pattern matching instead.

• Code must not contain bracket faults. Every file should pass sml-lintwithout errors or warnings.
Run sml-lint *.sml early and often. (The sml-lint program is also run by the submit scripts,
but if you wait until submission time, you’ll regret it.)1

• There is a dire warning below about large integer literals. Short version: don’t use them.
1If you copy a signature, sml-lint will complain. Don’t copy signatures.
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Reading
For this homework, you will need to understand the ML Modules2 section of “Learning Standard ML3.”
The book chapter on modules, chapter 9, is not included in your edition—the chapter is in the middle
of a major revision, and the current state of the draft is very confusing. Instead of the confusing draft,
we recommend the sixth lesson on program design4: “Program design with abstract data types.”

You’ll also need to understand section 9.10.2, “Arbitrary-precision integer arithmetic”, starting on
page 729 of Programming Languages: Build, Prove, and Compare. This section is included in your
abridged edition, even though the complete text of chapter 9 is not. The book section contains everything
you need to know, but we recommend an additional handout, “Mastering Multiprecision Arithmetic”5,
which provides many hints about implementation.

Reading comprehension
These questions will help guide you through the reading. We recommend that you complete them before
starting the other exercises below. You can download the questions6.

1. (NOT ON THE READING.) Throughout the term, your code’s functional correctness has been
assessed by automated testing. The automated test scripts are intended not only to assign a grade
but to identify the most important fault in the code. When our scripts find faults, how often do you
understand the reports?

Please answer “Always,” “Mostly”, “Sometimes”, “Seldom”, “Rarely”, “Never”, or “I don’t read
those reports”:

2. Using one of the sources in theML learning guide7, read about structures, signatures, andmatching.
Then answer questions about the structure and signature below.

The following structure contains definitions that should be familiar from the ML homework8 and
from code you may have seen in the course interpreters:

structure ExposedEnv = struct
type name = string
type 'a env = (name * 'a) list
exception NotFound of name
val emptyEnv = []

fun lookup (name, []) = raise NotFound name
| lookup (name, (x, v) :: pairs) =

if x = name then v else lookup (name, pairs)

fun bindVar (name, value, env) = (name, value) :: env
end

2https://www.cs.tufts.edu/comp/105/readings/ml.html#ml-modules
3https://www.cs.tufts.edu/comp/105/readings/ml.html
4../design/lessons.pdf
5../readings/arithmetic.pdf
6./cqs.sml.txt
7../readings/ml.html
8ml.html
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Here is a signature:

signature ENV = sig
type name = string
type 'a env
val emptyEnv : 'a env
val lookup : name * 'a env -> 'a
val bindVar : name * 'a * 'a env -> 'a env

end

Answer these questions:

(a) Does the structure match the signature? That is, if we write

structure Env :> ENV = ExposedEnv

does the resulting code typecheck? Please answer yes or no.

(b) Does the signature expose enough information for us to write the following function? Please
answer yes or no.

fun extendEnv (names, vals, rho) =
ListPair.foldrEq Env.bindVar rho (names, vals)

(c) Does the signature expose enough information for us to write the following function? Please
answer yes or no.

fun isBound (name, rho) = (Env.lookup (name,rho) ; true)
handle Env.NotFound _ => false

(d) If in part (b) or part (c), if it is not possible to write the function given, change the signature
to make it possible. If necessary, please copy, paste, and edit your new version in here:

(e) Suppose I change the ENV signature to make the name type abstract, so the code reads

signature ENV' = sig
type name
type 'a env
val emptyEnv : 'a env
val lookup : name * 'a env -> 'a
val bindVar : name * 'a * 'a env -> 'a env

end
structure Env' :> ENV' = ExposedEnv

The new structure Env', sealed with signature ENV', is useless. Please explain why it is
useless:

You now have the basic ideas needed to understand what is being asked of you in this assign-
ment, and you know enough to implement most of a game (exercise G).

3. AnML functor is a function that operates on the module level. Think of it as a “module in waiting”
or a “module builder.” A functor’s formal parameters, if any, are specified by a sequence of
declarations, and its actual parameters are given by a sequence of definitions. A functor’s result
is a structure. Read about functors in Harper, as recommended in the ML learning guide, then
answer the questions below.
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Here’s a typical application of functors. To keep track of the thousands of tests we run on students’
code, I need an efficient “test set” data structure. But not all tests have the same type. To reuse the
data structure with tests of different types, I need a functor. My “test set” functor needs access to
these operations:

• A function that, given a test, returns a string identifying the student who wrote the test
• A comparison function that provides a total order on tests
• A function that converts a test to a string, for printing

Using this information, answer parts (a) and (b):

(a) Write down the information needed for a test set in the form of formal parameters for the
functor TestSetFun, keeping in mind that a functor’s formal parameters are written as a
sequence of declarations:

functor TestSetFun(
... fill in declarations here ...

)
:> TEST_SET = struct ... end (* ignore this part *)

The formal parameters must include a declaration that specifies the type of a test, plus enough
operations to provide the information needed above.

(b) Now focus your attention on one particular test, the check-type test. Its representation given
by these definitions:

type uid = string
type check_type_test =

uid * int * exp * ty (* int is sequence number *)

The actual parameters to TestSetFun must give check_type_test as the type of test, and
they must provide the operations specified by the formal parameters. Show how to create a
set of check-type tests by filling in the actual parameters for the TestSetFun functor:

structure CheckTypeSet :> TEST_SET where type test = check_type_test
=

TestSetFun(
... fill in definitions here ...
)

The important part here is knowing what definitions to write as actual parameters. The actual
parameters must define all the types and the operations expected as formal parameters. You
may also include as many extra definitions as you like—extra definitions are ignored. Here
are some useful extra definitions:

fun uid (u, _, _, _) = u
fun serialNumber (_, k, _, _) = k
fun exp (_, _, e, _) = e
fun ty (_, _, _, t) = t

When writing your the required definitions, feel free to use these code snippets:

• For comparison,

case String.compare (uid1, uid2)
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of EQUAL => Int.compare (seqno1, seqno2)
| diff => diff

• For string conversion,

concat [”(check-type ”, expString e, ” ” , tyString tau, ”)”]

Assume that functions expString and tyString are given.

Please write your answer above where it says to fill in the definitions.

You now understand functors well enough to use them in exercises I and A.

4. Read about “signature refinement or specialization” in the ML learning guide9. Now,

(a) Explain what, in part (b) of the previous question, is going on with the where type syntax.

(b) Explain what would go wrong if we wrote this code instead:

structure CheckTypeSet :> TEST_SET = TestSetFun(...)

You now know how to refine the result signature of your Abstract Game Solver in exercise A.

5. Read about abstraction functions and invariants in the lesson “Program design with abstract data
types”10. Then, from the ML homework, review the algebraic data type from the natural-number
problems11, and review the list-with-indicator12 abstraction.

Now answer these questions:

(a) The lesson describes a sorted list as one possible representation for a set. Define a function
invariant that takes as argument a list of integers and returns a Boolean saying if the list is
sorted in strictly ascending order (that is, increasing, with no repeats). You may use ML or
μScheme, and you may reuse any function assigned for homework this term:

(b) In theML homework, the algebraic type nat satisfies two invariants. InML, define a function
invariant of type nat -> bool, which returns true if and only if the given representation
satisfies both invariants:

(c) In the ML homework, the 'a ilist represents an abstraction “list with indicator.” I ask you
to pretend that this abstraction is a value of type 'a indicated list, where exactly one
element is indicated, and indicated is defined by

datatype 'a indicated
= INDICATED of 'a
| UNINDICATED of 'a

Using your chosen representation of 'a ilist, or, if you did not complete the problem,
the representation from the model solutions, define an ML function absfun of type
'a ilist ‑> 'a indicated list, which acts as the abstraction function for the list with
indicator. This function acts as the 𝒜 function from the design lesson:

You are now ready to write abstraction functions and invariants in exercises I, N, C, and ADT.
9../readings/ml.pdf

10../design/lessons.pdf
11./ml.html#nat
12./ml.html#indicator
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6. Read about short division starting on page 734 of the book, and in “Mastering Multiprecision
Arithmetic”13.

(a) Divide 2918 by 7, calculating both quotient and remainder.
At each step, you divide a two-digit number by 7. The remainder is passed along to form the
next two-digit number.

_________
7 | 2 9 1 8

At each step of the computation, you will take a two-digit dividend, divide by 7, and give
quotient and remainder. The first step is

02 divided by 7 == 0 remainder 2
29 divided by 7 == ...

There are four steps in total. Edit the text above to state the dividend, divisor, quotient, and
remainder at each step. Here, write the final four-digit quotient and the one-digit remainder:

You are now ready to implement short division on natural numbers (for exercise N).

7. Going back to the same reading, and following the examples in the section “Using short division
for base conversion,” convert a number from decimal to binary and another number from decimal
to octal.

(a) Using repeated division by 2, convert decimal 13 to binary. The “Mastering Multiprecision
Arithmetic”14 handout shows the form, so please just fill in the right-hand sides here:

q0 = r0 =
q1 = r1 =
q2 = r2 =
q3 = r3 =

Now write the converted numeral here:

(b) Using repeated division by 8, convert decimal 25 to octal 31. Follow the same model: at
each step, give the intermediate quotient and remainder, and then form the final quotient by
reading off the remainders.

You are now ready to implement the decimal operation on natural numbers (for exercise N).
This will also enable you to implement the toString operation on signed integers.

Programming, part one: Arbitrary-precision numbers
Standard ML’s primitive type int is limited to machine precision. If arithmetic on int results in a value
that is too large or too small to fit in one word, the primitive functions raise Overflow. In the next two
exercises, you will implement a true integer abstraction, called bigint, which never raises Overflow
(but it could run out of memory).

You will implement this interface:
13../readings/arithmetic.pdf
14../readings/arithmetic.pdf
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signature BIGNUM = sig
type bigint

exception BadDivision (* contract violation for sdiv *)

val ofInt : int -> bigint
val negated : bigint -> bigint (* ”unary minus” *)
val <+> : bigint * bigint -> bigint
val <-> : bigint * bigint -> bigint
val <*> : bigint * bigint -> bigint
val sdiv : bigint * int -> { quotient : bigint, remainder : int }

(* Contract for ”short division” sdiv, which is defined only on
*nonnegative* integers:

Provided 0 < d <= K and n >= 0,
sdiv (n, d) returns { quotient = q, remainder = r }

such that
n == q /*/ ofInt d /+/ ofInt r
0 <= r < d

Given a d out of range or a negative n,
sdiv (n, d) raises BadDivision

The constant K depends on the number of bits in a machine
integer, so it is not specified, but it is known to be at
least 10.

*)

val compare : bigint * bigint -> order

val toString : bigint -> string

(* toString n returns a string giving the natural
representation of n in the decimal system. If n is
negative, toString should use the conventional minus sign ”-”.

And when toString returns a string containing two or more digits,
the first digit must not be zero.

*)

end

You will not build your implementation from scratch. Instead, you will use ML’s functor mechanism to
build on top of natural numbers. Natural numbers implement this interface:

signature NATURAL = sig
type nat
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exception Negative (* the result of an operation is negative *)
exception BadDivisor (* divisor out of acceptable range *)

val ofInt : int -> nat (* could raise Negative *)
val /+/ : nat * nat -> nat
val /-/ : nat * nat -> nat (* could raise Negative *)
val /*/ : nat * nat -> nat
val sdiv : nat * int -> { quotient : nat, remainder : int }

(* Contract for ”Short division” sdiv:

Provided 0 < d <= K,
sdiv (n, d) returns { quotient = q, remainder = r }

such that
n == q /*/ ofInt d /+/ ofInt r
0 <= r < d

Given a d out of range, sdiv (n, d) raises BadDivisor

The constant K depends on the number of bits in a machine
integer, so it is not specified, but it is known to be at
least 10.

*)

val compare : nat * nat -> order

val decimal : nat -> int list

(* decimal n returns a list giving the natural decimal
representation of n, most significant digit first.
For example, decimal (ofInt 123) = [1, 2, 3]

decimal (ofInt 0) = [0]
It must never return an empty list.
And when it returns a list of two or more digits,
the first digit must not be zero.

*)

val invariant : nat -> bool (* representation invariant---instructions below *)

end

In exercises I and N below, you implement both interfaces. You can do them in either order.

Programming exercise I: Integers from natural numbers
Abstract data type: large integers. In file bignum.sml, define a functor BignumFn that takes as its
argument a structure Nmatching signature NATURAL, and returns as its result a structurematching signature
BIGNUM. Your functor should look like this:
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functor BignumFn(structure N : NATURAL) :> BIGNUM
=

struct
... sequence of definitions here ...

end

Within the body of the functor, you refer to the representation of natural numbers as type N.nat, and you
call operations using the fully qualified names of the functions as in N./+/ (n, m).

ML syntax hint: The introduction form for the quotient/remainder record is

{ quotient = 𝑒1, remainder = 𝑒2 }

for any expressions 𝑒1 and 𝑒2.

The elimination form is

let val { quotient = 𝑞, remainder = 𝑟 } = …

for any patterns 𝑞 and 𝑟. (Variables will do nicely.)

How big is it? My implementation is about 70 lines, of which about 15 are blank.

Representation, abstraction function, and invariant

What you need to know about an integer is how big it is and whether it is negative: its magnitude and
sign. Within that constraint, you have your choice of representations. Several representations will work;
here are three good ones:

• Represent the magnitude and sign independently.

• Encode the sign in a value constructor, and apply the value constructor to the magnitude, as in
NEGATIVE mag.

• Define three value constructors: one each for positive numbers, negative numbers, and zero.
A value constructor for a positive or negative number is applied to a magnitude. The value
constructor for zero is an integer all by itself.

Each of these representations has its advantages, and they all work. Pick what you think will make your
job easy.

Document your representation by writing down the abstraction function and invariant:

• Write the abstraction function in a comment. We recommend algebraic laws, with right-hand sides
that use standard arithmetic notation for operations on the mathematical integers.

• Write the invariant in an ML function named invariant of type bigint -> bool, located inside
the module. Because it is located inside the module, the invariant function has complete access
to the representation of bigint.

The invariant function must typecheck. You may call it and unit-test it if you wish, but you don’t
have to.

It is OK if the invariant function for bigint is not interesting—depending on your chosen rep-
resentation, it might even be a function that returns true on every input.
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Put the abstraction function and invariant inside your BignumFn functor, right after the definition of
type bigint.

Two mild warnings and one dire warning

The only major pitfall in this abstraction is that the integer zero is likely to have two or even three different
representations. You must make it impossible for client code to distinguish them. That is, it must be
impossible for me to write a program that uses the BIGNUM interface and can tell one representation of
zero from another. The risks are greatest in exported functions compare and toString.

There is also a minor pitfall: if a small-minded person hands you the most negative integer (see
Int.minInt), its magnitude cannot be represented as a machine integer. To compute the magnitude of a
negative integer safely, use the following steps:

1. Add one to the negative integer
2. Negate the sum
3. Convert the result to nat
4. Add one to the nat

The dire warning is this: do not include large integer literals, like ~4611686018427387904, in your
source code. Your code won’t compile on our test machine, and you will get No Credit. You do not need
to mess around with Int.minInt, but if you feel compelled to do so, refer to it by name.

Guidance: infix operators

Inside your BignumFn functor, I recommend you change the “fixity” of the major operators so you can
write both calls and definitions using infix notation. Here’s all you have to write:

infix 6 <+> <->
infix 7 <*> sdiv

If you also want to use the operations from the NATURAL interface as infix operators, try something like
this:

val /+/ = N./+/
val /-/ = N./-/
val /*/ = N./*/

infix 6 /+/ /-/
infix 7 /*/

Following these declarations, you can write both definitions and calls using infix notation:

fun thing1 <+> thing2 = ...

... mag1 /+/ mag2 ...

Guidance: algebraic laws

Arithmetic on signed integers requires algorithms you may not have thought about since elementary
school. The heavy lifting is done in the implementation of natural numbers (below); the integer ab-
straction mostly has to get the signs right. To help you get signs right, we provide some algebraic laws.
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In the laws, magnitudes appear as variables N and M; signs appear as symbols + and -, and the BIGNUM and
NATURAL operations are written using infix notation.

• Multiplication:

+N <*> +M == +(N /*/ M)
+N <*> -M == -(N /*/ M)
-N <*> +M == -(N /*/ M)
-N <*> -M == +(N /*/ M)

• Addition:

+N <+> +M == +(N /+/ M)
+N <+> -M == +(N /-/ M) == -(M /-/ N)
-N <+> +M == -(N /-/ M) == +(M /-/ N)
-N <+> -M == -(N /+/ M)

Warning: As shown in the laws, adding integers of opposite signs requires subtracting magni-
tudes. Unless the magnitudes are equal, only one of the subtractions will work—the other will
raise exception N.Negative.

• Subtraction can be implemented by changing the sign of the subtrahend and adding result to the
minuend:15

+N <-> +M == +N <+> -M
... and so on ...

• Short division is defined only on nonnegative integers, and it just delegates to N.sdiv.

• When “signed zeroes” are involved, comparison becomes tricky. When I call compare, I mustn’t
be able to distinguish a “plus zero” from a “minus zero.” That is, the following algebraic law must
hold:

compare (+0, -0) == EQUAL

Here are some more general laws:

compare (+N, +M) = N.compare (N, M)
compare (-N, -M) = N.compare (M, N) (* order is swapped *)
compare (-N, +M) = LESS, provided N is not 0 or M is not 0
compare (+N, -M) = GREATER, provided N is not 0 or M is not 0

Related reading: Using the information in theML learning guide16, read aboutML signatures, structures,
and functors.

Programming exercise N: Arbitrary-precision natural numbers
In this exercise, you finish the implementation of natural numbers—of arbitrary precision—that you
started on the first ML assignment17. Arithmetic will never overflow; the worst that can happen is you
run out of memory. You will design and build an implementation of signature NATURAL, which you will

15Words like “subtrahend” and “minuend” are useful, but I always have to look them up.
16../readings/ml.pdf
17ml.html#arithmetic-by-pattern-matching-on-lists
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put in file natural.sml. You will tackle the implementation in two parts: first choose a representation
and invariant, then implement the operations.

ML syntax hint: The introduction and elimination forms for the quotient/remainder record are shown
above.

How big is it? I wrote two implementations using two significantly different representations. Together
they total about 270 lines of code, of which 50 lines are blank. The two implementations are roughly the
same size.

What’s the point? Abstract data types put a firewall between an interface and its implementation, so that
you can easily change the base of natural numbers, or even the representation, and no program can tell
the difference. In Standard ML, the firewall is emplaced through opaque signature ascription, known to
a select group of 105 alumni as “the beak.”

Getting started: Representation, abstraction function, and invariant. A natural number should be
represented by a sequence of digits. But “sequence of digits” has many representations! You probably
want a list of digits, an array of digits, or an algebraic data type like the one from the ML homework18.
And what counts as a “digit” depends on the base. In this assignment, the choice of base is yours, but to
get full credit, you must choose a base that is different from 10.

Document your representation by writing down the abstraction function and invariant:

• Write the abstraction function in a comment. We recommend algebraic laws, with right-hand sides
that use standard arithmetic notation for operations on natural numbers or mathematical integers.

• Write the invariant in an ML function named invariant of type nat -> bool, located inside the
module. Because it is located inside the module, the invariant function has complete access to
the representation of nat.

The invariant function must typecheck. You may call it and unit-test it if you wish, but you don’t
have to.

We recommend, but do not require, that the invariant rule out any representation with leading
zeroes.

Put the abstraction function and invariant inside your Natural module, right after the definition of
type nat.

Related reading:

• Read about “Choice of representation” on the first page of the handout “Mastering Multiprecision
Arithmetic.”19

• Read the short statement about representation invariants and abstraction functions under “Read-
ing” in this homework.

• If you need a refresher onML signatures, structures, and functors, there’s the ML learning guide.20

Finishing up: Implementing the interface. In file natural.sml, define a structure Natural that imple-
ments signature NATURAL. The right way to do it is with code that looks like this:

18ml.html
19../readings/arithmetic.pdf
20../readings/ml.pdf
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(* inconvenient code *)
structure Natural :> NATURAL = struct

...
type nat = ... your definition from part (a) ..., OR
datatype nat = ... a datatype is also OK here ...
(* abstraction function:

... *)
fun invariant ... = ...

...
end

But there’s a small problem here: once the module is sealed, you will find it almost impossible to debug.
Here’s a trick of the ML masters:

(* convenient code *)
structure ExposedNatural = struct (* Look! No ascription *)
...
type nat = ... OR
datatype nat = ...
(* abstraction function:

... *)
fun invariant ... = ...

...
end

structure Natural :> NATURAL = ExposedNatural (* the module is sealed here *)

You can debug ExposedNatural, while your client code uses the sealed Natural.

Whichever way you choose to write it, be sure you seal structure Natural with the :> operator, so that
no client code can see the representation and violate its invariants. Sealing is especially important if you
choose a mutable representation of this immutable abstraction.

Feel free to draw on solutions from the first ML assignment—just acknowledge your sources.

Related reading:

• For the details of addition, subtraction, and conversion, revisit the ML assignment21. For multipli-
cation, look at the model solutions.

• Also from that assignment, revisit the “smart constructor”22.

• If you want to explore another representation, the short handout “Mastering Multiprecision Arith-
metic”23 recommends exactly how to implement natural numbers, including what helper functions
you will find most useful and what operations to implement first. Its recommendations are some-
what different from what you saw in the ML assignment, but if you want to use mutable arrays,
you will find the recommendations useful.

21ml.html
22ml.html#smartcons
23../readings/arithmetic.pdf
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• Read about arithmetic in section 9.10.2 of Programming Languages: Build, Prove, and Com-
pare.

• If you need a refresher onML signatures, structures, and functors, consult theML learning guide.24

Guidance for choosing a representation of natural numbers

No one representation is equally good for all operations.

• Addition and subtraction work from least-significant digit to most-significant digit. These opera-
tions work well with a little-endian list or with an array.

• Short division works from most-significant digit to least-significant digit. This operation can work
well with any representation.

• Multiplication can proceed in either direction, and it can work well with any representation.

You can pick one representation and stick with it, or you can convert temporarily as needed to facilitate
each operation. You can even define a representation as a set of alternatives, as in

datatype nat = ARRAY of digit array
| LITTLE_ENDIAN of digit list
| BIG_ENDIAN of digit list

A little freedom can be dangerous: if you choose a representation like this one, you risk having to handle
at least nine cases per binary operator. But the choice is yours.

If you’d like to use mutable arrays to implement natural numbers, here are some hints based on my
experience:

• I recommend the invariant that every element 𝑑 lies in the range 0 ≤ 𝑑 < 𝑏. If the array contains
𝑛 + 1 digits, the abstraction function maps it to the natural number ∑𝑛

𝑖=0 𝑑𝑖 ⋅ 𝑏𝑖.
• To help you implement addition 𝑋 + 𝑌 and subtraction 𝑋 − 𝑌 , I recommend defining an internal

function digit that will help you pretend that 𝑋 and 𝑌 are the same size: asking for a digit beyond
the bounds of the array should return 0.

As you complete exercise N, you may want to revisit your representation choices. That’s part of the
point—representations can change without affecting any external code.

Guidance for implementing natural-number operations

Choice of representation determines what’s hard and what’s easy. Here are a few notes and hints:

• The first ML assignment includes exercises on addition and subtraction of little-endian lists of
decimal digits, where the list is represented using a special-purpose algebraic data type. (Multipli-
cation was extra credit.) These codes can readily be adapted to bases much larger than 10. You are
welcome to use your own code or the model-solution code—just acknowledge your sources.

• Comparison can be implemented directly on sequences of digits, or you can take the easy way out
and use subtraction: n < m if and only if n /-/ m raises Negative. And n > m if any only if m < n.
And m = n if and only if neither n < m nor m < n.

24../readings/ml.pdf
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• The algebraic laws in the book specify operations on numbers of the form 𝑛 ⋅ 𝑏 + 𝑑. These are a
natural fit for an algebraic data type.

• As with your implementation of BIGNUM, I encourage you to define infix operators internally:

infix 6 /+/ /-/
infix 7 /*/ sdiv

• Here’s a mistake to avoid: Don’t multiply by repeated addition—multiplication of large numbers
won’t terminate in your lifetime. You must multiply each pair of digits (one each from the multi-
plicand and the multiplier) and add up the partial products, appropriately shifted.

Testing numbers
Testing should begin with natural numbers. To test anything, you need ofInt and decimal, which proba-
bly also means sdiv. If you can’t get sdiv working and you’re desperate to write tests, try using base 10
and writing a special-purpose implementation of decimal.

With these parts in place, compute some 20-digit numbers by taking a list of digits and folding with
multiply and add. Since you only have to multiply by 10, you can test addition without multiplication.
Here’s a function that multiplies by 10, using only addition:

fun tenTimes n =
let infix 6 /+/

val p = n
val p = n /+/ n (* p == 2n *)
val p = p /+/ p (* p == 4n *)
val p = p /+/ n (* p == 5n *)
val p = p /+/ p (* p == 10n *)

in p
end

Once you are confident that addition works, you can test subtraction of natural numbers by generating a
long random sequence, then subtracting the same sequence in which all digits except the most significant
are replaced by zero.

You can create more ambitious tests of subtraction by generating random natural numbers and using the
algebraic law (𝑚 + 𝑛) − 𝑚 = 𝑛. You can also check to see that unless 𝑛 is zero, 𝑚 − (𝑚 + 𝑛) raises
the Negative exception.

It is harder to test multiplication, but you can at least use repeated addition to test multiplication by small
values.

You can also easily test multiplication by large powers of 10.

To create more test cases, you can use the interactive ghci interpreter on the servers. It implements
the functional language Haskell, in which large-integer arithmetic is the (sensible) default. Here’s an
example:

$ ghci
GHCi, version 8.0.2: http://www.haskell.org/ghc/ :? for help
Prelude> 1234567890 * 987654321
1219326311126352690
Prelude> 1234567890 * 987654321 * 9999999999
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12193263110044200588873647310
Prelude>

To use such big numbers in your own code, you can convert them from strings. Here is a rough sketch of
conversion from string to nat:

fun digitOfChar c =
if Char.isDigit c then Char.ord c - Char.ord #”0”
else raise Match

val natOfDigit = Natural.ofInt o digitOfChar

val ten = Natural.ofInt 10
val zero = Natural.ofInt 0

val /*/ = Natural./*/
val /+/ = Natural./+/

infix 7 /*/
infix 6 /+/

fun natOfString s =
foldl (fn (d, n) => n /*/ ten /+/ natOfDigit d) zero (explode s)

Beyond these simple kinds of tests, skilled engineers don’t write unit tests by hand—we write computer
programs that generate unit tests. At any point, you can just generate random expressions that compute
with large numbers, then compare your results with a working implementation of bignums. Both MLton
and Standard ML of New Jersey (command sml) provide a structure IntInf that implements arbitrary-
precision signed integers.

I provide some computer-generated tests for natural numbers25. To run the tests, compile everything
using compile105-sml, then load them into the interactive system, apply the functor, and run the tests:

$ mosml -P full -I /comp/105/lib
Moscow ML version 2.10-3 (Tufts University, April 2012)
Enter `quit();' to quit.
- load ”natural-tests”;
> val it = () : unit
- load ”natural”;
> val it = () : unit
- structure Run = UnitTestsFun(structure Natural = Natural);
> structure Run : {val run : unit -> unit}
- Run.run();
All 72 internal Unit tests passed.
> val it = () : unit

I also provide some generated tests for signed integers26, which require something like the following:

- structure B = BignumFn(structure N = Natural);

25./natural-tests.sml
26./bignum-tests.sml
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- structure BT = UnitTestsFun(structure Bignum = B);
- BT.run();

Programming, part two: Two-player games of complete information
Abstraction supports reuse. In this part of the assignment, you’ll reuse code for an idea at a very abstract
level: “play a game.” In particular,

• You will work with an interface that defines what it means to be a playable game. This interface
mixes abstract data types with “manifest” data types (exposed representations).

• You will create an implementation of the game interface. From the games on the games page27,
you’ll choose the one you most wish to implement. After you choose a game, you’ll also choose
representations of the game’s key abstractions.

• You will reuse my code to play your game against a computer opponent.

• You will build your own computer opponent, the Abstract Game Solver, which will be capable of
playing any (sufficiently small, terminating) “game of complete information.”

An abstraction of two-player games
To make it possible to reuse the same code for playing games, no matter what the game, requires a
carefully designed abstraction. That abstraction, which is based on a design by George Necula28, is
presented here.

As always, program design begins with data. The data in this exercise are as follows:

• A player may be either X or O.
• An outcome is either “one player wins” or “the game ends in a tie”.
• A state is abstract.
• A move is abstract.

The abstraction views every game as a state machine: the game starts in some initial state, and the game
is played by transitioning from state to state. Each transition is triggered by a move. When the game
reaches a final state, the game is over. The interface to the abstraction enables software not only to drive
the state transitions, but also to ask such questions as “what moves are legal in this state?”, “is the game
over?”, and “whose turn is it?”

Manifest (exposed) types: Players and outcomes

The representations of players and outcomes are exposed. They are given by the signature PLAYER:

signature PLAYER = sig
datatype player = X | O (* 2 players called X and O *)
datatype outcome = WINS of player | TIE

val otherplayer : player -> player
val unparse : player -> string

27games.html
28http://www.cs.berkeley.edu/~necula/
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val outcomeString : outcome -> string
end

The signature PLAYER also includes some functions that compute with players and outcomes. Here’s the
implementation of signature PLAYER in a structure called Player.

structure Player :> PLAYER = struct
datatype player = X | O
datatype outcome = WINS of player | TIE

fun otherplayer X = O
| otherplayer O = X

fun unparse X = ”X”
| unparse O = ”O”

fun outcomeString TIE = ”a tie”
| outcomeString (WINS p) = unparse p ^ ” wins”

end

To refer to Player types, constructors, and functions, youwill use the “fully qualified”MLmodule syntax,
as in the examples Player.otherplayer p, Player.X, Player.O, and Player.WINS p. The last three
expressions can also be used as patterns.

First abstraction: Moves

The move abstraction exists to help communicate gameplay to a human player. Human input is converted
to a move by function parse, and functions prompt and visualize are used to request and show moves.

signature MOVE = sig
type move (* A move---perhaps an (x,y) location *)
exception Move (* Raised for invalid moves *)

(* creator *)
val parse : string -> move

(* Converts the given string to a move; If the string
doesn't correspond to a valid move, parse raises Move *)

(* observers *)
val prompt : Player.player -> string

(* A request for a move from the given player *)
(* Example: ”What square does player O choose?” *)

val visualize : Player.player -> move -> string
(* A short string describing a move.

Example: ”Player X picks up ...”.
The string may not contain a newline. *)

end

20



Second abstraction: a game (with states and moves)

The contract for an entire game is given in signature GAME. This signature (and its contract) subsumes
the contracts for the abstract types move and state, as well as all the exported functions. The central
abstraction is state, as described above. A state includes complete information about a game in progress,
including whose turn it is. Each operation’s contract is expressed in terms of how it affects states.

The state abstraction is immutable—if a mutable representation is chosen, it must be impossible for a
client to tell that a mutation has taken place.

signature GAME = sig
structure Move : MOVE
type state

(* CREATORS *)

val initial : Player.player -> state
(* Initial state for a game in which

the given player moves first. *)

(* PRODUCERS *)

val makemove: state -> Move.move -> state
(* Returns the state obtained by making the

given move in the given state. Raises Move.Move
if the state is final or if the given move is not
legal in the given state. *)

(* OBSERVERS *)

val visualize : state -> string
(* A string representing the given state.

The string must show whose turn it is,
and it must end in a newline. *)

val whoseturn : state -> Player.player
(* Given a _non-final_ state, returns the player

whose turn it is to move. When given a
final state, behavior is unspecified. *)

val isOver : state -> bool
(* Tells if the given state is final. *)

val outcome : state -> Player.outcome option
(* When given a final state, returns SOME applied to the outcome.

When given a non-final state, returns NONE. *)

val legalmoves : state -> Move.move list
(* Lists all moves that are valid inputs to `makemove` in the
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given state. The list is empty if and only if the given
state is final. *)

end

This is a broad interface. For example, there are three different ways to tell if a game is over. They must
all agree!

Third abstraction: a game solver

The design of the GAME interface enables us to build a computer opponent based on exhaustive search: an
abstract game solver (AGS). An AGS tries all possible moves, and if it can find a move that leads to a
win, it chooses that move. The search knows nothing about the rules of any game, or even whose turn it
is—it knows only which moves can be made in which states, which states are final, and what outcomes
are good. It gets all that information from the GAME interface. Provided there aren’t too many states, the
AGS makes a worthy opponent.

The interface to an AGS is narrow: all we can do is present a state, and ask the solver what a player
(whose turn it is) should do in that state. If the state is final, the AGS has no recommendation. Otherwise,
the AGS recommends a legal move. Either way, the AGS says what final outcome is expected, assuming
that its recommendation (if any) is followed and that no player ever makes a bad move.

In addition to the advice function, the AGS contains a complete copy of the game itself! In effect, the
AGS extends the Game with new functionality. In ML, this idiom is common.

signature AGS = sig
structure Game : GAME
val advice : Game.state -> { recommendation : Game.Move.move option

, expectedOutcome : Player.outcome
}

(* Given a non-final state, returns a recommended move,
plus the expected outcome if the recommendation is followed.
Given a final state, returns no recommendation,
plus the outcome that has already been achieved. *)

end

The cost model of an AGS is that it tries all possible combinations of moves. AGS functions can be slow.
Wait patiently.

Design rationale

The abstractions above are designed around three needs:

• In order to have a computer opponent, we need to be able to build an AGS.

• In order to play against the computer opponent, we need a “play manager,” which converts key
information to and from strings, for the benefit of the human player.

• We need both the AGS and the play manager to work unchanged with a variety of simple games,
such as Tic-Tac-Toe, Connect 4, and peg solitaire.

These needs explain the design of the interfaces:
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• For moves, the AGS just needs a value. But for the human player, we need to convert moves to
and from strings, thus we have exported functions prompt, visualize, and parse.

• For states, all clients need an initial state, and they need to produce new states by making moves
(exported functions initial and makemove). Similarly, both the play manager and the AGS need
to know whose turn it is (whoseturn) and when a state is final (isOver), as well as the outcome of
a final state. But only the play manager needs visualize, and only the AGS needs to enumerate
all legal moves (legalmoves).

Programming exercise G: Implement a game
The main foci of this assignment are the large integers and the Abstract Game Solver. But to understand
how the solver works, it helps you to implement a simple two-player game. You have your choice of three
games:

• In pick up the last stick, there are sticks on a table, and players alternate taking 1, 2, or 3 sticks.
The player who picks up the last stick wins.

• In take the last coin, there is a mix of coins on the table, and players alternate taking coins, but on
any turn, all the coins taken have to be of the same denomination. The player who takes the last
coin wins.

• In tic-tac-toe, players alternate marking squares on a three-by-three grid. The first player to mark
three squares in a row wins. (If all squares are marked but neither player has three in a row, the
game ends in a tie.)

Each game is more interesting to play (and more time-consuming to implement) than the game before it.
Depending on which game you choose, you will implement one of the following:

• Functor SticksFun in file sticks.sml
• Structure Coins in file coins.sml
• Structure TTT in file ttt.sml

Detailed instructions, rules for play, and hints for implementation can be found on the games page29. The
instructions include the strings that must be recognized by Move.parse. You need these instructions!

I have implemented all three games. You can play them by running coins, sticks, or ttt, all of which
can be found in /comp/105/bin. In the first two games, if you play perfectly, you can beat my AGS.
In the third, the best you can do is tie.

What to watch out for. The main thing we’ll look for in testing is to be sure that your observers provide
a consistent picture of a game’s state. For example, if your implementation says that player X won, it had
better also say that the game is over.

How big are they? Not counting embedded unit tests, my implementations look like this:

• My pick up the last stick is 51 lines of Standard ML, but 13 of those lines are blank.

• My take the last coin is 107 lines of code and comments, but 23 of those lines are blank. Most of
the length is in visualize (11 lines) and in makemove (12 lines). Depending on what representa-
tions you choose, your hot spots will be different.

29games.html
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• My tic-tac-toe is 89 lines of Standard ML, of which 5 are blank. Even though it’s shorter than my
coins game, it was more tiresome to write. (A less clever implementation written by a student at
CMU is 144 lines.)

Related reading: The lengthy description of the GAME signature, the instructions for the game of your
choice on the games page30, and the section on ML modules in the ML learning guide31.

Integration testing, part I: your game with my AGS
Once you’re satisfied with your game, you can test to see how it works when combined with my AGS as
a computer player. You will create a game-specific AGS, then use it with my play manager. All this will
be done interactively using Moscow ML. The key steps are as follows:

• Start mosml with the options -I /comp/105/lib -P full.
• Load .uo files with the load command.
• Use functor applications to create the components you need.
• Play interactively.

Here is an annotated transcript, which uses take the last coin as an example:32

: homework> mosml -I /comp/105/lib -P full
Moscow ML version 2.10-3 (Tufts University, April 2012)
Enter `quit();' to quit.
- load ”coins”; <---- your game
> val it = () : unit
- load ”ags”; <---- my AGS
> val it = () : unit
- structure CAgs = AgsFun(structure Game = Coins); <--- create Ags structure
> structure CAgs : ...

Once you have your game-specific AGS, you create a play manager by applying functor PlayFun to your
AGS. To get PlayFun, load file play.uo:

- load ”play”; <---- my play manager
> val it = () : unit
- structure P = PlayFun(structure Ags = CAgs); <--- create the player
> structure P : ...

Functor PlayFun returns a structure that implements the following signature:

signature PLAY = sig
structure Game : GAME
exception Quit
val getamove : Player.player list -> Game.state -> Game.Move.move

(* raises Quit if human player refuses to provide a move *)

val play : (Game.state -> Game.Move.move) -> Game.state -> Player.outcome
end

30games.html
31../readings/ml.pdf
32If you choose the sticks game, you’ll have to instantiate your functor SticksFun with val N = 14.
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The function getamove expects a list of players for which the computer is supposed to play (the computer
might play for X, for O, for both or for none). The return value is a function which the play manager uses
to request a move given a configuration. The idea is that the function returned asks either the AGS or the
human for a move, depending on whose turn it is.

The function play expects an input function (one built by getamove) and an initial state. This function
then starts an interactive loop which prints visualizations and prompts users for moves (or asking the
AGS where appropriate). Here are some suitable definitions.

val computerxo = P.getamove [Player.X, Player.O]
(*Computer plays for both X and O *)

val computero = P.getamove [Player.O]
(*Computer plays only O *)

val cnfi = Coins.initial Player.X
(* Empty configuration with X to start *)

val contest = P.play computero
(* We play against the computer *)

With these definitions in place, you can start a game:

- P.play computero cnfi;
Player X sees 4 quarters, 10 dimes, and 7 nickels.
What coins does player X take?

If you want to watch the computer play both sides, try this:

- P.play computerxo cnfi;
Player X sees 4 quarters, 10 dimes, and 7 nickels.
Player X takes [redacted]
...

With this experience in hand, you’re ready for the final module of the assignment: the AGS itself.

Programming exercise A: Build an Abstract Game Solver
Implement an Abstract Game Solver. Given a state, an AGS should advise us on the best move for the
player whose turn it is.

• If the AGS finds a move that enables the current player to force a win, it’s done: it recommends
that move. It doesn’t even consider other moves.

• If AGS can’t find a winning move, the next best move is one that forces a tie. (In the sticks and
coins games, ties are impossible, but they are a common feature of tic-tac-toe and other games.)

• If the AGS can’t win or tie, then all moves lead to losses, and to the AGS, they are all equally bad.

The AGS looks at moves by simple linear search—but to compute the consequences of a move, the AGS
calls itself recursively. So the search can be exponential in the length of the game. If you’ve ever studied
AI or search algorithms, you may be aware that there are lots of fancy tricks you can use to cut down
the size of a search like this. Ignore all of them. Implement the advice function in the simplest way
possible.
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Because the state type is abstract, the AGS can’t break down the state by forms of data. What the AGS
can and should do is break down observations. Here is what I recommend:

• Because the contract of advice is itself broken down by cases (one for a final state and one for a
non-final state), I recommend that function advice begin by calling an observer that tells it whether
the given state is final.

• For the case of a non-final state, I recommend breaking the legal moves down by cases. Because
the legal moves are a nonempty list, you will have two main cases: a singleton list, or a value
move :: moves, where moves is also a nonempty list.33

• Depending on how you choose to tackle the exercise, you may have to compare two outcomes to
see which one is better (relative to a particular player). Avoid breaking down this comparison
into nine cases. Instead, try converting each outcome to some kind of numeric score, and identify
the better outcome with a higher score.

Write an AGS using the following template:

functor AgsFun (structure Game : GAME) :>
AGS

where type Game.Move.move = Game.Move.move
and type Game.state = Game.state

= struct
structure Game = Game

... helper functions, if any ...

fun advice state = ...
end

Note how annoying the where type declarations are: they look tautological, but they’re not. Complain
to Dave MacQueen34 and Bob Harper35.

Hints:

• ML syntax: The introduction and elimination forms for the advice record are analogous to the
forms for the quotient/remainder record described above. Only the names of the fields are different.

• Use the design process. In particular, remember the structure of a recursive function that consumes
a nonempty list of moves.

• You might be tempted to handle the non-final case by using map with legal moves. If you do, your
AGS will always search every possible move, even if it finds a winning strategy on the very first
move. Such code will make your AGS slow and no fun to play. Instead of using map, write a
recursive function that cuts off the search once a winning move is found. It will take just a few
lines of code, and you will have a lot more fun.

• Do not assume that players take turns, that the last player to move always wins, that there are
no ties, or any other property of the game you have implemented. Use whoseturn and outcome

33To make the pattern matching exhaustive, the compiler also requires you to handle the empty list. Since an empty list is
impermissible according to the contract for legalmoves, I recommend that you handle this case with an expression like “let
exception ContractViolation in raise ContractViolation end.”

34http://people.cs.uchicago.edu/~dbm/
35http://www.cs.cmu.edu/~rwh/
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instead. We will test your AGS on games that are quite different, including Connect 3 and others.
Probably even a solitaire!

• It is hard to write unit tests inside an AGS. If you want unit testing, write unit tests for a particular
game. Start with a known configuration and check the two fields returned by advice. For example,
if a computer player sees a table with only one denomination of coin, its best move is to take all
the coins and win. Unit tests like these are game-specific and will have to go into another module.
Put them in file ags-tests.sml.

To test your AGS, all you need to do is restart Moscow ML and once again load ”ags”;. As long as
there is an ags.uo in the current working directory, Moscow ML will prefer it to the one we provide in
/comp/105/lib. You’ll be able to run your unit tests, as well as the same kind of game-playing integration
tests you used wih your coin game. If you have implemented one of the simple games, and you want to
test your AGS with a more sophisticated game, try our tic-tac-toe game, as described below.

How big is it? My AGS takes about 40 lines of Standard ML.

Related reading:

• The section on ML modules in the ML learning guide36.
• The model solutions for nonempty lists on the scheme homework37, including the model solution

for arg-max38

What’s the point? The AGS requires one short but subtle recursive function, and it presents a simple,
narrow interface. But look at the parameters! To try to implement an AGS using parametric polymor-
phism, you would need at least two type parameters (configuration and move), and you would need at
least four function parameters (whoseturn, makemove, outcome, and legalmoves). Writing the code
would become very challenging—polymorphism and higher-order programming at the value level is the
wrong tool for the job. The point of this exercise is to use a functor to take an entire Game structure at one
go: both types and values. Moreover, the same Game structure also drives the computer player and the
interactive player—nothing in the Gamemodule has to change. Programming at scale requires a language
construct that bundles types and code into one unit.

A common mistake to avoid when debugging your AGS

If you build a simple AGS that fits in 40 lines of code, it is not going to try to fool you: if the AGS
cannot force a win, it will pick a move more or less arbitrarily. A simple AGS has no notion of “better”
or “worse” moves; it knows only whether it can force a win.

Here’s the common mistake: you’re playing against the AGS, and it makes a terrible move. You think
it’s broken. For example, suppose you are playing Tic-Tac-Toe, with you as X, the AGS as O, and play
starting in this position:

-------------
| | O | |
-------------
| | X | |
-------------
| | | |

36../readings/ml.pdf
37scheme.html#nonempty_lists
38scheme.html#argmax
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-------------

You move in the upper left corner. The AGS does not move lower right to block you. Is it broken?
No—the AGS recognizes that you can force a win, and it just gives up.

If you want an AGS that won’t give up, for extra credit you can implement an aggressive version that will
delay the inevitable as long as possible. An aggressive AGS searches more states so that it can (a) win as
quickly as possible and (b) hold on in a lost position as long as possible.

How big is it? My aggressive AGS is under 60 lines of Standard ML code.

Integration testing, part II: your AGS with my game
We supply a binary implementation of Tic-Tac-Toe in file /comp/105/lib/ttt.uo. You can use it as
follows:

homework> mosml -I /comp/105/lib -P full
Moscow ML version 2.10-3 (Tufts University, April 2012)
Enter `quit();' to quit.
- load ”ags”;
> val it = () : unit
- load ”ttt”;
> val it = () : unit
- structure TTTAgs = AgsFun(structure Game = TTT);
> structure TTTAgs : ...
- load ”play”;
> val it = () : unit
- structure PT = PlayFun(structure Ags = TTTAgs);
> structure PT : ...
- PT.play (PT.getamove [Player.O]) (TTT.initial Player.X);
-------------
| | | |
-------------
| | | |
-------------
| | | |
-------------
Player X is to move

Square for player X?

Our Tic-Tac-Toe recognizes squares upper left, upper middle, upper right, middle left, middle,
middle right, lower left, lower middle, and lower right, as well as abbreviations ul, um, ur, ml,
m, mr, ll, lm, and lr.

Extra Credit
75c option. Implement a game that is like take the last coin, but that has an additional rule: if you take
exactly 75 cents’ worth of coins, you have the option to move again immediately, before your opponent
takes a turn. (As implied by the word “option,” the extra move is a choice—a player is never required
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to exercise the option.) If you choose this extra credit, document your code with an explanation of what
you chose to change and why.

Game theory. Professor Ramsey challenges you to a friendly game of “pick up the last stick,” with one
thousand sticks. The stakes are a drink at the Tower Cafe. As the person challenged, you get to go first.
Should you accept the challenge, or should you insist, out of deference to the professor’s age and erudition,
that the professor go first? Justify your answer.

Proof. Here’s a conjecture: Every state in any correct implementation of the GAME interface always
satisfies exactly one of these three properties:

• The player whose turn it is can force a win.
• Either player can force a tie.
• The player whose turn it is can be forced to lose.

If the conjecture is true, prove it. If not, provide a counterexample.

If you find a counterexample, can the conjecture be repaired? If so, repair it, and prove the repaired
conjecture. If not, explain why not.

More. Implement a second game from the approved list.

Even more. Implement all three games on the approved list.

Four. Implement Connect 4.

Aggression. If it can’t win, a standard AGS will “give up”—if every move leads to a loss, all moves
are equally bad, and it apparently moves at random. That’s because a standard AGS assumes that its
opponent is perfect. In the dual situation, when the standard AGS knows it can win no matter what, it
picks a winning move at random instead of winning as quickly as possible. This behavior may lead you
to suspect bugs in your AGS. Don’t be fooled.

Change your AGS so that it delays losing as long as possible, and when it can win, it wins as quickly as
possible. (For example, it should prune the search only if it finds a win on the next move.) One technique
is to assign each move a floating-point “benefit” (of type real) and to choose the move with the highest
benefit.

Programming wrapup: Abstraction functions and invariants
Exercise ADT. Collect representations, abstraction functions, and invariants.

In a new file adt.txt, summarize your design work:

• Copy and paste your definitions of bigint, nat, move, and state, along with the associated ab-
straction functions and invariants. If you implemented any extra-credit games, include those defi-
nitions of state and move also.

If you’re not sure how to write the abstraction functions, look at the examples in the 6th lesson on
program design.

• Separate each group with a long line of dashes, thus:

----------------------------------------------------------------
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• Below each group, explain in one or two sentences why you chose the representation that you did.
The choices you explain should include both the type definitions and other important choices like
the base of natural numbers.

All defensible reasons for choosing a representation are legitimate and will earn full marks. Exam-
ples of defensible reasons include the following:

– “We wanted to keep the invariant as simple as possible.”
– “We wanted to make it easy to find the legal moves.”
– “We wanted to make it very fast to detect three in a row.”
– “We wanted to see if we could make it work with base 2.”

Please avoid indefensible reasons like, “it seemed like a good idea at the time.” Say why it seemed
like a good idea.

What and how to submit
As soon as you have tackled the reading comprehension, run submit105-sml-solo to submit your an-
swers to the CQ’s.

For the programming exercises, submit the following files:

• A README file containing
– The names of the people with whom you collaborated
– A list of the exercises that you completed (including any extra credit)
– The name of the game you chose to implement for credit
– The names of additional games you might have implemented for extra credit
– Your answers, to the Proof or Game Theory extra credit, if you choose to do them

• File bignum.sml, implementing the functor which builds signed integers on top of natural numbers
(your solution to exercise I)

• File natural.sml, implementing your solutions to exercise N
• A file implementing your solution to exercise G, which must be one of the following:

– sticks.sml
– coins.sml
– ttt.sml

• File ags.sml, implementing your solution to exercise A
• File ags-tests.sml, containing any unit tests you may have written for your AGS
• For exercises G and A, your coins.mlb, sticks.mlb, or ttt.mlb file. (See Appendix I for infor-

mation on the this file.)
• For exercises G and A, any other files you need in order to compile your game and your AGS
• For exercise ADT, file adt.txt with your choices, reasons, abstraction functions, and invariants.

The ML files that you submit should contain all structure and function definitions that you write for this
assignment (including any helper functions that may be necessary), in the order they should be compiled.
The files you submit must compile with MoscowML, using the compile105-sml script we give you. We
will reject files with syntax or type errors. Your files must compile without warning messages. If you
must, you can include multiple structures in your files, but please don’t make copies of the structures
and signatures above; we already have them.

As soon as you have the files listed above, run submit105-sml-pair to submit a preliminary version of
your work. Keep submitting until your work is complete; we grade only the last submission.
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Appendices

Appendix I: Two ways to compile Standard ML modules
The Definition of Standard ML does not specify where or how a compiler should look for modules in a
filesystem. And each compiler looks in its own idiosyncratic way. You should be able to get away with
using compile105-sml, but if something goes wrong, this appendix explains not only what is going on
but also how to compile with MLton. (MLton is going to be important when the time comes to test your
game.)

Compiling Standard ML modules using Moscow ML

To compile an individual module using Moscow ML, you type

mosmlc -I /comp/105/lib -c -toplevel filename.sml

This puts compiler-interface information into filename.ui and implementation information into file-
name.uo. Perhaps surprisingly, either a signature or a structure will produce both .ui and .uo files. This
behavior is an artifact of the way Moscow ML works; don’t let it alarm you.

If your module depends on another module, you will have to mention the .ui file on the command line
as you compile. For example, a BignumFn functor depends on both NATURAL and BIGNUM signatures. If
BignumFn is defined in bignum.sml, NATURAL is defined in natural-sig.sml, and BIGNUM is defined in
bignum-sig.sml, then to compile BignumFn you run

mosmlc -I /comp/105/lib -toplevel -c natural-sig.ui bignum-sig.ui bignum.sml

The script compile105-sml knows about the files that are assigned for the homework, and in most situa-
tions it inserts the .ui references for you.

To talk about what happens after you compile, I’ll use another example:

mosmlc -I /comp/105/lib -c -toplevel /comp/105/lib/game-sig.ui /comp/105/lib/player.ui coins.sml

This compilation produces two files:

• coins.ui, which can be used on the command line when compiling other units that depend on
Coins

• coins.uo, which contains the compiled binary

You can do two things with the .uo files:

• When you are debugging, you’ll want to load compiled modules into the interactive system. Load
them directly using load, e.g.,

39http://www.cs.cmu.edu/~rwh/
40http://www.cs.berkeley.edu/~necula/
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: homework: mosml -I /comp/105/lib -P full
Moscow ML version 2.10-3 (Tufts University, April 2012)
Enter `quit();' to quit.
- load ”coins”;
> val it = () : unit

Once you load a module, you cannot recompile it and reload it later. Loading it again has no
effect, even if the code has changed; you have to start Moscow ML over again.

• You can use mosmlc to link a bunch of .uo files together to form an executable binary. To do
anything interesting, one of the source files should have a top-level call to play, advice, or some
other interesting function.

Here is an example of a command line I use on my system to build an interactive game player:

mosmlc -I /comp/105/lib -toplevel -o games \
player-sig.uo player.uo move-sig.uo \
game-sig.uo ags-sig.uo play-sig.uo \
slickttt.uo ags.uo aggress.uo coins.uo \
four.uo peg.uo mrun.uo

Order matters; for example, I have to put player.uo after player-sig.uo because the Player
structure defined in player.sml uses the PLAYER signature defined in player-sig.sml.

Compiling Standard ML to native machine code using MLton

If your games are running too slow, compile them with MLton. MLton is a whole-program compiler that
produces optimized native code. To use MLton, you list all your modules in an MLB file41, and MLton
compiles them at one go. If you want to try this with the coins game, download files coins.mlb42 and
runcoins.sml43, and then compile with compile with

mlton -output coins -verbose 1 coins.mlb

(You can also download and compile sticks.mlb44, runsticks.sml45, ttt.mlb46, and runttt.sml47.)

Because MLton requires source code, you will be able to use it only once you have your own AGS. More
information about MLton is available on the man page and at mlton.org48.

Appendix II: How your work will be evaluated
Program structure

We’ll be looking for you to seal all your modules. We’ll also be looking for the usual hallmarks of good
ML structure.

41http://mlton.org/MLBasisSyntaxAndSemantics
42./coins.mlb
43./runcoins.sml
44./sticks.mlb
45./runsticks.sml
46./ttt.mlb
47./runttt.sml
48http://www.mlton.org/
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Exemplary Satisfactory Must Improve
Structure • All modules are sealed

using the opaque sealing
operator :>
• Code uses basis functions
effectively, especially
higher-order functions on
list and vector types.
• Code has no redundant
case analysis49

• Code is no larger than is
necessary to solve the
problem.

• Most modules are sealed
using the opaque sealing
operator :>
• Code uses the familiar
functions, but misses
opportunities to use
unfamiliar functions like
Vector.tabulate.
• Code has one redundant
case analysis50

• Code is somewhat larger
then necessary to solve the
problem.

• Only some or no modules
are sealed using the opaque
sealing operator :>
• A module is defined
without ascribing any
signature to it (unsealed)
• Code misses opportunities
to use map, fold, or other
familiar HOFs.
• Code has more than one
redundant case analysis51

• Code is almost twice as
large as necessary to solve
the problem.
• Or, code contains
near-duplicate functions
(most likely in AGS)

Performance and correctness

Finally, we’ll look to be sure your code meets specifications, and that the performance of your AGS is as
good as reasonably possible.

Exemplary Satisfactory Must Improve
Correctness • Game code fulfills the

contracts specified in the
GAME and MOVE signatures.
In particular, every observer
and producer presents a
consistent view of whether
the game is over.
• AGS code makes no
additional assumptions
about the implementations
of Player, Move, or Game.

• Game code fulfills the
contracts specified in the
GAME and MOVE signatures,
except that it permits illegal
moves.
• Game code fulfills the
contracts specified in the
GAME and MOVE signatures,
except it sometimes raises
the wrong exception.

• Game code violates one
of its contracts.
• AGS code assumes that
players take turns.

33



Exemplary Satisfactory Must Improve
Performance • The AGS implements its

advice function using a
single, pruned search that
stops once the best move or
outcome is known.
• Or, the AGS implements
advice by making just one
search through the state
space of possible game
configurations.
• Long computations on
natural numbers are
basically instantaneous,
even when hundreds of
decimal digits are involved.
• Or, we can do hundreds
of operations on natural
numbers, including
multipliation, on numbers
with dozens of decimal
digits, in less then a
hundred milliseconds.

• Function advice may
search the state space of
possible configurations
more than once.
• The natural-number tests I
provide run in less than a
hundred milliseconds.

• Function advice may
search the state space of
possible configurations
more than twice.
• Any computation on
natural numbers takes more
than a second.
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