Type systems

COMP 105 Assignment

Due Friday, March 15, 2019 at 5:00 PM

Contents
Overview
Setup

Dire warnings

All the homework problems
Reading comprehension (10 percent)
Problems to do by yourself (27 percent)
Problems you can work on with a partner (63 percent)

What to submit and how to submit it
Submitting individual work oL
Submitting pair work L. L L e e e

How your work will be evaluated

Techniques and advice
How toruninternal Unittests L
How to print information when debugging
General advice about type-relatedcode oL L Lo
Howtobuildatypechecker
Avoid common mistakes L. e e e
What is and is not hard or time-consuming Lo

AN NN

Overview

Even if you spend your whole career in the scripting ghetto, at some point you’ll be expected to use a
language with a type system. (Even languages that have never had type systems, like PHP and JavaScript,
are getting them now.) You're already aware of type systems in C and C++, and you’ll likely encounter
them in other languages such as Java, C#, Swift, Go, Rust, and so on. This assignment will help you learn
about type systems and polymorphism. You will understand what a type checker does, and you will be
able to translate formal type-system rules into code for a type checker.! You will add typed primitives
to an interpreter. And you will write a couple of explicitly typed, polymorphic functions. When you
complete the assignment, you’ll be pretty clear about how polymorphism works in languages like Java
and Scala, and you might understand why many Go programmers are angry that they don’t have it.

Setup

If you have not done so already, clone the book code:
git clone homework.cs.tufts.edu:/comp/105/build-prove-compare

You will modify two interpreters: build-prove-compare/bare/tuscheme/tuscheme.sml and build-
prove-compare/bare/timpcore/timpcore.sml. You will compile your work with, e.g.,

mosmlc -o timpcore -toplevel -I /comp/105/1ib timpcore.sml
mosmlc -o tuscheme -toplevel -I /comp/105/1ib tuscheme.sml

Dire warnings

Your modified timpcore.sml and tuscheme.sml must compile using mosmlc without errors or warnings.
As in the ML homework, you must not use the functions null, hd, and t1. Use pattern matching.

You must not use the ML forms #1 and #2. (They are manifestations of bad design, trying to masquerade
as functions.) If you can’t use pattern matching, use the fst and snd functions that are included with the
interpreter’s source code.

Your typed-funs.scm must load into tuscheme without warnings or errors, as in

tuscheme -q < typed-funs.scm

All the homework problems

Reading comprehension (10 percent)

These problems will help guide you through the reading. We recommend that you complete them before

starting the other problems below. You can download the questions?.

"You will not necessarily develop a deep understanding for how the rules work—that is, why these particular rules are good ones.
That question is related to the so-called “type-soundness theorem,” which is a proof that the type system predicts what happens
when we run the code. Unfortunately, proofs of type soundness are relatively deep, and such proofs are beyond the scope of
COMP 105.

2 Jeqs.typesys.txt

./cqs.typesys.txt

1. Read section 6.3.3, which describes how Typed Impcore is extended with arrays. Examine code
chunk 417, which shows the cases that have to be added to the type checker.

For each case, name the type-system rule that applies. Each answer should be a rule name like
Apply or GlobalAssign.

e The rule for case | ty (AAT (a, 1)) = ... is:

e The rule for case | ty (APUT (a, i, e)) = ... is:

e The rule for case | ty (AMAKE (len, init)) = ... is:
e The rule for case | ty (ASIZE a) = ... is:

Now pick one of the rules and explain, in informal English, what the rule is supposed to do.
You are ready for exercise 2 in the pair problems.

2. Read section 6.6.3 on quantified types in Typed pScheme. In addition to the prose, read the tran-
scripts in the first couple pages of that section: each value that has a quantified type is instantiated
later in the transcript, giving you more examples to relate back to the prose.

(a) Assume variable syms holds a list of symbols (it has type (1ist sym)). What expression do
you write to compute its length? Pick exactly one of the options below.

1. (length syms)

2. ((o length sym) syms)
3. ((@ length sym) syms)
4. ((length sym) syms)

(b) Youare given afunction positive? of type (int -> bool). Using the predefined function o,
which has type (forall ('a 'b 'c) (('b -> 'c) ('a -> 'b) -> ('a -> 'c))), what
code do you write to compose positive? with not?

(c) In testing, we sometimes use a three-argument function third that ignores its first two argu-
ments and returns its third argument. Such a function has type

(forall ('a 'b 'c) ('a 'b 'c -> 'c))

There is only one sensible function that has this type. Using a val definition, define function
third in Typed pScheme. You will need to use both type-lambda and lambda.

You are ready for exercise TD.
3. Read about type equivalence starting on page 445 and page 446.

You are given ML values taul and tau2, which represent the respective Typed pScheme types
(forall ('a) 'a) and (forall ('b) 'b). Semantically, these types are equivalent. For each
of the two ML expressions below, say whether the expression produces true or produces false.
Write each answer immediately below the expression.

(a) taul = tau2
(b) eqType (taul, tau2)

You will soon be ready for exercise 23, but you first need to complete the next two comprehen-
sion questions.

4. Read section 6.6.5 on typing rules for expressions in Typed pScheme. For each of the expressions
below, say if it is well typed, and if so, what its type is. If the expression is not well typed, say
what typing rule fails and why.

7 (a)
(if #t 1 #f)

; (b)
(let ([x 1]
[y 21)
(+ xy))

i (c)
(lambda ([x : int]) x)

7 (d)
(lambda ([x : 'al) x)

i (e)
(type-lambda ['al (lambda ([x : 'al) x))
You are almost ready for exercise 23.

5. Read Lesson 5 (“Program design with typing rules”) of Seven Lessons in Program Design®. In
particular, read the explanation of how the If rule is rewritten to add type-equality judgments T =
73 and 71 = bool. Now look at the list of typing rules for expressions in Figure 6.9 on page 471 in
Programming Languages: Build, Prove, and Compare. 1dentify one other rule that needs to be
rewritten in the same fashion as If, for the same reason.

The rule you found is named —
You are now ready for exercise 23.

6. Exercise A below calls for you to add a primitive array type to Typed pScheme. Read it. Then
read “Primitive type constructors of Typed uScheme” in section 6.6.9, which starts on page 455.

(a) When you add a primitive type constructor for arrays, what chunk of the source code do you
intend to add it to? (Give the page number, and if applicable, the letter. For example, page
451 has chunks 451a and 451b, and the letter is the simplest way to distinguish the two.)

In section M.4, which starts on page 1263, read “Primitives of Typed pScheme.”
(b) Which set of primitive functions most resembles the functions you will need to add for arrays?

(c) When you add primitives functions that operate on arrays, what chunk of the source code do
you intend to add it to? (Just like we asked above, give the page number, and if applicable,
the letter.)

You are ready for Exercise A.

3. /design/lessons.pdf

../design/lessons.pdf

Problems to do by yourself (27 percent)

On your own, please work exercise 8 on page 466 of Build, Prove, and Compare and problem TD
described below.

8. Adding lists to Typed Impcore. Do exercise 8 on page 466 of Build, Prove, and Compare. The
exercise requires you to design new syntax and to write type rules for lists.

Your typing rules must be deterministic. This means that in any given typing environment, any given
expression has at most one type, and the type must be computable by a function that is given the abstract
syntax and the typing environment as inputs.

Related reading:

e Study the new abstract syntax for arrays in section 6.3.2, which starts on page 414. Be sure you
understand that you are seeing new syntactic forms, not functions.

e Each new form in code chunk 415a comes with a typing rule, which can be found in section 6.3.3,
which starts on page 417. As long as you keep in mind the differences between lists and arrays,
this section will help you imagine the sorts of rules you will need to write for lists.

e For another example of new forms and corresponding rules, study the sum-introduction forms left
and right in section 6.4 near page 420.

s

e Finally, for help classifying rules, see the sidebar on “Formation, introduction, and elimination’
on page 418.

Hint: This exercise is more difficult than it first appears. I encourage you to scrutinize the lecture
notes for similar cases, and to remember that you have to be able to type check every expression
at compile time. I recommend that you do Pair Exercise 2 first. It will give you more of a feel for
monomorphic type systems.

Here are some things to watch out for:

e It’s easy to conflate syntax, types, and values. In this respect, doing theory is significantly harder
than doing implementation, because there’s no friendly ML compiler to tell you that you have a
type clash among exp, tyex, and value.

e It’s especially easy to get confused about cons. You need to create a new syntax for cons. This
syntax needs to be different from the PAIR constructor that is what cons evaluates to.

e Here’s a good mental test case: it should be possible to write a recursive reverse function, and
if ns is a list of integers, then (car (reverse ns)) is an expression that should have type int.
Even if list ns is empty.

o The empty list presents a challenge. Typed Impcore is monomorphic, which implies that any given
piece of syntax has at most one type. But you want to allow for empty lists of different types. The
easy way out is to design your syntax so that you have many different expressions, of different
types, that all evaluate to empty lists. The most common mistake is to design a syntax that requires
nondeterminism to compute the type of any term involving the empty list. But the problem requires
a deterministic type system, because deterministic type systems are much easier to implement.

You might consider whether similar difficulties arise with other kinds of data structures or whether
lists are somehow unique.

You might consider what happens in C when you try to do something clever with a pointer of type
void *, and to think of how C can address this issue using expression syntax only (that is, without
resorting to a definition form.)

e You might want to see what happens to an ML program when you try to type-check operations
on empty and nonempty lists. For this exercise to be helpful, you have to understand the phase
distinction between a type error and a run-time error. For example, hd 3 results in a type error,
but hd [] is well-typed—and results in a run-time error.

TD. Polymorphic functions in Typed uScheme. To hold your solution, create a file typed-funs.scm.
Implement, in Typed pScheme, fully typed versions of these two functions:

o Function drop from the Scheme homework, problem B*, which drops a given number of elements
from the front of a list

e Function takewhile, from exercise 10 on page 212, which takes frontal elements that satisfy a
given predicate

The problem has four parts:
(a) Write, in a check-type, the polymorphic type you expect drop to have.
(b) Write a definition of drop.
(c) Write, in a check-type, the polymorphic type you expect takewhile to have.
(d) Write a definition of takewhile.

If you are not able to write implementations of drop and takewhile with the proper types, you may get
partial credit by commenting out the check-type forms in parts (a) and (c).

Related reading: Read section 6.6.3 on quantified types. Look especially at the definitions of 1ist2,
list3, length, and revapp. If you are not yet confident, go to section M.5 in Appendix M and study
the definitions of append, filter, and map. Appendix M is included in the abridged edition; it starts on
page 1257, which you’ll find right after Chapter 12.

Problems you can work on with a partner (63 percent)

Please complete exercise 2 on page 463, exercise 23 on page 472, and Exercises T and A described below.
You may work by yourself or with a partner. Most students prefer to work with a partner.

2. Type-checking arrays in Typed Impcore. Do exercise 2 on page 463 of Build, Prove, and Compare.
My solution to this problem is 21 lines of ML.

Related reading:

e Study Lesson 5 (“Program design with typing rules”) of Seven Lessons in Program Design’.
Understand the model for implementing each form of judgment as an ML function. Understand
the step-by-step procedure for implementing each rule.

e In Programming Languages: Build, Prove, and Compare, understand Table 6.1 on page 406.
Identify what functions are available to you to call and what functions you will have to add code to.

4 /scheme.html#take
3. /design/lessons.pdf

./scheme.html#take
../design/lessons.pdf

e Study section 6.2.1, which starts on page 406. Understand the structure of function typeof, which
takes three explicit typing environments, and internal function ty, which has access to those envi-
ronments even though it takes only one parameter. Study the cases for SET, IFX, EQ, and PRINT.
Develop an idea how typing rules and code are related.

e See how the ARRAYTY value constructor is defined in chunk 398g. An ML value constructed with
ARRAYTY represents an array type in Typed Impcore. When you need to recognize an array type,
you will pattern match using ARRAYTY. When you need to construct an array type, you will apply
ARRAYTY to another ML value of type ty.

e Understand the typing rules in section 6.3.3, which starts on page 417.

e For a broader view of how Typed Impcore is extended with arrays, study section 6.3, which starts
on page 414.

23. Type checking Typed uScheme. Do exercise 23 on page 472 of Build, Prove, and Compare: write a
type checker for Typed uScheme. You will submit a modified interpreter and a file containing regression
tests. Don’t worry about the quality of your error messages, but do remember that your ML code must
compile without errors or warnings.

Follow the step-by-step instructions listed below under the heading “How to build a type checker,”
which tells you how to build both the type checker and the regression tests.

Avoid this common mistake: Every possible syntactic form (which is every form except the literal-
expression form) should be regression tested with at least one check-type-error test. The most common
mistake is to forget these tests.

My type checker is about 120 lines of ML. It is very similar to the type checker for Typed Impcore that
appears in the book. The code could have been a little shorter, but I put some effort into error messages.

Related reading:

e Revisit Lesson 5 (“Program design with typing rules”) of Seven Lessons in Program Design®.
Understand the model for implementing each form of judgment as an ML function. Understand
the step-by-step procedure for implementing each rule.

e In Programming Languages: Build, Prove, and Compare, understand Table 6.3 on page 441.
Identify what functions are available to you to call and what functions you will write. Functions
asType, eqType, and instantiate are written for you, and they are frequently overlooked.

o Study section 6.6.5, which starts on page 437—it gives the typing rules for expressions and defi-
nitions. You will implement each of these rules.

e Section 6.6.6 contains a long song and dance about type equivalence, starting on page 445. You do
not need to understand any of the song and dance—you will get the important aspects later in the
term—but you do need to understand functions eqType and eqTypes well enough to know how to
use them.

e In section 6.6.7, which starts on page 450, there is even more song and dance, about substitution
and instantiation. To implement your type checker successfully, you need to know only how to use
functions freetyvarsGamma and instantiate.

6. /design/lessons.pdf

../design/lessons.pdf

e In section 6.6.9, which starts on page 453, you need to know how to use function asType, which
is defined on page 455.

e Study the instructions “How to build a type checker” below.

T. Unit tests for type checkers. Create a file type-tests.scm, and in that file, write three unit tests
for Typed pScheme type checkers. Each test must use either check-type or check-type-error. If you
wish, your file may include val bindings or val- rec bindings of names used in the tests. Your file must
load and pass all tests using the reference implementation of Typed uScheme:

tuscheme -q < type-tests.scm
If you submit more than three tests, we will use only the first three.
Here is a complete example type-tests.scm file, with five tests:

(check-type cons (forall ('a) ('a (list 'a) -> (list 'a))))
(check-type (@ car int) ((list int) -> int))
(check-type
(type-lambda ['a] (lambda ([x : 'a]) x))
(forall ('a) ('a -> 'a)))
(check-type-error (+ 1 #t)) ; extra example
(check-type-error (lambda ([x : int]) (cons x x))) ; another extra example

You may, if you wish, submit any of these example tests, provided you attribute them properly to me. But
your tests will be evaluated on how well they find bugs in the type checkers everyone writes—so new
tests are more likely to earn high grades.

Related reading: To be able to write check-type and check-type-error tests, you need to know the
concrete syntax for unit-test and type-exp, which is shown in Figure 6.2 on page 424. Notice that the
check-type-error form can accept any true definition, not just an expression.

A. Polymorphic array primitives for Typed uScheme. The only way to add arrays to Typed Impcore
is to modify the type checker. In Type pScheme, we can do better: A great advantage of a polymorphic
type system is that a language can be extended without touching its abstract syntax, its values, its type
checker, or its evaluator. You will add arrays to Typed pScheme without changing any of these parts.

Extend Typed pScheme with an array type constructor and the polymorphic values Array.make, Ar-
ray.at, Array.put, and Array.size. The contracts of the functions are as follows:

e Array.make takes as argument a nonnegative integer n and a value v, and it creates an array of
n slots, each initialized with v.

e Array.size takes an array and returns the number of slots in the array.

e Array.at is the array-indexing operation; it takes an array and an index, and it returns the value
stored at the given index.

e Array.put is the array-update operation; it takes an array, an index, and a value, and it stores the
value at the given index.

If n is negative in Array.make, it causes a checked run-time error, as does indexing out of bounds (in-
cluding negative indices). These errors are run-time errors, not type errors.

The exercise has three parts:

(a) What is the kind of the type constructor array? Add it to the initial A for Typed uScheme.

(b) What are the types of Array.make, Array.at, Array.put, and Array.size? (These types are
polymorphic.)

(c) Edit the interpreter’s source code to add the array primitives the initial I" and p of Typed pScheme.

All you are doing is adding new primitives. There is no change to the type checker or to any existing
code!

For part (c), you will need to write implementations in ML. To get you part of the way there, here are
some helpful functions:

(* val arrayMake : int * value -> value *)
fun arrayMake (n, v) = ARRAY (Array.tabulate (n, (fn _=>v)))

(* val arraySize : value array -> value *)
fun arraySize a = NUM (Array.length a)

(* val arrayAt : value array * int -> value *)
fun arrayAt (a, i) =
Array.sub (a, i) handle Subscript => raise RuntimeError "array subscript out of bounds”

(* val arrayPut : value array * int * value -> unit *)
fun arrayPut (a, i, v) =
Array.update (a, i, v) handle Subscript => raise RuntimeError "array subscript out of bounds”

You will use these ML functions to implement the primitive Typed pScheme functions. Each primitive
function has its own type in Typed pScheme, but to implement each Typed pScheme primitive, you must
supply an ML function of type value list -> value.

To match an ML value into an array, you’ll use the ARRAY value constructor, which is a secret: it’s in the
code but not the book. Consider code like this:

(fn ARRAY a => ... code using a ...
| _ => raise BugInTypeChecking "should have had an array here”)

If you emulate the implementations of existing primitives like cdr or the pattern matches in arithOp,
which is used to implement + and *, and cdr, you’ll be fine. Look in Appendix M or at the higher-order
functions used to implement primitives on page 373.

Parts (a) and (b) ask you to write a kind and a type. The answers will appear in your code, but so we can
find them, please also put the answers in your README file. Even if the code isn’t perfect, you’ll get
partial credit for a good kind and good types.

Hint: You will modify two parts of the code that build the initial basis. Both parts are shown under
“Building the initial basis” on page 457. Your definitions of Array.make, Array.size, Array.at, and
Array.put can go next to primitives null?, cons, car, and cdr.

My solution to this problem, which takes advantages of the binaryOp and unaryOp functions already in
the interpreter, is 12 lines of ML.

Related reading: Read “Primitive type constructors of Typed pScheme” in section 6.6.9, which starts
on page 455 of Build, Prove, and Compare. Look at “Primitives of Typed pScheme” in section M.4

Appendix M on page 1257. Focus on polymorphic primitives, such as null?, cons, car, and cdr in code
chunk 1264a. To help with the implementation of Array.put look at the implementation of the print
primitive, which also returns unit.

What to submit and how to submit it

Even if you decide to work without a partner, you’ll submit individual work and pair work separately.

Submitting individual work
Using script submit105-typesys-solo, please submit

o A README file containing
— A list of the problems you completed
— The names of the people with whom you collaborated
e File cgs.typesys.txt’ containing your answers to the reading-comprehension questions
o A PDF file lists.pdf containing your work on exercise 8.
e A file typed-funs.scm containing your code for problem TD above

Submit early and often!

Submitting pair work

For your joint work with your partner, one of you should use script submit105-typesys-pair to submit
these files:

e A README file containing
— Your answers to parts (a) and (b) of Exercise A (the kind and the types will also be in your
tuscheme. sml, but we want to see them in a readable notation)
— A high-level description of the design and implemenation of your solutions
— Your name, your partner’s name (if you have a partner, and the names of the people with
whom you collaborated

e File timpcore.sml, containing the Typed Impcore interpreter extended with your type-checking
code for arrays (exercise 2)

e File tuscheme.sml. containing the Typed pScheme interpreter extended with your type checker
(exercise 23) and with array primitives (Exercise A)

e File regression.scm, containing the regression tests for your type checker for Typed pScheme,
in which each group of tests is identified by a comment saying which step of the testing process
the tests belong to

o File type-tests.scm, containing up to three tests to be used to test your classmates’ type checkers
(exercise T)

How your work will be evaluated

We will evaluate the functional correctness of your code by extensive testing.

7 Jeqs.typesys.txt

10

./cqs.typesys.txt

We will evaluate your regression tests by looking at coverage: a syntactic form is well covered if there
is a check-type test for the form and if there is also at least one check-type-error test for every way
the form can go wrong.

We will evaluate your unit-test cases by using them to look for bugs in other people’s code. The more
bugs your tests find, the better they are.

We will evaluate the structure and organization of your Typed pScheme code using the same criteria
as used in previous homework assignments. We will evaluate the structure and organization of your ML
code using similar criteria for naming and documentation. For indentation and layout, we’ll look for
conformance to the Style Guide for Standard ML Programmers,® within the constraints imposed by the
code from the book.

Techniques and advice

How to run internal Unit tests

Many students prefer to include internal Unit tests for their type checkers. If you include such tests, here’s
how you should run them:

1. Compile your interpreter using something like the following:

mosmlc -o a.out -toplevel -I /comp/105/1ib timpcore.sml
mosmlc -o a.out -toplevel -I /comp/1l05/1ib tuscheme.sml

2. Run the unit tests from the Unix command line using

./a.out -q < /dev/null

How to print information when debugging

Within each interpreter, you can use ML functions print, println, eprint, and ep rintln.” Each of
these functions expects a single string, and they write to standard output and standard error, respectively.
To produce strings, you can use internal functions expString, typeString, defString, and intString.

The most common use case is with predefined function app. Here’s an example:

let
val _ =
app eprint ["In IF, true branch ”, expString e2, ” has type ”

, typeString tau2, ” and false branch ”, expString e3
, " has type ", typeString tau3, "\n”
1

in

end

8_/handouts/mlstyle.pdf
Function print is predefined; the others are implemented in the interpreter itself.

11

../handouts/mlstyle.pdf

General advice about type-related code

Here’s some generic advice for writing any of the type-checking code, but especially the array primitives
you will add to Typed pScheme:

1. Compile early. You could use this command:
mosmlc -I /comp/105/1ib -o tuscheme tuscheme.sml
2. Compile insanely often.

3. Compile from within your editor, and use an editor that can jump straight to the location of the
first error. With Vim, use :make, and with Emacs, use M-x compile.

4. Come up with examples in Typed pScheme.
5. Figure out how those examples are represented in ML.

6. Keep in mind the distinction between the term language (values of array type, values of function
type, values of list type) and the type language (array types, function types, list types).

7. If you’re talking about a thing in the term language, you should be able to give its type.

8. If you're talking about a thing in the type language, you should be able to give its kind.

How to build a type checker

Building a type checker is the first COMP 105 exercise of significant scope. You must approach it system-
atically. Do not copy and paste the Typed Impcore code into Typed uScheme. Copying and pasting
would be a grave strategic error. You will be much better off adding a brand new type checker to the
tuscheme. sml interpreter, one step at a time.

Writing the whole type checker before running any of it will make you miserable. Make the types
in the interpreter work for you, start small, and implement one rule at a time. For each rule, use the
techniques explained in Lesson 5 (“Program design with typing rules”) of Seven Lessons in Program
Design'®. To know what rules to implement in what order, follow these steps:

1. The initial basis contains code for predefined functions that you will not be able to typecheck until
your work is complete. Your first step should therefore be to disable those functions. I suggest that
you find the line in the source code that corresponds to the binding of value fundefs on page 457
of the book:

val fundefs =
(* predefined {\tuscheme} functions, as strings (generated by a script) *)

Replace the line val fundefs = with these two lines:

val predefined included = false
val fundefs = if not predefined included then [] else

Verify that your modified interpreter compiles with mosmlc.

2. Start function typeof. I recommend defining an internal function ty, just as in the type checker
for Typed Impcore. Create the first draft of ty by writing a clausal definition that has one case for

10, /design/lessons.pdf

12

../design/lessons.pdf

each syntactic form of Typed pScheme. On the right-hand side of each clause, raise the LeftA-
sExercise exception.

Verify that your modified interpreter compiles with mosmlc.

3. Write a function literal that computes the type of a literal value. Start with just numbers,
Booleans, and symbols—you can add types for list literals later.

Verify that your modified interpreter compiles with mosmlc.
4. Write the case for typeof/ty that handles LITERAL expressions—it should call literal.
5. Create a test file regression.scm containing a comment and three unit tests:

;; step 5

(check-type 3 int)

(check-type #t bool)
(check-type 'hello sym)

Verify that your modified interpreter compiles with mosmlc.
Verify that your interpreter correctly typechecks the literals used in the tests above. Run
./tuscheme -q < regression.scm

You must remember the ./ in ./tuscheme, or otherwise you will be testing my code, not your
own code.

If you are working on a departmental server, you can try the command
regression-test-tuscheme

As you build your type checker, you will continually add “regression” tests to file regression.scm.
They are called “regression” tests because they are designed to prevent regressions—a regression
is a bug introduced into previously working code.

6. Write the case for typeof that handles IF-expressions, which I plan to show in class. Add regres-
sion tests for a few [F-expressions that have different types. Also add tests for some IF-expressions
that are ill-typed.

e Add the comment ;; step 6 to your regression.scm file.
e Add some check-type unit tests for if to your regression.scm file.
e Add some check-type-error unit tests for if to your regression.scm file.

o Verify that your interpreter compiles and passes all its unit tests. If something
goes wrong with a unit test, make sure the unit test is OK—test it by running
/comp/105/bin/tuscheme -q < regression.scm.

7. Implement the VAR rule. Add regression tests that check the types of some primitive functions.
Be sure to include at least one check-type-error test.

Verify that your interpreter compiles and passes all its regression tests.

13

8.

12.

13.

14.

15.

Now turn your attention to function elabdef, which is right next to typeof. It takes a true defini-
tion, a kind environment, and a typing environment, and it returns a new typing environment and
a string.

e The new typing environment contains a binding for whatever name is defined.

o The string shows the fype of whatever name is defined, which you get by applying function
typeString to the type.

Write four clauses for elabdef, each to raise LeftAsExercise. There should be one clause each
for VAL, VALREC, EXP, and DEFINE.

Verify that your interpreter compiles and passes all its regression tests.

. Continuing work with elabdef, implement the VAL rule for definitions. Then the EXP rule.

Add a “step 9” comment and a couple of val bindings to your regression-test file, along with
check-type and check-type-error tests that use those bindings.

Verify that your interpreter compiles and passes all its regression tests.

. Return to typeof. Implement the rule for function application. Add regression tests that apply

functions. Include both check-type and check-type-error tests. You should be able to apply
some primitive arithmetic and comparison functions.

Verify that your interpreter compiles and passes all its regression tests.

. Implement LET binding. The Scheme version is slightly more general than what I plan to cover in

class. Be careful with your contexts. Add both check-type and check-type-error tests.
Verify that your interpreter compiles and passes all its regression tests.
Once you’ve got LET working, LAMBDA should be quite similar.

Add suitable regression tests, including both check-type and check-type-error tests, and
verify that your interpreter compiles and passes its regression tests.

Knock off SET, WHILE, and BEGIN.

Add suitable regression tests, including both check-type and check-type-error tests, and
verify that your interpreter compiles and passes its regression tests.

There are a couple of different ways to handle LETSTAR. As usual, the simplest way is to treat it
as syntactic sugar for nested LETs. Implement type checking for LETSTAR.

Add suitable regression tests, including both check-type and check-type-error tests, and
verify that your interpreter compiles and passes its regression tests.

Implement the LETREC rule. Don’t overlook the side condition: every right-hand side must be a
LAMBDA expression.

Add suitable regression tests, including both check-type and check-type-error tests, and
verify that your interpreter compiles and passes its regression tests.

. Go back to elabdef, and knock off the definition forms VALREC and DEFINE. (Remember that

DEFINE is syntactic sugar for VALREC.) As in LETREC, the right-hand side of VALREC must
be a LAMBDA expression.

14

Add val-rec and define definitions to your regression-test file, and add regression tests for the
names you define. Include both check-type and check-type-error tests.

Verify that your interpreter compiles and passes all its regression tests.
Your elabdef is now complete.

17. Return to typeof and implement TYAPPLY and TYLAMBDA. Save these cases for after the last
class lecture on the topic. (Those are the only parts that have to wait until the last lecture; you can
have your entire type checker, except for those two constructs, finished before the last class.)

Add suitable regression tests, including both check-type and check-type-error tests, and
verify that your interpreter compiles and passes its regression tests.

18. Complete your literal function by making sure it handles list literals formed with PAIR or NIL.
The book has three rules for list literals; follow them rigorously, and your code will work with no
problems.

Add suitable regression tests, including both check-type and check-type-error tests, and
verify that your interpreter compiles and passes its regression tests.

Your typeof function is now complete.
Your entire type checker is now complete.

19. Return to the code you modified in step 1. Bind
val predefined included = true

Verify that your interpreter compiles and that it can typecheck the predefined functions of Typed
pScheme.

Avoid common mistakes

In exercise 8, it’s a common mistake to try to create a type system that prevents programmers from
applying car or cdr to the empty list. Don’t do this! Such a type system is too complicated for COMP 105.
As in ML, taking car or cdr of the empty list should be a well-typed term that causes an error at run
time.

In exercise 8, it’s common to write a nondeterministic type system by accident. The rules, typing context,
and syntax have to work together to determine the type of every expression. But you're free to choose
whatever rules, context, and syntax you want.

In exercise 8, it’s inexplicably common to forget to write a typing rule for the construct that tests to see
if a list is empty.

There are already interpreters on your PATH with the same name as the interpreters you are working on.
So remember to get the version from your current working directory, as in

ledit ./timpcore
Just plain timpcore will get the system version.

In exercise 23, it’s a common mistake to write only check-type tests, forgetting the check-type-error
tests. To earn full credit for your regression tests, you must use check-type-error.

15

ML equality is broken! The = sign gives equality of representation, which may or may not be what you
want. For example, in Typed uScheme, you must use the eqType function to see if two types are equal.
If you use built-in equality, you will get wrong answers.

It’s a common mistake to call ListPair.foldr and ListPair.foldl when what you really meant was
ListPair.foldrEqor ListPair.foldlEq.

It’s not a common mistake, but it can be devastating: when you’re writing the type of a polymorphic
primitive function, write the type variable with an ASCII quote mark, as in 'a, not with a Unicode right
quote mark, as in 'a. Thanks, Apple!

It’s not a common mistake, but don’t define any new exceptions. And don’t raise any exceptions besides
TypeError. (If you don’t finish, you might also raise LeftAsExercise.)

What is and is not hard or time-consuming

In exercise 8 on page 466, I am asking you to create new type rules on your own. Many students find
this exercise easy, but many find it very difficult. The “difficult” people have my sympathy; you haven’t
had much practice creating new rules of your own, and as you may remember from class, creating is the
highest level of cognitive task on Bloom’s hierarchy.

Problem TD, writing drop and takewhile in Typed pScheme, requires that you really understand instan-
tiation of polymorphic values. Once you get that, the problem is not difficult, but the type checker is
persnickety. A little of this kind of programming goes a long way.

Exercise 2, type-checking arrays in Typed Impcore, has a lot of related reading—you’ll fill in any ideas or
details that you missed in class. But aside from the amount of reading, this exercise is probably the easiest
exercise on the homework. You need to be able to duplicate the kind of reasoning and programming that
we will do in class for the language of expressions with LET and VAR.

Exercise 23, the full type checker for Typed uScheme, presents two kinds of difficulty:

e You have to understand the connection between typing judgments, typing rules, and code. Be
sure that you follow Lesson 5 (“Program design with typing rules”) of Seven Lessons in Program
Design'! and the examples that are there.

e You have to understand a moderately sophisticated ML program (the interpreter) and then build a
relatively big and independent extension of it.

For the first item, we’ll add to Lesson 5 with some talk in class about the concepts and the connection
between type theory and type checking. For the second item, it’s not so difficult provided you remember
what you’ve learned about building big software: don’t write it all in one go. Instead, start with a tiny
language and grow it very slowly, testing at each step—just as instructed in the guide above. As in yoga,
the slow way is the fastest.

Exercise A, adding arrays to Typed pScheme, requires you to understand how primitive type constructors
and values are added to the initial basis. And it requires you to write ML code that manipulates uScheme
representations. The task is not inherently difficult, but there are two challenges:

o Because the task is not inherently difficult, it won’t get any air time in class. You’ll rely on the
book.

e Understanding how ML code relates to a uScheme primitive is not trivial.

11 /design/lessons.pdf

16

../design/lessons.pdf

To address these challenges, your best bets are to study the way the existing primitives are implemented
and to emulate the code that you see.

17

	Overview
	Setup
	Dire warnings
	All the homework problems
	Reading comprehension (10 percent)
	Problems to do by yourself (27 percent)
	Problems you can work on with a partner (63 percent)

	What to submit and how to submit it
	Submitting individual work
	Submitting pair work

	How your work will be evaluated
	Techniques and advice
	How to run internal Unit tests
	How to print information when debugging
	General advice about type-related code
	How to build a type checker
	Avoid common mistakes
	What is and is not hard or time-consuming

