
Mastering Multiprecision Arithmetic

Norman Ramsey

Spring 2019

Introduction

Uncivilized programming languages, including Impcore and
µScheme, provide crappy integer arithmetic. You better hope
your results fit in a machine word—if they don’t, your program
might silently produce wrong answers.

Civilized languages provide integer arithmetic that works on
any integer up to the size you can fit in RAM. By this standard,
Standard ML is not quite civilized: arbitrary-precision arithmetic
is in the specification as module IntInf, but implementations
don’t have to provide it. Full Scheme, on the other hand, is super-
civilized—if you’re interested in arithmetic, it’s worth studying.

Arithmetic plays a prominent role in our study of abstraction
mechanisms, for these reasons:

• Civilized arithmetic is a topic that every educated computer
scientist should know about—if only so that you can insist
on it for your projects. Don’t tolerate uncivilized arithmetic!

• Arithmetic brilliantly illustrates the relative strengths and
weaknesses of the two major ways of abstracting over data:
abstract data and versus objects.

Basics

A natural number is represented by the sum
∑

0≤i<n xi · bi.

• b is called the base of natural numbers.
• Each xi is called a digit. It satisfies the invariant 0 ≤ xi < b.

Hardware integer arithmetic universally uses base b = 2. But
software arithmetic, which you will implement, typically uses
a base b = 2k, where k is chosen as large as possible, subject
to the constraint that (b − 1)2 can be computed without over-
flow. Be cautious! Moscow ML provides only 31 bits of integer
precision.

To help you get started, it is reasonable to begin with

val base = 7

Once your code is working, you’ll want to replace 7 with a larger
number. Look at the section “Choosing a base of natural numbers”
in the book.

Performance matters. Larger b gives better performance.

Choice of representation
A natural number should be represented by a sequence of digits.
But this still leaves you with interesting design choices:

• Do you prefer an array, a list, or the algebraic data type used
on the first ML assignment?

• If you prefer an array, do you want a mutable array (type
'a array) or an immutable array (type 'a vector)?

• If you prefer a list, do you prefer to store the digits of a
number in big-endian order (most significant digit first) or
little-endian order (least significant digit first)?

(If you prefer an array, the only order that makes sense is to
store the least significant digit x0 in slot 0, and in general, to
store digit xi in slot i. Anything else would be confusing.)

• If you prefer an array, how will be you be sure it contains
enough digits to hold the results?

• If you prefer a list, how will you make sure you produce a
list with the right number of digits?

Some implementations of arithmetic operations, especially multi-
plication, can leave leading zeroes in a representation. The num-
ber of leading zeroes must be controlled so that it doesn’t grow
without bound.

• Do you prefer a representation invariant that eliminates lead-
ing zeroes?

• If not, how will you track the number of leading zeroes in
each representation? Will you store it in the representation
itself, or will you compute it dynamically?

The beauty of data abstraction is that the interface isolates these
decisions, so you can easily change them.

Representing individual digits
You can represent a digit by a value of type int. But if you like
arrays, I recommend choosing a different representation: a value
of type int is too easily confused with an array index. Instead,
I recommend that you define

datatype digit = D of int

and use digit array or digit vector in your representation.
You will have to do a little extra pattern matching, but in order
to avoid confusing an index with the digit at that index, the extra
pattern matching is well worth it.

1



Mutable representation? Really?
If you scrutinize the types and contracts of the functions in the
NATURAL interface, you’ll see that the nat abstraction is im-
mutable: nothing in the interface allows a client to change the
value of a natural number. So why would it be OK to choose
a mutable representation, like a digit array? Simple: you’re
allowed to pick any representation you like, because the details
are sealed behind the interface. As long as you don’t make a silly
mistake like allow x /+/ y to mutate x or y, no client program
can tell that your representation is mutable. In industrial imple-
mentations of multiprecision numbers, mutable representations
are quite popular: they minimize allocation and they use memory
efficiently. It’s fine to pick a mutable representation, as long as
no client code can tell the difference.

Tackling arithmetic in Standard ML
If you study the NATURAL signature, you should observe that the
first step in creating any natural number is always to call of_int,
and the only way to get information out of a natural number is
to call decimal. But you will have an easier time if you start
with two auxiliary functions, which are closely related. If your
representation is immutable, here are their specifications:

val addInt : nat * int -> nat

(* addInt (x, p) returns a natural number

that represents x + p,

provided the following condition holds:

for every digit x_i in x, (p + x_i)

can be computed without overflow

*)

val shiftAdd : int * int * nat -> nat

(* shiftAdd (p, n, x) = p * power (base, n) + x,

provided the same condition above holds *)

These two functions are related by this property:

shiftAdd (p, 0, x) = addInt (x, p)

This property can be used in either direction to implement one of
the two functions: you can use shiftAdd to implement addInt,
or you can use addInt to implement shiftAdd. Which direction
is easier depends on your choice of representation.

If your representation is mutable, the types and contracts will be
slightly different:

val addInt : nat * int -> unit

(* addInt (x, p) overwrites x with x + p,

provided p is not too large as above *)

val shiftAdd : int * int * nat -> unit

(* shiftAdd (p, n, x) overwrites x with

p * power (base, n) + x,

provided p is not too large as above *)

Implementing function of_int

Once you have addInt, you can use it to implement of_int.
Depending on the mutability of your chosen representation, the
details vary. Here’s the immutable version:

fun of_int n = (* immutable representation *)

if n < 0 then raise Negative

else

let val zero = ... something suitable ...

in addInt (zero, n)

end

The mutable version is the same, except you call addInt for side
effect and then return zero.

Implementing short division

In short division, a multi-digit number is divided by a single digit.
The algorithm is one you learned in primary school. The algo-
rithm is explained in Programming Languages: Build, Prove, and
Compare, in the section on arbitrary-precision integer arithmetic.

If you prefer arrays, a full implementation is presented in
David R. Hanson’s C Interfaces and Implementations, on pages
311 and 312 (the XP_quotient function), which you are wel-
come to adapt.1 What Ramsey calls a “remainder” ri is called
carry by Hanson.

If you are using an array representation, you can write the
main loop using higher-order function Array.foldri. Try
help "Array"; in Moscow ML. The accumulating parameter
holds the remainder rin . The final remainder out is returned with
the quotient.

If you prefer lists, the equations in the book imply the following
algebraic laws:

0 div v = 0
0 mod v = 0

(m · b+ d) div v = (m div v) · b+ ((m mod v) · b+ d) div v
(m · b+ d) mod v = ((m mod v) · b+ d) mod v

These laws must not be used directly for implementation.
Why not? Because in a direct implementation, the inductive
case calls both div and mod recursively. That’s an exponential
number of calls. For implementation, you need to compute both
m mod v and m div v in a single call. That’s why the sdiv

function returns a record containing both quotient and remainder.
(This is also how integer-division hardware works.)

Using short division for base conversion

To convert a number from a large base to a smaller base, you
continually short-divide by the small base until you run out of
digits. Each short division produces a remainder, which is a digit
of the result. The least-significant digit is produced first.

1If you took COMP 40 at Tufts, you may have this book. If not, it is part of
the university’s Safari subscription, so your access to it is already paid for.

2



Here’s an example using repeated division by 2, converting deci-
mal 11 to binary:

11 ÷ 2 = 5 remainder 1
5 ÷ 2 = 2 remainder 1
2 ÷ 2 = 1 remainder 0
1 ÷ 2 = 0 remainder 1

Reading off the digits in order says that decimal 11 is binary 1011.

There is a similar problem on the homework, where you complete
this table:

13 ÷ 2 = q0 remainder r0

q0 ÷ 2 = q1 remainder r1

q1 ÷ 2 = q2 remainder r2

q2 ÷ 2 = q3 remainder r3

The converted numeral is the sequence of digits r3r2r1r0 (in
traditional big-endian order).

Implementing decimals

Short division is the way you implement decimals. You have to
get this right or your code won’t pass any test cases. The key idea
is that the least significant decimal digit is “the argument mod 10,”
and the remaining digits are the digits of “the argument div 10.”
Here is part of a definition of decimals, using an immutable
representation:

fun reverse_decimals n =

if ... n is zero ... then

[]

else

let val { quotient = q, remainder = r } =

sdiv (n, 10)

in r :: reverse_decimals q

end

Implementing addition and subtraction

If you are using an array to represent a sum or product, you will
need to provide it with enough digits in advance:

• For addition, you may need as many digits as are in the
larger addend, plus one more.

• For subtraction, you may need as many digits as are in the
minuend (left-hand operand).

Subtraction may leave you with a representation that contains
leading zeroes. If leading zeroes violate your representation
invariant, you’ll have to do something about them.

Both addition and subtraction work from the least significant digit
to the most significant digit. Array users can use Array.foldli
or Vector.foldli.

The “borrowing” needed to subtract is slightly more fiddly than
the “carrying” needed to add. I found it useful to define a helper

function that subtracts a “borrow bit” from a single natural num-
ber.

Addition

For addition, the accumulating parameter is a carry in. The key
step is to produce a sum of digits from the two addends, plus the
carry in. Part of that some becomes a digit of the result, and part
becomes the carry out. Code might look something like this:

let val s = x_i + y_i + carry_in

val carry_out = s div base

val sum_i = s mod base

in ... do something with sum_i and carry_out ...

end

What happens in the . . . depends on your representation, but
sum_i becomes a digit in the output, and carry_out becomes
the carry_in on the next cycle.

The final carry out should be zero. If not, you didn’t allocate
enough digits, and there is a bug in your code.

Subtraction

Subtraction uses the same looping structure as addition, but the
computation is a little more complicated. If the difference goes
negative, we have to borrow a from the next most significant digit
(the “borrow_out”).

let val initial_diff = x_i - y_i - borrow_in

val (borrow_out, diff_i) =

if initial_diff < 0 then

(1, initial_diff + base)

else

(0, initial_diff)

in ... do something with diff_i and borrow_out ...

end

If your final borrow_out is nonzero, the result of subtraction is
negative, and you need to raise the Negative exception.

Implementing multiplication

Done carefully, multiplication is the easiest operation to imple-
ment. The equation for a product is

x · y =
∑

0≤i<n

∑
0≤j<m

(xi · yj) · bi+j .

The number of digits needed to hold the double sum is potentially
the total number of digits in x and y together: m + n. And the
algorithm couldn’t be simpler: it’s a doubly nested loop in which
each iteration adds the partial product (xi · yj) · bi+j to a running
total. Call shiftAdd(xi · yj , i + j, total). I recommend using
Array.foldli or Vector.foldli on an array representation,
and foldli or foldri on a list representation. (You will have to
define foldli or foldri on lists.) The accumulating parameter
passed to the fold is the running total—or if you are using a

3



mutable representation, the best accumulating parameter is the
empty tuple (value () of type unit).

Implementing comparison

The final operation you meet to implement compares two nat-
ural numbers and returns EQUAL, LESS, or GREATER. You can
approach the problem the direct way or the indirect way.

• The direct approach looks at the digits. If x = x′ · b + x0
and y = y′ · b + y0 then you first compare the more
significant digits x′ and y′. If they are EQUAL, return
Int.compare (x0, y0). Otherwise, x and y compare the
same as x′ and y′.

• In the indirect approach you implement < by using /-/ and
seeing if it raises Negative. Then you use < to implement
compare.

The problem with the direct approach is that depending on your
representation, comparing a long number with a short number
could be tricky—especially if your representation permits leading
zeroes. The problem with the indirect approach is that it allocates
at least one natural number, then throws it away.2

2While I find the indirect approach intellectually unsatisfying, I’m silenced by
anyone who says, “the garbage collector is good at reclaiming short-lived objects;
shut up and let it do its job.”

4


	Introduction
	Basics
	Choice of representation
	Representing individual digits
	Mutable representation? Really?
	Tackling arithmetic in Standard ML
	Implementing function of_int
	Implementing short division
	Using short division for base conversion
	Implementing decimals
	Implementing addition and subtraction


