
Learning Standard ML

COMP 105

Contents
Key concepts: Algebraic data types, case expressions,

and pattern matching 1

Key concept: Types and type inference 2

The elements of ML 2
Expressions I: Basic expressions and their types 2
Expressions II: Minus signs 2
Expressions III: Conditionals and short circuits 3
Data I: Tuples . 3
Data II: Lists . 3
Data III: Constructed values and patterns that match them 3
Inexhaustive or redundant pattern matches 3
Types I: Introduction to types 4
Definitions I: Val bindings 4
Definitions II: Semicolons 4
Definitions III: Function definitions 4
Definitions IV: Clausal (function) definitions 4
Expressions IV: ML’s let 4
Expressions V: ML’s lambda 4
Expressions VI: Infix operators and precedence 4
Expressions VII: Infix operators as functions 5
Expressions VIII: Parentheses 5
Types II: Polymorphic functions 5
Curried functions . 5
Exceptions . 5
Types III: Type abbreviations 5
Data IV: Datatype definitions 6
Type pitfall I: “Equality types” (two tick marks) 6
Type pitfall II: Value polymorphism 6
Basis I: The option type 6
Data V: Record types, values, expressions, and patterns 7
Basis II: Access to functions defined in modules 7
Basis III: Getting to know the Standard Basis 7
Basis IV: Vectors . 7

Unit Testing 8
Example unit tests . 8
Bureaucracy of getting our module (Moscow ML) . . . 8
Bureacracy of getting our module (MLton) 8
Documentation of all the functions 9

Testing functions 9
Reporting functions 9
String-conversion functions 9

An example with a user-defined type 9

ML Modules 11
General information on modules 11
Signatures, Structures, and Ascription 11
Signature refinement or specialization 11
Modules can nest . 11
Functors . 11
Sharing constraints 12
Abstract data types 12

This guide is available both in HTML1 and PDF2.

For someone with a background in COMP 11 and COMP 15, the
fastest and easiest way to learn Standard ML is to buy Ullman’s
book and work through chapters 2, 3, 5, and 6. But many students
choose not to buy Ullman—a move that saves money but costs
time. You can recover some of the time by reading this guide3;
it enumerates the most important concepts, and it tells you where
to find key information, not just in Ullman, but also in three other
sources:

• Jeff Ullman’s Elements of ML Programming (ML’97 edition)
• Norman Ramsey’s Programming Languages: Build, Prove,

and Compare
• Mads Tofte’s “Tips for Computer Scientists on Standard ML

(Revised)4”
• Bob Harper’s draft Programming in Standard ML5

Know your sources! Mads Tofte and Bob Harper both worked
with Robin Milner on the design of Standard ML, and they helped
write the Definition of Standard ML. They know what they’re
talking about, and they have good taste—though Tofte’s use of
the ML modules is considered idiosyncratic. Norman Ramsey
at least knows some functional programming. Jeff Ullman, by
contrast, got his start in the theory of formal languages and pars-
ing, then switched to databases. He may like ML, but he doesn’t
understand it the way the others do.

Key concepts: Algebraic data types, case
expressions, and pattern matching
Here is an excerpt from a chapter of Ramsey that is not included
in the abridged edition:

1./ml.html
2./ml.pdf
3./ml.pdf
4./tofte-tips.pdf
5http://www.cs.cmu.edu/~rwh/isml/book.pdf

1

./ml.html
./ml.pdf
./ml.pdf
./tofte-tips.pdf
http://www.cs.cmu.edu/~rwh/isml/book.pdf

S-expressions are great, but if you think carefully, you
might notice that S-expressions work as a kind of high-
level assembly language on top of which you craft
your own data structures. ML, by contrast, offers a
powerful tool for expressing data structures directly:
the algebraic data type. Don’t let the mathy name
worry you; algebraic data types solve real programming
problems:

• Algebraic data types enable you to define types
that are recursive, like trees that contain subtrees
of the same type as themselves.

• Algebraic data types enable you to define types
by specifying choices, like a list that is made with
either '() or cons.

• Algebraic data types give you easy access to the
parts of data structures: instead of applying func-
tions like car and cdr, you use pattern matching
to name the parts.

Recursive types and definition by choices enable you
to express representations that are very similar to what
you might like to define in , and that also give you
the benefits of polymorphic type inference that you
get with ML. Types help you write good code, and
they provide documentation that is checked by the
compiler. Pattern matching eliminates the name-space
clutter and cognitive overhead associated with choice-
identifying and part-extracting functions like null?,
car, cdr, fst, and snd. Using pattern matching, you
make choices and extract parts by naming the choices
and parts directly. The resulting code is shorter and
more perspicuous than code without pattern matching.
Algebraic data types and pattern matching are ubiqui-
tous in the ML family and in languages derived from
it, including Standard ML, OCaml, HAskell, Agda,
Coq/Gallina, and Idris.

When you add algebraic data types to a language, you
get a new species of value and type, a new expression
form for looking at the values, and a new definition
form for introducing the types and values.

The new species of value is called a constructed value.
A constructed value is made by applying some value
constructor to zero or more other values. In the syntax,
however, we don’t apply zero-argument value construc-
tors; a zero-argument value constructor constitutes a
value all by itself. As examples, in ML, [] is a value
constructor for lists, and it expects no arguments, so it
constitutes a constructed value all by itself. And cons
(spelled ::) is also a value constructor for lists, but
it expects arguments, so to make a constructed value,
cons must be applied to two other values: an element
and a list.

A constructed value is observed or interrogated by a
new syntactic form: the case expression. The case ex-
pression does pattern matching: a pattern can match a
particular value constructor, and when it does, it can
name each of the values to which the constructor was
applied. For example, the pattern (y :: ys) matches
any cons cell, and when it matches, it binds the name y
to the car and ys to the cdr. A case expression includes
a sequence of choices, each of which comprises a pat-
tern and an associated right-hand side. One reason that
programmers really like case expressions is that if your
choices don’t cover all possible cases, a compiler can
alert you ().

Here’s an example case expression, a definition of
null:

fun null xs = (case xs of [] => true

| y :: ys => false)

And algebraic data type and its value constructors are
created by a new form of definition, which uses the
keyword datatype. In a datatype definition, you can
name a type whatever you want. For example, you
can define a new algebraic data type that is called int,
which then hides the built-in int.

Key concept: Types and type inference
• Ullman, section 2.2
• Harper, section 2.2, especially 2.2.1, sections 2.3 and 2.4
• Tofte, section 13

The elements of ML

Expressions I: Basic expressions and their types

Ullman is the only resource that goes into simple syntax at any
length. If you want more than you find below, search the Web for
the “Gentle Introduction to ML.”

• Ullman, sections 2.1 and 2.3
• Tofte, sections 1 to 5
• Examples from Ramsey, section 5.1: find, bind
• Examples from Ramsey, section 5.2: equalatoms, equal-
pairs

• Example from Ramsey, section 5.3: duplicatename

Expressions II: Minus signs

For reasons best known to Robin Milner, Standard ML does not
use the unary minus sign used in every other known language
(except APL). Instead, Standard ML uses the tilde as a minus
sign, as in ~1 or ~(n+1). The tilde is in fact an ordinary function
and may be treated as such.

2

Expressions III: Conditionals and short circuits
ML uses if e1 then e2 else e3, as well as short-circuit infix
andalso, orelse (never and).

• The abstract syntax is exactly like µScheme’s (if e1 e2 e3)
(&& e1 e2), and (|| e1 e2)

• Ullman, sections 2.1.5 and 2.1.6
• Harper, section 2.3 (and desugaring in section 6.3)
• (This material is not covered by Tofte)

Data I: Tuples
In µML, tuples are ordinary value constructors of ordinary ab-
stract data types (see below). But in Standard ML, they have
special syntax:

• Ullman, section 2.4.1 (not section 2.4.2, which is an utter
disaster, as noted below), plus 2.4.6 (tuple types)

• Tofte, sections 8, “Pairing and Tupling” (but don’t use func-
tion #i)

• Harper, section 5.1.1 (tuples)

Ullman pitfall: Jeff Ullman doesn’t understand how to program
with tuples. His section 2.4.2 should be torn out of your book and
shredded (just kidding). The use of #1 and #3 violates all estab-
lished customs for writing ML code—in part because #1 and #3

are not really functions, and they don’t have types! The right way
to extract an element from a tuple is by pattern matching, like
this:6

fun fst (x, _) = x

fun snd (_, y) = y

Never write this:

fun bogus_first p = #1 p (* WRONG *)

fun bogus_second p = #2 p (* WRONG *)

(For reasons I don’t want to discuss, but will answer in class
if asked, these versions don’t even typecheck.) If your pair or
tuple is not an argument to a function, use val to do the pattern
matching:

val (x, y) = lookup_pair mumble

But usually you can include matching in ordinary fun matching.

You probably won’t need to extract elements from a bigger tuple,
but if you do, try

fun third (_, _, z) = z

Any uses of #1, #2, and their friends will result in point deductions
on homework.

Data II: Lists
• Ullman, sections 2.4.3 to 2.4.5, plus 2.4.6 (list types)
• Tofte, section 4
6The fun is function-definition syntax, like µScheme’s define. It is de-

scribed below.

• Harper, chapter 9 (which is short)

The most common mistake I see in list-related code is to write
xs = nil (wrong). Never write this. Either use null xs (that’s
why null is in the initial basis) or use pattern matching.

You’ll find most of your favorite list functions in the initial basis,
either defined at top level or in the List module.

• Ullman, section 5.6
• Neither Tofte nor Harper says much about the initial basis
• Try help "list"; at the Moscow ML prompt, then select
structure List. (“Structure” is ML’s name for “mod-
ule”.)

Data III: Constructed values and patterns that
match them
Aside from the type system, the big new thing in ML is the system
of “constructed values,” which belong to algebraic data types.

• Ramsey, sections 8.1, 8.2.1, and 8.2.2 (page 559 includes
examples of patterns that do and don’t match)

• Ullman, sections 3.3 and 5.1
• Tofte, sections 8, 9, and 10
• Harper, sections 10.2, 10.3, and possibly 10.4

Tuples and records should also be considered constructed values.
In µML, tuples and records are simulated with ordinary algebraic
data types. In Standard ML, tuples and records have their own
syntax and their own rules, but the ideas of construction and
deconstruction (pattern matching) are the same.

Lists are constructed values that are supported with extra syntac-
tic sugar for constructing and matching lists. Some useful list
patterns include these patterns, to match lists of exactly 0, 1, 2, or
3 elements:

[]

[x]

[x, y]

[a, b, c]

You can also use the :: (cons) constructor in patterns, where it
appears infix. These patterns match lists of at least 0, 1, 2, or 3
elements:

xs

x :: xs

x1 :: x2 :: xs

a :: b :: c :: xs

Inexhaustive or redundant pattern matches
In any case expression or function definition, the patterns you
provide must match all cases. If they don’t, the pattern match is
considered “inexhaustive” and is rejected by the compiler.

And in any case expression or function definition, every pattern
you provide must match some case. If one pattern doesn’t match

3

any case, that pattern is considered “redundant,” and the match is
rejected by the compiler.

• Harper, section 6.4 (recommended) and page 105
• Ramsey, glossary page 385
• Ramsey, section 8.8.2
• Ullman, section 3.3.6 (inadvertent redundancy)

Types I: Introduction to types
Base types int, string, char, real, bool. Type constructors
like 'a list take a type parameter 'a.

• Ullman, section 2.4.6
• Harper, chapter 2 (of which you already know section 2.2.2)
• Tofte, sections 1 and 13

Definitions I: Val bindings
ML’s val bindings resemble those from µScheme, although
µScheme’s val corresponds to ML’s val rec, which is µML’s
val-rec.

What we call a “definition” form is, to Standard ML, a “declara-
tion” form.

• Ullman, section 2.3
• Tofte, section 6
• Harper, sections 3.2.2 and 3.3

Definitions II: Semicolons
It’s a sad fact that if you’re working interactively with an ML com-
piler, the compiler can’t tell where a definition ends. You have
to mark the end with a semicolon. But such a semicolon should
never appear in your code. Ullman’s book is full of unnecessary
semicolons, and you must learn to ignore him. Emulate the style
in Ramsey’s book, which has no unnecessary semicolons. Use a
semicolon only to sequence effects in imperative code.

Definitions III: Function definitions
As in µScheme and µML, functions can be defined using lambda
with val or val rec. But it is more idiomatic to use fun, which
is the analog of the define found in µScheme and µML.

• Ullman, sections 3.1 and 3.2
• Tofte, section 6
• Harper’s chapter 4 is about functions. Although the chapter

is long-winded and is more about the mathematical idea of
functions than it is about how to program with functions,
it is still useful—even though his examples include many
unnecessary type annotations. The most helpful part of
the chapter is probably Section 4.2, which contains several
examples, especially at the end.

• Harper’s chapter on recursive functions contains some more
useful examples in sections 7.1, 7.2, and 7.4. The Fibonacci
example in section 7.3 may also be useful. This chapter also

includes substantial material on the mathematical justifica-
tion for recursion and on the nature of inductive reasoning.
You can learn ML without reading this material.

Definitions IV: Clausal (function) definitions
Standard ML’s fun also provides clausal definitions, which in
µML are written define*. These definitions look a lot like
algebraic laws.

• Ramsey, define*, pages 575-576
• Ullman, section 3.3. Do not emulate Ullman’s disgrace-

ful placement of the vertical bar, and do not emulate his
gratuitous semicolons.

• Tofte, section 11
• Harper, sections 6.2 and 6.4

Expressions IV: ML’s let
ML’s let most closely resembles Scheme’s let*, but instead
of a sequence of name/expression pairs, it uses a sequence of
definition forms. The effect of letrec can be approximated by
using a fun definition form with keyword and. Standard ML has
nothing corresponding to Scheme’s let form.

• Ullman, section 3.4
• Tofte, section 6
• Harper, section 3.4

Expressions V: ML’s lambda
As noted above, ML’s lambda expressions are written fn (x1,
. . ., xn) => e.

• Ullman, section 5.1.3
• Tofte, section 7
• Harper, section 4.2

Expressions VI: Infix operators and precedence
The initial basis of Standard ML defines the following names as
infix identifiers:

infix 7 * / div mod

infix 6 + - ^

infixr 5 :: @

infix 4 = <> > >= < <=

infix 3 := o

infix 0 before

The arithmetic you know, although you may not know that / is
for floating point; div and mod are for integers. Here are the
others:

• Operation ^ is string concatenation.
• Operations :: and @ are “cons” and “append” on lists.
• Operation := is assignment to a mutable reference cell.
• Operation o is function composition.

4

• Operation before is used to add a side effect to a computa-
tion.

Function application has higher precedence than any infix op-
erator. That means a function application underneath an infix
operator should never be parenthesized!

Expressions VII: Infix operators as functions

The mechanism that ML uses for infix operators is very different
from what you are used to from C and C++.

• The infix symbols are names, and they stand for ordinary
functions.

• The names are set up to be used as infix operators by so-
called fixity declarations. A fixity declaration for an infix
name specifies precedence and associativity.

• When you want to use an infix name in a function applica-
tion, you just write it as an infix operator.

• When you want to refer to the function as a value, you have
to put the syntactic particle op in front of the name.

For details, see

• Ullman, section 5.4.4
• Harper, super-brief mention on page 78

Expressions VIII: Parentheses

It’s easy to be confused about when you need parentheses. Here’s
a checklist to tell you when to use parentheses around an expres-
sion or a pattern:

1. Is it an argument to a (possibly Curried) function, and if so,
is it more than a single token?

2. Is it an infix expression that has to be parenthesized because
the precedence of another infix operator would do the wrong
thing otherwise?

3. Are you forming a tuple?
4. Are you parenthesizing an expression involving fn, case,

or handle?
5. Are you parenthesizing an infix operator marked with op?

If the answer to any of these questions is yes, use parentheses.
Otherwise, you almost certainly don’t need them—so get rid of
them!

Especially,

• Never parenthesize the condition in an if expression. Such
parentheses brand you as an unreconstructed C programmer.

• Never put parentheses around a single token. For example,
never write something like (0) or (xs), as in double(0)

or length(xs). Write double 0 or length xs instead.
(Ullman breaks this rule all the time. We hates it!)

Types II: Polymorphic functions

In ML, as in Scheme, you can write polymorphic functions simply
by writing functions that are agnostic about some aspects of their
arguments. The difference is that in ML, type system infers at
compile time the knowledge that the function is polymorphic.
You can probably learn all you need by feeding some of your
µScheme code to the nano-ML (nml) or µML (uml) interpreters;
you can identify a polymorphic function by the forall in the
type. (Most unfortunately, Standard ML omits the forall from
the type. You’re supposed to imagine it.)

• For an introduction, Ullman, section 5.3
• For a deep look, including some technical details, Harper,

chapter 8
• (Not covered in Tofte)

Curried functions

What we call a “partially applied” function, Ullman calls “par-
tially instantiated.” (He’s thinking of a substitution model. Bad
Ullman.) There are no new concepts here, but the concrete syntax
is radically different from what you’re used to in µScheme.

• Ullman, section 5.5
• Tofte, section 7
• Harper, section 11.3 (as usual, a very technical approach)

Exceptions

ML exceptions behave a lot like the Hanson Except_T you may
have seen in COMP 40, and somewhat like exceptions in C++
or Java.

• Ullman, section 5.2
• Tofte, section 16
• Harper, opening of section 2.2 (example of an “effect”)
• Harper, chapter 12 (this is a long chapter, but after you

read through the first example in section 12.2, you’ll know
enough to get started)

Types III: Type abbreviations

Type abbreviations are a leading cause of confusion for beginning
ML programmers. A type abbreviation, which begins with the
keyword type, creates a new name for an old type. But in its
error messages, the compiler may not honor the abbreviation—it
may insist on referring to the old type instead.

If you’re asked to “define a type,” you have to decide if you want
a type abbreviation with type, or whether you want a “datatype
definition” with datatype. Because both have similar effects on
the type environment, both count as “define a type.”

• Ullman, section 6.1
• Tofte, section 14
• Harper, section 3.2.1

5

A type abbreviation can take type parameters. A type parameter
is identified by a name that begins with a tick mark, and the
names traditionally used are 'a, 'b, 'c, and so on. On the topic
of type abbreviations with type parameters, both Harper and
Tofte are unaccountably silent. Ullman at least gives a sketch in
section 6.1.3. For an example, I recommend the definition of type
env in Ramsey, chunk 359.

Data IV: Datatype definitions
A datatype definition creates a brand new type, which is distinct
from any other type—even one that has the same name. If you
create multiple types with the same name, you will become con-
fused.

• Ullman, section 6.2
• Ramsey, section 5.2, example datatype definitions, in Stan-

dard ML, for the µScheme interpreter
• Ramsey, sections 8.1 and 8.2.3 (sensible only after you

already understand what is going on with the types)
• Tofte, section 15
• Harper, chapter 10 (and for something with a type parameter,

section 10.3)
• Ramsey, page 548, the example about option@{2}, for

understanding about multiple types with the same name

Type pitfall I: “Equality types” (two tick marks)
Some type variables begin with two tick marks, as in

- fun isNothing v = (v = NONE);

> val ''a isNothing = fn : ''a option -> bool

The type variable ''a can be instantiated only by an “equality
type.” A type variable like this, called an “equality type variable,”
is almost always a programming mistake. The code above should
have used pattern matching (compare Ullman, page 215).

For details:

• Ullman, section 5.3.4 on page 150
• Ullman, box on page 209
• MLton documentation: the rules that say what types can be

compared with equality7, and explanation of the primitive =
function8.

• (Neither Harper nor Tofte cover equality types.)

Primitive types exn and real (floating-point numbers) are not
equality types.

Type pitfall II: Value polymorphism
In Standard ML, no function is ever trusted to create a poly-
morphic value. Only value constructors can create polymorphic
values. If you violate this so-called “value restriction,” you get a
message like this one:

7http://mlton.org/EqualityType
8http://mlton.org/PolymorphicEquality

- val empty = rev [];

! Warning: Value polymorphism:

! Free type variable(s) at top level in value identifier empty

> val empty = [] : 'a list

For details:

• Harper, section 8.2 on page 70
• Ullman, section 5.3.1 on page 145
• (Not covered in Ramsey or Tofte)

Basis I: The option type
Let’s suppose you want to represent a value, except the value
might not actually be known. For example, I could represent
a grade on a homework by an integer, except if a grade hasn’t
been submitted. Or the contents of a square on a chessboard
is a piece, except the square might be empty. This problem
comes up so often that the initial basis for ML has a special
type constructor called option, which lets you handle it. The
definition of option is

datatype 'a option = NONE | SOME of 'a

and it is already defined when you start the interactive system.
You need not and should not define it yourself. As in a type
abbreviation, the type parameter 'a stands for an unknown type—
you can substitute any type for the type variable 'a.

Read

• Ramsey, pages 547 and 548
• Ullman, section 4.1 (pages 111–113) and page 208.
• (Not covered in Tofte)
• Harper, section 10.2 (in passing)

Here are some more examples:

- datatype chesspiece = K | Q | R | N | B | P

- type square = chesspiece option

- val empty : square = NONE

- val lower_left : square = SOME R

- fun play piece = SOME piece : square;

> val play = fn : chesspiece -

> chesspiece option

- SOME true;

> val it = SOME true : bool option

- SOME 37;

> val it = SOME 37 : int option

- SOME "fish" = SOME "fowl";

> val it = false : bool

- SOME "fish" = NONE;

> val it = false : bool

- "fish" = NONE;

! Toplevel input:

! "fish" = NONE;

! ^^^^

6

http://mlton.org/EqualityType
http://mlton.org/PolymorphicEquality

! Type clash: expression of type

! 'a option

! cannot be made to have type

! string

Data V: Record types, values, expressions, and pat-
terns
In addition to tuples, Standard ML has records with named fields.
A record is notated by a set of key-value pairs, separated by
commas, and enclosed in curly braces. The order of the pairs
doesn’t matter. Unfortunately, records come with some special
rules and special syntax that can cause pain for beginners.

• By far the most useful introduction to records is Harper’s
section 5.2, which has the longest explanation and the best
examples. Harper’s section 5.3 mixes some useful examples
with some dangerous examples. You’ll be all right as long as
you heed Harper’s advice that “Use of the sharp notation is
strongly discouraged.” In COMP 105, the sharp notation
is forbidden.

• Ullman’s sections 7.1.1 and 7.1.5 are reliable, as are parts of
section 7.1.4.

• Ullman pitfall: Disregard Ullman’s section 7.1.2. The
#name syntax, like the #n syntax for tuples, is worse than
useless—it actively makes it more difficult to write your
code. Use pattern matching instead.

• Avoid using the ellipsis in record patterns. To use it success-
fully, you must have a deep understanding of type inference
and of Standard ML’s peculiar approach to record types.

• Tofte mentions records briefly in section 8. That pitfall is
back: you must avoid what Tofte calles the #lab syntax—
#lab is not a function, and it will trip you up.

What’s wrong with the sharp notation? In brief, #name is a piece
of syntax—it’s not a function, and it doesn’t have a unique type.
What’s wrong with ellipsis patterns? Same thing: an ellipsis
pattern doesn’t have a unique type.

Basis II: Access to functions defined in modules
Standard ML includes a sophisticated module language—one of
the most expressive module languages ever designed. But at least
to start, you’ll use modules in a very stylized way: by selecting
components from modules in the initial basis. Such selection
uses “dot notation,” with the name of the module followed by
the name of a component. Examples include Int.toString and
List.filter.

• You can see some examples in Tofte, section 19
• There’s another example in Ullman, section 8.2.3
• Ullman pitfall: Avoid the open technique described in Ull-

man’s section 8.2.4
• I’m not seeing any place where Harper explains this notation.

In section 8.2.4, Ullman shows that you can get access to the
contents of a module by opening the module, as in open Tex-

tIO. Never do this—it is bad enough to open structures in the
standard basis, but if you open other structures, your code will
be hopelessly difficult to maintain. Instead, abbreviate structure
names as needed. For example, after structure T = TextIO,
you can use T.openIn, etc., without (much) danger of confusion.

Basis III: Getting to know the Standard Basis
The initial basis of Standard ML is called the “Standard Basis,”
or sometimes the “Standard Basis Library.” Get to know it, and
use it when you can.

Modules you can learn easily include List, Option, ListPair,
Vector, and Array. You may also have some use for TextIO.

Moscow ML ships with an extended version of the standard basis
library. Tell Moscow ML help "lib";, and you’ll see what’s
there.

ledit mosml -P full

as your interactive top-level loop, it will automatically load almost
everything you might want from the standard basis.

Basis IV: Vectors
Although Ullman describes the mutable Array structure in Chap-
ter 7, he doesn’t cover the immutable Vector structure except for
a couple of pages deep in Chapter 9. Like an array, a vector offers
constant-time access to an array of elements, but a vector is not
mutable. Because of its immutability, Vector is often preferred.
It is especially flexible when initialized with Vector.tabulate.

The functions to start with include Vector.tabulate, Vec-
tor.fromList, Vector.length, and Vector.sub. The Vec-
tor structure also includes variations on app, map, foldl,
foldr, find, exists, and all.

7

Unit Testing
Standard ML does not come with built-in unit-testing support.
For COMP 105, we have created a special module called Unit,
which exports functions that can be used for unit testing. These
and related functions are shown in the table.

Example unit tests

You write a unit test in the form of a val definition with the empty
tuple as the pattern. Here are two examples, only one of which
passes:

val () =

Unit.checkExpectWith Int.toString "2 is third"

(fn () => List.nth ([1, 2, 3], 2))

3

val () = (* this test fails *)

Unit.checkExpectWith Bool.toString "2 is false"

(fn () => List.nth ([true, false, true], 2))

false

The difference between this module and the check-expect you
are used to is that check-expect takes just an expression, but
Unit.checkExpectWith requires that expression be wrapped in
a function of no arguments. So if you are expecting expression e
to evaluated to value v, you must write

Unit.checkExpectWith . . . (fn () => e) v

Functions Unit.checkAssert and Unit.checkExnWith work
the same way. Here are two more examples, both of which pass:

val () =

Unit.checkAssert "has positive"

(fn () => List.exists (fn n => n > 0) [~1, 0, 1])

val () =

Unit.checkExnWith (Unit.listString Int.toString)

"3rd element of empty list"

(fn () => List.nth ([], 3))

Bureaucracy of getting our module (Moscow ML)

To use the unit tests, you must have a compiled version of the
Unit module. You may use ours, or you may compile it yourself.

• To use ours, tell Moscow where to look by giving it the
command-line option -I /comp/105/lib. This option
works with both mosml and mosmlc.

• To compile it yourself, copy files Unit.sig and Unit.sml

from /comp/105/lib, and compile them at your shell
prompt:

$ mosmlc -c Unit.sig

$ mosmlc -c Unit.sml

These commands should produce files Unit.ui and
Unit.uo.

The batch compiler mosmlc should now be able to compile your
code using Unit:

$ mosmlc -toplevel -I /comp/105/lib -

c warmup.sml

At this stage, you can load your code into the interactive system:

$ mosml -I /comp/105/lib -P full

Moscow ML version 2.10-3 (Tufts University, April 2012)

Enter `quit();' to quit.

- load "warmup";

> val it = () : unit

- Unit.report();

Both internal Unit tests passed.

> val it = () : unit

If you prefer to bring your source code directly into Moscow ML,
without compiling first, you can call ML’s use function, but you
will need to load the Unit module first:

$ mosml -P full -I /comp/105/lib

Moscow ML version 2.10-3 (Tufts University, April 2012)

Enter `quit();' to quit.

- load "Unit";

> val it = () : unit

- use "warmup.sml";

[opening file "warmup.sml"]

...

[closing file "warmup.sml"]

> val it = () : unit

-

If you forget this step, you’ll get an error message:

nr@homedog /tmp> mosml -P full -I /comp/105/lib

Moscow ML version 2.10-3 (Tufts University, April 2012)

Enter `quit();' to quit.

- use "warmup.sml";

[opening file "warmup.sml"]

File "warmup.sml", line 2, characters 6-22:

! Unit.checkAssert "has positive"

! ^^^^^^^^^^^^^^^^

! Cannot access unit Unit before it has been loaded.

[closing file "warmup.sml"]

-

Just load "Unit"; and you’ll be on your way.

Bureacracy of getting our module (MLton)
Compiling multiple modules in MLton is a hassle: you have
to have an “MLB” file that lists all the modules you want,
in dependency order, plus the version of the basis you want.
This is a hassle. To get the unit module, you include
/comp/105/lib/unit.mlb in your own MLB file. Where you

8

need unit tests for the homework, we’ll provide an MLB file you
can use.

Documentation of all the functions
Every function in the Unit module is declared with a name and a
type. These declaration forms, which are shown below, are part
of ML’s modules system. Each declaration is followed by some
informal English. To refer to the function from outside the Unit
module, in your code, you need “Unit dot function-name.”

Testing functions

The closest analog to check-expect is the function
Unit.checkExpectWith:

val checkExpectWith : (''a -> string) ->

string ->

(unit -> ''a) ->

''a ->

unit

Calling checkExpectWith show name test result evalu-
ates test(), applying test to the empty tuple. If the result
equals result, the test passes; otherwise it fails. If the test fails,
name is used to identify the failing test.

The closest analog to check-assert is Unit.checkAssert:

val checkAssert : string -> (unit -> bool) -

> unit

Calling checkAssert name test evaluates test(), and if the
result is true, the test passes; otherwise it fails. If the test fails,
name is used to identify the failing test.

The closest analog to check-error is Unit.checkExnWith:

val checkExnWith : ('a -> string) ->

string ->

(unit -> 'a) ->

unit

Calling checkExn show name test evaluates test(), and if
the evaluation raises an exception, the test passes. If test()
returns a value, the test fails. If the test fails, name is used to
identify the failing test.

The three functions above will serve you in most situations, but if
you want to be sure you know what exception is raised, use this
one:

val checkExnSatisfiesWith :

('a -> string) ->

string ->

(unit -> 'a) ->

(string * (exn -> bool)) ->

unit

Calling

checkExnSatisfiesWith show name test (ename, pred)

evaluates test(), and if the evaluation raises an exception e,
the test passes, provided pred e is true. If test() raises a non-
satisfying exception, or if test() returns a value, the test fails,
complaining that the exception named ename was expected. If
the test fails, name is used to identify the failing test.

Reporting functions

Use these functions to confirm that all your unit tests pass.

val report : unit -> unit

If any tests were run, report, on standard output, how many tests
were run in total and how many passed.

val reportWhenFailures : unit -> unit

If any tests failed, report, on standard output, how many tests
were run in total and how many passed.

String-conversion functions

Use these functions to create string-conversion functions to pass
to checkExpectWith and checkExnWith.

val listString : ('a -> string) ->

('a list -> string)

If showA converts a value in~A to a string, then listString

showA returns a function converts a value in “list of A” to a
string.

val pairString : ('a -> string) ->

('b -> string) ->

('a * 'b -> string)

If showA converts a value in~A to a string, and showB converts
a value in~B to a string, pairString showA showB returns a
function that converts a pair of type A×B to a string.

val showNothing : 'a -> string

If you need to convert a value of type A to a string, but you
don’t have a converter—and you don’t want to write one—you
can use showNothing with any type A. Function showNothing

converts every value to the string "a value".

An example with a user-defined type
Here is an example of using checkExpectWith:

datatype color = LAVENDER | BURGUNDY | VIRIDIAN

fun colorString LAVENDER = "LAVENDER"

| colorString BURGUNDY = "BURGUNDY"

| colorString VIRIDIAN = "VIRIDIAN"

val favorites = [BURGUNDY, LAVENDER, VIRIDIAN]

val () = (* this test fails *)

Unit.checkExpectWith colorString

"least favorite color"

(fn () => List.last favorites)

LAVENDER

9

This test fails with this error message:

In test ‘least favorite color’, expected value LAVEN-
DER but got VIRIDIAN

Here is an example of using checkExnWith:

val () = (* this test passes *)

Unit.checkExnWith colorString

"last of empty string"

(fn () => List.last [])

Table 1: Functions useful for unit testing

Function Description

Unit.checkExpectWith

An adequate substitute for
check-expect. Requires a function to
convert result to a string. And because an
ML function does not know where in the
source coded its definition is,
checkExpectWith also requires a test
name, which should uniquely identify the
test.

Unit.checkAssert An adequate substitute for
check-assert. Requires a test name.

Unit.checkExnWith An adequate substitute for check-error.
Used when you expect evaluating an
expression to raise an exception. Also
requires a name and a string-conversion
function.

Unit.checkExnSatisfiesWith

A refined version of
Unit.checkExnWith that enables you to
control which exceptions are considered
to pass the test.

Unit.report Prints a report of testing outcomes.
Unit.reportWhenFailures

Prints a report only if some test fails.
Int.toString Convert an integer to a string. Sometimes

useful for passing to checkExpectWith,
checkExnWith, or
checkExnSatisfiesWith.

Bool.toString Convert a Boolean to a string.
Char.toString Convert a character to a string.
Unit.listString A higher-order function. Given a function

that converts a value to a string, returns a
function that converts a list of values to a
string. Useful for passing to
checkExpectWith and friends.

Unit.pairString Another higher-order function. Given two
string-conversion functions, returns a
function that converts a pair of values to a
string.

10

ML Modules

General information on modules
If you want to review what you heard in class,

• The Code & Co. blog9 has a nice post on ML modules10,
which covers all three major components: structures, signa-
tures, functors

• Ullman, in Section 8.1, gives the same sort of guff you
heard in lecture about information hiding. It’s a lightweight,
non-technical overview.

• Tofte, Section 21 provides the barest possible introduction.

Signatures, Structures, and Ascription
The foundations are interfaces, implementations, and matching
one to the other—or in the gratuitously mathematical lingo of
Standard ML: signatures, structures, and ascription.

• Harper, although a bit long-winded, provides the most
complete and detailed treatment of these topics. I recom-
mend you start there. Chapter 18 presents signatures and
structures—not just the basics, but a fair number of details.

A detailed explanation of what it means for a signature to
match a structure is there in Chapter 19. The presentation is
very careful and well thought out, with examples.

Chapter 20 explains ascription, again very well, with exam-
ples. Focus your attention on section 20.2 (opaque ascrip-
tion). You can skip section 20.3 (transparent ascription)—
while Harper does his honorable best to make a case, the
sad truth is that there is not really a compelling case for
transparent ascription. And transparent ascription is not
acceptable in COMP 105.

If Harper is too detailed or too mathematical for your taste,
try one of the other sources.

• Most of these topics are addressed by Ullman in Section 8.2,
but there are quite a few pitfalls to avoid:

– Section 8.2.2 describes ascription, which Ullman calls
“restriction.” Unfortunately, Ullman uses the legacy
“transparent” ascription style with a bare colon. This
style is not acceptable in COMP 105. Use proper
“opaque” ascription—the one with the “beak” oper-
ator (:>). Ullman says a little more about opaque
ascription in section 8.5.5.

– Section 8.2.4 describes open. I won’t waste space here
detailing all the reasons open is terrible; just be aware
that in COMP 105, use of open is grounds for No
Credit on the modules assignment.

9https://jozefg.bitbucket.io/about.html
10https://jozefg.bitbucket.io/posts/2015-01-08-modules.html

• Tofte covers the basics in sections 22 to 27. Again, the
“transparent” constraints in section 25 are the ones to avoid,
and the “opaque” constraints in section 26 are the ones to
use.

Signature refinement or specialization

Quite often, we need to specify the identity of an abstract type
after the fact—usually when writing the result signature of a
functor. This is done using the where type syntax.

• Ullman completely omits signature refinement using
where type. Without this tool, opaque ascription is crip-
pled. You’ll need to read about it in Tofte or Harper.

• Tofte calls the technique “type realization,” and you’ll find
it described, with a careful example, in section 27.

• Harper describes signature specialization in section 18.1.2.

Modules can nest

An excellent aspect of Standard ML’s design is that structures can
contain other structures. That’s really all you need to know, but
if you want to understand why this feature is valuable, there are
plenty of good examples in Harper, chapter 21.

Functors

Paraphrased from Harper: an ML functor is a function that op-
erates on the module level. Its formal parameters, if any, are
specified by a sequence of declarations, and its actual parameters
are given by a sequence of definitions. Its result is a structure.
Functors enable a variety of styles of programming, but in 105,
we focus on the functor as a mechanism for code reuse.

• The basics are found in Harper, section 23.1.

There is a dirty secret: there is a second mechanism for specifying
parameter(s) to a functor, which is to package everything up in
a single structure. I much prefer Harper’s “sequence of declara-
tions/definitions” view, and I don’t know why we are stuck with
two mechanisms. But you’ll see the second mechanisms from
time to time.

• Ullman, in Section 8.3, spends a lot of ink mucking about
with various alternative ways of defining functors’ param-
eters. Ullman manages to take a simple thing and make it
seem complicated. On this subject, I recommend avoiding
Ullman entirely.

• Tofte, Section 28, is saner than Ullman, but he doesn’t han-
dle the argument issue as well as Harper does. The form that
Harper prefers (and that we prefer also) is treated by Tofte
as “an alternative form.” You’ll notice, however, that this
form is what Tofte uses in his example.

11

https://jozefg.bitbucket.io/about.html
https://jozefg.bitbucket.io/posts/2015-01-08-modules.html

Sharing constraints
Don’t ask. In COMP 105 we do our best to avoid putting you
in situations where you need sharing constraints. But if you
trip over them, Harper’s Chapter 22 is the best source. Follow
up with sections 23.2 and 23.3, in which Harper explains when
sharing constraints are needed and why they are better than the
alternatives. They are also mentioned by Tofte in section 28.

Abstract data types
Harper completely understands the importance of data abstraction
and the use of ML modules to enforce it.

• Section 20.2 introduces opaque ascription by explaining its
role in data abstraction.

• Chapter 32 presents a complete, sophisticated example of
data abstraction using the familiar abstraction of a dictio-
nary. The chapter shows implementations using two differ-
ent forms of binary search tree.

12

	Key concepts: Algebraic data types, case expressions, and pattern matching
	Key concept: Types and type inference
	The elements of ML
	Expressions I: Basic expressions and their types
	Expressions II: Minus signs
	Expressions III: Conditionals and short circuits
	Data I: Tuples
	Data II: Lists
	Data III: Constructed values and patterns that match them
	Inexhaustive or redundant pattern matches
	Types I: Introduction to types
	Definitions I: Val bindings
	Definitions II: Semicolons
	Definitions III: Function definitions
	Definitions IV: Clausal (function) definitions
	Expressions IV: ML's let
	Expressions V: ML's lambda
	Expressions VI: Infix operators and precedence
	Expressions VII: Infix operators as functions
	Expressions VIII: Parentheses
	Types II: Polymorphic functions
	Curried functions
	Exceptions
	Types III: Type abbreviations
	Data IV: Datatype definitions
	Type pitfall I: ``Equality types'' (two tick marks)
	Type pitfall II: Value polymorphism
	Basis I: The option type
	Data V: Record types, values, expressions, and patterns
	Basis II: Access to functions defined in modules
	Basis III: Getting to know the Standard Basis
	Basis IV: Vectors

	Unit Testing
	Example unit tests
	Bureaucracy of getting our module (Moscow ML)
	Bureacracy of getting our module (MLton)
	Documentation of all the functions
	Testing functions
	Reporting functions
	String-conversion functions

	An example with a user-defined type

	ML Modules
	General information on modules
	Signatures, Structures, and Ascription
	Signature refinement or specialization
	Modules can nest
	Functors
	Sharing constraints
	Abstract data types

