Reduction Strategies for Lambda Calculus

Norman Ramsey

Spring 2019

1 Introduction

If our notion of operational semantics for lambda
calculus is “reduce the term until it reaches normal
form,” we have a little problem: the semantics is
nondeterministic. In general, nondeterminism can be
simulated by evolving a set that includes all possi-
ble derivations. But in the case of lambda calcu-
lus, we prefer to explore just a single derivation at
a time. The algorithm used to select a single deriva-
tion among multiple possibilities is called a reduction
strategy.

Reduction strategies are studied primarily for in-
sight into operational semantics of real languages.
Applicative-order reduction models typical evaluation
rules, which are found in “eager” or “strict” languages
like Algol, C, and ML. Normal-order reduction mod-
els atypical evaluation rules, which are found in “lazy”
languages like Clean and Haskell (as well as the legacy
feature “call by name,” which can found in a few im-
perative languages). This handout

e Presents reduction rules for untyped lambda cal-
culus

e Explains normal-order reduction and applicative-
order reduction

e Sketches what’s interesting or useful about each
rule or strategy

2 Reduction relations

The operational semantics of the untyped lambda
calculus is given by two relations:

M — M’ M reduces to M’ in one step

M —* M’ M reduces to M’ in zero or more steps
The interesting relation is the single-step reduction,
which is given by these rules (most names are from
Panangaden, 2017):

. — N’
(BETA} 5 (Muv)
(M. M)N — M[z — N| MN — MN
M — M’ M — M’

(Nv))

VN SN T ooy X
MN — M'N o.M — Az.M

Each of these rules has a rough analog in the world
of programming;:
BETA Apply a function

Mu Evaluate an actual parameter
Nu Evaluate to get a closure that can be applied
X1 Optimize code, e.g., by inlining

A complete computation reduces in zero or more
steps. The —* relation is the reflexive, transitive clo-
sure of the — relation. (The star, which you may
have seen in regular expressions or in discrete-math
class, is a standard way of saying “zero or more.”)

M — M M —* N
M —=* N

(RuO) (Tav)

M —* M

To complete the lambda calculus, we need to be
able to rename a bound variable (formal parameter):

y is not free in M
Az M — Ay.M[z — y]

(ALPHA)

The ALPHA rule is needed to establish the Church-
Rosser theorem and the other results mentioned be-
low, but it plays no role in reduction. (For purposes
of modeling computation, we typically consider that
alpha-renaming does not actually change the term.
In technical language, if one term reduces to another
by a sequence of alpha renamings, we identify those
terms as equivalent.)

3 Implementing the rules

The reduction rules are implemented by a function
reduce, which takes M as input and returns one of
the following:

e ONE_STEPS_TO M’, if M — M’

e DOESN’T_STEP, if there is no M’ such that
M — M

The implementation can be constructed by following
almost exactly the method outlined in the handout
“Program Design with Typing Rules.” A term has
one of three forms (x, Az.M, and M N), and given
each form, you look for a rule that has the form in the
conclusion. Here is what we know about each form:

e The x form is not reduced by any rule, so the
reducer always returns DOESN’ T_STEP.

e The Ax.M form is reduced by exactly one of the
rules above (XI), and there’s a reduction judg-
ment above the line, so the reducer always makes
a recursive call to try to reduce M.

e The M N form (application) might be reduced
by BETA, MU, or NU.

The application form is where our old method breaks
down: when a reducer is given an application form,
there’s more than one rule to choose from. A nonde-
terministic computation tries all the choices. A de-
terministic computation, which always tries rules in a
fixed order, is called a reduction strategy.
The choices for reducing M N are

Nu Try to reduce M

Mu Try to reduce N

BETA (Only if M is a A form: reduce M N
Three rules can be ordered in six ways, but in
practice, only three orders are used:

e If we try first BETA, then NU, and finally Mu,
we are implementing the normal-order reduction
strategy. It is also called the “leftmost, outer-
most” reduction strategy.

Normal-order reduction is the basis for eval-
uation in “lazy” languages like “Haskell” and
“Clean.”

o If we try MU before BETA, we have an
applicative-order reduction strategy. There are
two typical variants: MU, NU, BETA is a left-
to-right applicative-order reduction strategy, and
Nu, Mu, BETA is a right-to-left applicative-order
reduction strategy.

Applicative-order reduction is the basis for eval-
uation in “eager” languages like ML, JavaScript,
C, and C++. Both left-to-right and right-to-left
strategies can be found in the wild—sometimes
both in the same language.

4 What difference it makes

Does it matter what reduction strategy we use? Yes:
a reduction strategy affects both performance (how
many reductions are needed to reach a normal form)
and termination (whether a normal form is reached at
all). However, if reduction does reach a normal form,
it doesn’t matter how we got there—all normal forms
for a same term are equivalent. This property, which

1When we add the ETA rule below, some \ forms will also
be eligible for ETA reduction, complicating the reducer.

makes lambda calculus a good model for computa-
tion, is a consequence of the most important theorem:
the Church-Rosser theorem. This theorem says that
if M - A and M — B, possibly by different reduc-
tion strategies and therefore producing different terms
A and B, then there always exists a term C' such that
A —=*C and B —* C. If C is a normal form, then it
is “the” normal form of M (and A and B).?

Different reduction strategies can always lead to the
same normal form, but we still care about other dif-
ferences. To illustrate those differences by example,
consider an application (Az.M) N in several possible
scenarios:

e Reducing N is expensive

e Reducing N doesn’t terminate

e x does not appear free in M

e x appears free in M, multiple times
Who wins?

e If = doesn’t appear free in M, normal-order
reduction wins. In particular, if reduction of
N doesn’t terminate, applicative-order reduction
doesn’t terminate—but normal-order reduction
does.

e If x appears free multiple times in M,
applicative-order reduction probably wins:
normal-order reduction makes multiple copies
of N, and chances are those copies will be
reduced. In normal-order reduction, each copy
must be reduced to normal form separately. But
in applicative-order reduction, N is reduced to
normal form before it is ever substituted for x.
That wins, wunless the result of reducing M
doesn’t actually depend on z. (This is possible
even if x appears free in M, and the question is
undecidable.)

Bottom line, the only thing that can prevent us
from finding a normal form is an infinite, nonter-
minating sequence of reductions. Normal-order re-
duction delays every reduction until the last possible
minute, so if an infinite sequence of reductions can
be avoided, normal-order reduction will avoid it. It’s
called “normal-order” reduction because if a normal
form exists, normal-order reduction is guaranteed to
find it.

5 Eta reduction and expansion

One additional rule is left out of most presentations
of lambda calculus.

z not free in M

(ETa)
.Mz — M

2 Always up to the equivalence induced by ALPHA-renaming.

The ETA reduction says, “the function that takes x
and applies M to x is just M.” In the lingo of lambda
calculus, if = is not free in M, then \z.Mz is an “eta-
redex.”

The introduction of the ETA rule complicates a re-
ducer. Given a form Az.N, the reducer has to make
a decision:

e Does N have the form M z? If so, is = a free
variable of M7 If N hase the form M x and x is
not free in M, then the whole form reduces to M
(the ETA rule).

e Regardless of the form of N, it is always fair game
to try to reduce N (the X1 rule). But if that
reduction fails, the ETA rule must be considered.

If M is not a normal form, then a choice between
ETA and XI introduces some nondeterminism. But
as far as I know, this nondeterminism has no impli-
cations in practice: ties between ETA and X1 can be
broken arbitrarily. Like X1, ETA is used primarily by
optimizing compilers.

Perfectly reasonable variations on lambda calculus
omit both ETA and Xi. When both ETA and X1
are omitted, Wikipedia calls the resulting evaluation
strategy “call by name.”

Henning Makholm has pointed out that the ETa
rule justifies program transformations that an opti-
mizing compiler could do anyway, while packing up
the justification into a simple, reusable form. For ex-
ample, no program can tell the difference between
AfAzx.fr and simply Af.f, and an optimizing com-
piler may safely replace the long form with the short
form. But without ETA, the proof of safety is, as
Henning puts it, subtle and long-winded. Introduc-
ing the ETA rule makes it easy for the compiler
writer to implement a whole family of code-improving
transformations—no subtlety required.

That said, the immediate, practical reason to know
about ETA is that the rule can used backwards. This
transformation, from M to Az.Mz, is known as “eta-
expansion.” In eager languages, it can be used to
delay the evaluation of M. But its most frequent use
is to convince the ML type checker to accept poly-
morphic functions that are produce by higher-order
functions. For example, ML won’t accept null o rev
as a top-level value. But fn xs => (null o rev) xs
is accepted just fine.

References

Prakash Panangaden, January 2015. “Notes on the
Lambda-Calculus: COMP 598 Winter 2015.” Ob-
tained from the author, McGill University.

