
Example class Fraction: initialization

(class Fraction Number

[num den] ;; representation (concrete!)

;; invariants by signReduce, divReduce

(class-method num:den: (a b)

(initNum:den: (new self) a b))

(method initNum:den: (a b) ; private

(setNum:den: self a b)

(signReduce self)

(divReduce self))

(method setNum:den: (a b)

(set num a) (set den b) self) ; private

.. other methods of class Fraction ...

)



Information revealed to self

“Instance variables” num and den

• Directly available

• Always and only go with self

Object knows its own representation, invariants,
private methods:

(method asFraction ()

self)

(method print ()

(print num) (print ’/) (print den))

(method reciprocal ()

(signReduce (setNum:den: (new Fraction) den num)))



Information revealed to self: your turn

How would you implement coerce:?
(Value of argument, representation of receiver)

(method asFraction ()

self)

(method print ()

(print num) (print ’/) (print den))

(method reciprocal ()

(signReduce (setNum:den: (new Fraction) den num)))

(method coerce: (aNumber)

...)



Information revealed to self: your turn

How would you implement coerce:?
(Value of argument, representation of receiver)

(method asFraction ()

self)

(method print ()

(print num) (print ’/) (print den))

(method reciprocal ()

(signReduce (setNum:den: (new Fraction) den num)))

(method coerce: (aNumber)

(asFraction aNumber))



Exposing information, part II

Alas! Cannot see representation of argument

How will you know “equal, less or greater”?



Exposing information, part II

Alas! Cannot see representation of argument

Protocol says “like with like”? Use private methods

(method num () num) ; private

(method den () den) ; private

(method = (f) ;; relies on invariant!

(and: (= num (num f)) {(= den (den f))}))

(method < (f)

(< (* num (den f)) (* (num f) den)))

Remember behavioral subtyping



Private methods: Your turn

How will you multiply two fractions?



Private methods: Your turn

How will you multiply two fractions?

(method * (f)

(divReduce

(setNum:den: (new Fraction)

(* num (num f))

(* den (den f)))))



An open system

Number protocol: like multiplies with like

What about large and small integers?

• How to multiply two small integers?

• How to multiply two large integers?

How is algorithm known?

Each object knows its own algorithm:

• Small: Use machine-primitive multiplication

• Large: Multiply magnitudes; choose sign



Review: Two kinds of knowledge

I can send message to you:

• I know your protocol

I can inherit from you:

• I know my subclass responsibilities



Knowledge of protocol

Three levels of knowledge:

1. I know only your public methods

Example: send select: to any collection

2. You are like me: share private methods

Example: send * or + to Fraction

3. I must get to know you: double dispatch

Example: send * to + to any integer



Double dispatch: extending open systems

I claim:

• Large integers and small integers both Integer

• Messages =, <, +, * ought to mix freely

• Large and small integers have different private

protocol

Private for large integers: magnitude

Private for small integers: mul:withOverflow



Double dispatch: forms of argument

Many kinds of multiplication:

(:+ n) * (:- m) == :- (n * m)

(:+ n) * (:+ m) == :+ (n * m)

(:+ n) * small == (:+ n) * (asLargeInteger small)

But! Can’t distinguish forms of argument

Solution: “dispatch laws”

(:+ n) * (:- m) == (timesLP: (:- m) self)

(:+ n) * (:+ m) == (timesLP: (:+ m) self)

(:+ n) * small == (timesLP: small self)

Argument to timesLP:

• Understands “large positive integer” protocol



Double dispatch codes operation & protocol

Example messages:

• I answer the large-positive integer protocol,

multiply me by yourself

• I answer the small-integer protocol, add me to

yourself

Message encodes

• Operation to be performed

• Protocol accepted by argument



Your turn: responding to double dispatch

How do you act?

1. As small integer, you receive “multiply large

positive integer N by self”

2. As small integer, you receive “add small

integer n to self”

3. As large positive integer, you receive “multiply

large positive integer N by self”

4. As large positive integer, you receive “add small

integer n to self”



Your turn: using double dispatch

On what class does each method go?
A. (method + (aNumber)

(addSmallIntegerTo: aNumber self))

B. (method * (anInteger)

(multiplyByLargePositiveInteger: anInteger self))

(See the “double dispatch”: + then

addSmallIntegerTo:)



Information-hiding summary

Three levels

1. I use your public protocol

2. We are alike; I add our private protocol

3. Your protocol is revealed by double dispatch



Extra: Dealing with overflow

New law for multiplication:

(* small-1 small-2) =

(mulSmall:withOverflow:

small-1

small-2

{(* (asLargeInteger small-1) small-2)})

Block is exception block run on overflow

Method is primitive, defined with

(method mulSmall:withOverflow:

primitive mul:withOverflow:)



Subtyping mathematically

Always transitive

�1 <: �2 �2 <: �3

�1 <: �3

Key rule is subsumption:

e : � � <: �

′

e : �

′

(implicit subsumption: no cast)



Subtyping is not inheritance

Subtype understands more messages:

fm1 : �1; : : : ;mn : �n; : : : ;mn+k : �n+kg<: fm1 : �1; : : : ;mn : �ng

If an object understands messages m1; : : : ;mn, and

possibly more besides, you can use it where

m1; : : : ;mn are expected

• Methods must behave as expected

Behavioral subtyping (in Ruby, “duck typing”)



(class Set Collection

[members] ; list of elements

(class-method new () (initSet (new super)))

(method initSet () ; private method

(set members (new List))

self)

(method do: (aBlock) (do: members aBlock))

(method remove:ifAbsent: (item exnBlock)

(remove:ifAbsent: members item exnBlock))

(method add: (item)

(ifFalse: (includes: members item)

{(add: members item)})

item)

(method species () Set)

(method asSet () self) ; extra efficient

)



“Collection hierarchy”

Collection

Set KeyedCollection

Dictionary SequenceableCollection

List Array



Collection mutators

add: newObject Add argument

addAll: aCollection Add every element of arg

remove: oldObject Remove arg, error if absent

remove:ifAbsent: oldObject exnBlock

Remove the argument, evaluate exnBlock if

absent

removeAll: aCollection Remove every element

of arg



Collection observers

isEmpty Is it empty?

size How many elements?

includes: anObject Does receiver contain arg?

occurrencesOf: anObject How many times?

detect: aBlock Find and answer element

satisfying aBlock (cf �Scheme exists?)

detect:ifNone: aBlock exnBlock Detect,

recover if none

asSet Set of receiver’s elements



Collection iterators

do: aBlock For each element x, evaluate (value

aBlock x).

inject:into: thisValue binaryBlock

Essentially �Scheme foldl

select: aBlock Essentially �Scheme filter

reject: aBlock Filter for not satisfying aBlock

collect: aBlock Essentially �Scheme map



Implementing collections

(class Collection Object

[] ; abstract

(method do: (aBlock)

(subclassResponsibility self))

(method add: (newObject)

(subclassResponsibility self))

(method remove:ifAbsent (oldObj exnBlock)

(subclassResponsibility self))

(method species ()

(subclassResponsibility self))

hother methods of class Collectioni

)



Reusable methods

hother methods of class Collectioni=

(method addAll: (aCollection)

(do: aCollection [block(x) (add: self x)])

aCollection)

(method size () [locals temp]

(set temp 0)

(do: self [block(_) (set temp (+ temp 1))])

temp)

These methods always work

Subclasses can override (redefine) with more

efficient versions



species method

Create “collection like the reciever”

Example: filtering

hother methods of class Collectioni=

(method select: (aBlock) [locals temp]

(set temp (new (species self)))

(do: self [block (x)

(ifTrue: (value aBlock x)

{(add: temp x)})])

temp)



(class Set Collection

[members] ; list of elements

(class-method new () (initSet (new super)))

(method initSet () ; private method

(set members (new List))

self)

(method do: (aBlock) (do: members aBlock))

(method remove:ifAbsent: (item exnBlock)

(remove:ifAbsent: members item exnBlock))

(method add: (item)

(ifFalse: (includes: members item)

{(add: members item)})

item)

(method species () Set)

(method asSet () self) ; extra efficient

)


