Review: Tail calls

Which functions are called in tail position?

(define split-list (originals)
(list2 (every-other—-element originals)
(1f (null? originals)
" ()

(every—-other—element (cdr originals)))))

(define use-—-macro (lhs abbrevs expand error)
(if (null? abbrevs)
(error lhs)
(1f (= lhs alist-first-key (abbrevs))
(expand (alist-first-attribute abbrevs))
(use—-macro lhs abbrevs expand error))))

Review: Tail calls

Which functions are called in tail position?

(define split-list (originals)
(list2 (every-other—-element originals)
(1f (null? originals)
" ()

(every—-other—element (cdr originals)))))

(define use—-macro (lhs abbrevs expand error)
(if (null? abbrevs)
(error 1lhs)
(1f (= lhs alist-first-key (abbrevs))
(expand (alist-first-attribute abbrevs))
(use—macro lhs abbrevs expand error))))

Expressions to avoid
(if <p> #t #£f) ,; worst
(append (listl <x>) <ys>) ; most common

(cons <x> (cons <y> '())) ; prefer ‘list2’

Homework alert

Functions list-of, formula?
« Can be passed any value
« Must handle all cases (Figure 2.1, page 95)

Review: “Continuation-Passing Style”

All tail positions are continuations or recursive calls

(define witness-cps (p? xs succ fail)
(if (null? xs)
(fail)
(let ([z (car xs)])
(1f (p? 2)
(succ z)

(witness—cps p? (cdr xs) succ fail)))))

Compiles to tight code

Homework: Solving Boolean formulas

A formula is one of these:
« Symbol (stands for a variable)
 Record (make-not f);f is aformula
 Record (make-or fs); fsis a list of formulas
 Record (make—-and fs); fs is a list of formulas

In context of:

(record not [arg])
(record or [args])
(record and [args])

Your turn: Find satisfying assignment!

(val £1 (make—and (list4 'x 'y 'z (make—-not ’'x))))
; x /Ny /\ z /\ !x

(val £2 (make—not (make-or (list2 'x 'y))))
;o Y (x \/ y)

(val £3 (make—not (make—and (list3 'x 'y 'z))))
;o Y(x /Ny /\ =z)

Wait for it ...

Satisfying assignments

(val f1 (make-and (list4 'x 'y 'z (make-not ’'x))))
;i x /Ny /\ z /\ !'x ;; NONE

(val £2 (make—not (make-or (list2 'x 'y))))
;o Y(x \/ y) 7o x |—> #£, y |—> #£ }

(val £3 (make—not (make—and (list3 'x 'y 'z))))
; Y(x /Ny /\ z) oo x |—> #£, ...}

Finding a satisfying assignment

Example formula:

(x \/ yv) /\ ('x /\ z)

Find assignment using continuations

start t-————————— + succeed
————————— > | | ————————————>
| solver |
<= | | <=——=——m———
fail +-———— + resume
start Gets partial solution, fail, succeed

(On homework, “solution” is assignment)
fail Partial solution won’t work (no params)
succeed Gets improved solution + resume
resume [If improved solution won’t work,

try another (no params)

A composable unit!

Continuations for the solver

A big box contains two smaller boxes A and B

There are two ways to wire them up (board)

Imagine A and B as formulas

Imagine A as a formula, B as a /ist of formulas!

Solving a literal

(satisfy-literal-true x current succ fail) =

e

; (sucec current fail), when x is bound to #t in cur

(fail), when x is bound to #f in cur

e

(succ (bind x #t current) fail), x unbound in cur

e

(define satisfy-literal-true (x current succ fail)
(if (bound? x current)
(if (f£find x current)
(succ current fail)
(fail))

(succ (bind x #t current) fail)))

Lisp and Scheme Retrospective

Five powerful questions

. What is the abstract syntax?

Syntactic categories? Terms in each category?
. What are the values?

What do expressions/terms evaluate to?

. What environments are there?

What can names stand for?

. How are terms evaluated?

Judgments? Evaluation rules?

. What’s in the initial basis?

Primitives and predefined, what is built in?

pnScheme and the Five Questions

Abstract syntax: expressions and definitions
imperative core, let, lambda

Values: S-expressions
(especially cons cells, function closures)

Environments: A name stands for a mutable location
holding a value

Evaluation rules: 1ambda captures environment

Initial basis: yummy higher-order functions

Full Scheme: Macros

A Scheme program is just another S-expression
« Function define-syntax manipulates syntax at
compile time
« Macros are hygienic—name clashes impossible
« let, &&, record, others implemented as macros

(See book sections 2.16, 2.17.4)

Full Scheme: Conditionals

(cond [cl el] ; 1f ¢l then el
[c2 e2] ; else 1f c2 then e2
[en en]) ; else 1f cn then en
; Syntactic sugar--—-'if’ is a macro:
(1f el e2 e3) == (cond [el e2]

[#t e3])

Full Scheme: Mutation

Not only variables can be mutated.
Mutate heap-allocated cons cell:
(set-car! "(abec¢c) 'd) => (d b c)

Circular lists, sharing, avoids allocation
« still for specialists only

