
Example: list filter

-> (val ns (new List))

List()

-> (addAll: ns ’(1 2 3 4 5 6))

List(1 2 3 4 5 6)

-> (select: ns [block (n) (= 0 (mod: n 2))])

List(2 4 6)

select: dispatches to class Collection

Classic imperative paradigm:

(method select: (aBlock) [locals temp]

(set temp (new (species self)))

(do: self [block (x) (ifTrue: (value aBlock x)

{(add: temp x)})])

temp)

Name self receives message

Example: iteration

-> (val ms (select: ns [block (n) (= 0 (mod: n 2))]))

List(2 4 6)

-> (do: ms [block (m) (print ’element) (print space)

(print ’is) (print space)

(println m)])

element is 2

element is 4

element is 6

nil

->

Functional code: forms of data

Iteration in Scheme: ask value about form

(define app (f xs)

(if (null? xs)

’do-nothing

(begin

(f (car xs))

(app f (cdr xs)))))

Replace interrogation: dynamic dispatch

No interrogation about form!

Design process still works:

1. Each method defined on a class

2. Class determines

• How object is formed (class method)

• From what parts (instance variables)

Each form of data gets its own method!

Object-oriented code: dynamic dispatch

Instead of (app f xs), we have

(do: xs f-block)

What happens if we send “do f” to the empty list?

What happens if we send “do f” to a cons cell?

Dynamic dispatch revealed

Sending do: to the empty list:

(method do: (aBlock) nil)

; nil is a global object

Sending do: to a cons cell:

(method do: (aBlock)

; car and cdr are "instance variables"

(value aBlock car)

(do: cdr aBlock))

What’s missing? if!

“Collection hierarchy”

Collection

Set KeyedCollection

Dictionary SequenceableCollection

List Array

select: dispatches to class Collection

(method select: (aBlock) [locals temp]

(set temp (new (species self)))

(do: self [block (x) (ifTrue: (value aBlock x)

{(add: temp x)})])

temp)

Message Protocol Dispatched to

species Collection List

new class List, others

do: Collection List, Cons (delegated)

ifTrue: Boolean Boolean, del. True, False

value block primitive

add: Collection List (then addLast:, insertAfter:)

Church encoding with blocks

Blocks are closures

• [block (x) ...]

• Instead of [block () ...], just {...}

Passed as continuations to Booleans

They are objects

Block Examples

-> (val twice [block (n) (+ n n)])

<Block>

-> (value twice 3)

6

-> (val delayed {(println ’hello) 42})

<Block>

-> delayed

<Block>

-> (value delayed)

hello

42

Boolean example: minimum

-> (val x 10)

-> (val y 20)

-> (ifTrue:ifFalse: (<= x y) {x} {y})

10

Protocol for Booleans

ifTrue:ifFalse: trueBlock falseBlock

Full conditional

ifTrue: trueBlock Part conditional (for side effect)

ifFalse: falseBlock Part conditional (for side effect)

& aBoolean Conjunction

| aBoolean Disjunction

not Negation

eqv: aBoolean Equality

xor: aBoolean Difference

and: altBlock Short-circuit conjunction

or: altBlock Short-circuit disjunction

Classes True and False

(class True Boolean

[]

(method ifTrue:ifFalse: (trueBlock falseBlock)

(value trueBlock))

)

(class False Boolean

[]

(method ifTrue:ifFalse: (trueBlock falseBlock)

(value falseBlock))

)

What happens if ifTrue: is sent to true?

Protocol for Booleans

ifTrue:ifFalse: trueBlock falseBlock

Full conditional

ifTrue: trueBlock Part conditional (for side effect)

ifFalse: falseBlock Part conditional (for side effect)

& aBoolean Conjunction

| aBoolean Disjunction

not Negation

eqv: aBoolean Equality

xor: aBoolean Difference

and: altBlock Short-circuit conjunction

or: altBlock Short-circuit disjunction

ifTrue: message dispatched to class

Boolean

(class Boolean Object

[]

(method ifTrue:ifFalse: (trueBlock falseBlock)

(subclassResponsibility self))

(method ifTrue: (trueBlock)

(ifTrue:ifFalse: self trueBlock {}))

...

)

Message sent to self starts over

(with class of receiver)

Dispatching to True

(class True Boolean

[]

(method ifTrue:ifFalse: (trueBlock falseBlock)

(value trueBlock))

; all other methods are inherited

)

Your turn: not

What should not look like?

• Implemented on what class?

• With what method definition?

Implementing not

(class Boolean Object

[]

(method ifTrue:ifFalse: (trueBlock falseBlock)

(subclassResponsibility self))

(method ifTrue: (trueBlock)

(ifTrue:ifFalse: self trueBlock {}))

(method not ()

(ifTrue:ifFalse: self {false} {true}))

...

)

Inheritance for Booleans

Boolean

True False

Boolean is abstract class

• Instances of True and False only

Method ifTrue:ifFalse: defined on True and

False

All others defined on Boolean

Each class has one of two roles

Abstract class

• Meant to be inherited from

• Some (> 0) subclassResponsibility methods

• Examples: Boolean, Shape, Collection

Regular (“concrete”) class

• Meant to be instantiated

• No subclassResponsibility methods

• Examples: True, Triangle, List

