
Church Numerals

Encoding natural numbers as lambda-terms

zero = �f :�x:x

one = �f :�x:f x

two = �f :�x:f(f x)

succ = �n:�f :�x:f(n f x)

plus = �n:�m:n succ m

times = �n:�m:n (plus m) zero

Idea: “apply f to x, n times”



Church Numerals to machine integers

; uscheme or possibly uhaskell

-> (val add1 ((curry +) 1))

-> (define to-int (n)

((n add1) 0))

-> (to-int three)

3

-> (to-int ((times three) four))

12



Church Numerals in �

<0> = \f.\x.x;

succ = \n.\f.\x.f (n f x);

plus = \n.\m.n succ m;

times = \n.\m.n (plus m) <0>;

...

-> <4>;

\f.\x.f (f (f (f x)))

-> <3>;

\f.\x.f (f (f x))

-> times <4> <3>;

\f.\x.f (f (f (f (f (f (f (f (f (f (f (f x)))))))))))



Reduction rules

Central rules: substitution and optimization:

(�x:M)N

�

!M[x 7! N℄

(BETA)
x not free in M

(�x:Mx)
�

!M
(ETA)

Structural rules: Reduce anywhere, any time

M!M′

MN!M′N
(NU)

N! N′

MN!MN′
(MU)

M!M′

�x:M! �x:M′
(XI)

(Good for both � and �.)



Idea: normal form

A term is a normal form if

It cannot be reduced

What do you suppose it means to say

• A term has no normal form?

• A term has a normal form?



Idea: normal form

A term is a normal form if

It cannot be reduced

A term has a normal form if

There exists a sequence of reductions that

terminates (in a normal form)

A term has no normal form if

It always reduces forever

(This term diverges)



Normal forms code for values

Corollary of Church-Rosser:

if A!∗ B, B in normal form, and

A!∗ C, C in normal form

then B and C are identical

(up to renaming of bound variables)


