Church Numerals

Encoding natural numbers as lambda-terms

zero	=	$\lambda f.\lambda x.x$
one	=	$\lambda f.\lambda x.f x$
two	=	$\lambda f.\lambda x.f(f x)$
succ	=	$\lambda n.\lambda f.\lambda x.f(nfx)$
plus	=	$\lambda n. \lambda m. n \operatorname{succ} m$
times	=	$\lambda n. \lambda m. n \text{ (plus } m \text{) zero}$

Idea: "apply f to x, n times"

Church Numerals to machine integers

Church Numerals in λ

Reduction rules

Central rules: substitution and optimization:

$$\frac{1}{(\lambda x.M)N \xrightarrow{\beta} M[x \mapsto N]} (\text{BETA}) \qquad \frac{x \text{ not free in } M}{(\lambda x.Mx) \xrightarrow{\eta} M} (\text{ETA})$$

Structural rules: Reduce anywhere, any time

$$\frac{M \to M'}{MN \to M'N} (NU) \frac{N \to N'}{MN \to MN'} (MU) \frac{M \to M'}{\lambda x.M \to \lambda x.M'} (XI)$$

(Good for both β and η .)

Idea: normal form

A term is a normal form if It cannot be reduced

What do you suppose it means to say

- A term has no normal form?
- A term has a normal form?

Idea: normal form

A term is a normal form if It cannot be reduced

A term has a normal form if There exists a sequence of reductions that terminates (in a normal form)

A term has no normal form if It always reduces forever (This term diverges)

Normal forms code for values

Corollary of Church-Rosser: if $A \rightarrow^* B$, B in normal form, and $A \rightarrow^* C$, C in normal form

then *B* and *C* are identical (up to renaming of bound variables)