Church Numerals

Encoding natural numbers as lambda-terms

$$
\begin{aligned}
\text { zero } & =\lambda f \cdot \lambda x \cdot x \\
\text { one } & =\lambda f \cdot \lambda x \cdot f x \\
\text { two } & =\lambda f \cdot \lambda x \cdot f(f x) \\
\text { succ } & =\lambda n \cdot \lambda f \cdot \lambda x \cdot f(n f x) \\
\text { plus } & =\lambda n \cdot \lambda m \cdot n \text { succ } m \\
\text { times } & =\lambda n \cdot \lambda m \cdot n \text { (plus } m \text {) zero }
\end{aligned}
$$

Idea: "apply f to x, n times"

Church Numerals to machine integers

; uscheme or possibly uhaskell
-> (val add1 ((curry +) 1))
-> (define to-int (n)
-> (to-int three)
3
-> (to-int ((times three) four))
12

Church Numerals in $\boldsymbol{\lambda}$

```
<0> \(=\backslash \mathrm{f} . \backslash \mathrm{x} . \mathrm{x}\);
succ \(=\backslash n . \backslash f . \backslash x . f(n f x) ;\)
plus \(=\backslash n . \backslash m . n\) succ m;
times \(=\backslash \mathrm{n} . \backslash \mathrm{m} . \mathrm{n}\) (plus m) <0>;
-> <4>;
\f.\x.f (f (f (f x)))
-> <3>;
\f. Xx .f (f (f f\()\) )
-> times <4> <3>;
```


Reduction rules

Central rules: substitution and optimization:

$$
\begin{equation*}
\overline{(\lambda x . M) N \xrightarrow{\beta} M[x \mapsto N]} \text { (BETA) } \tag{ЕТА}
\end{equation*}
$$

x not free in M
$\overline{(\lambda x . M x) \xrightarrow{\eta} M}$

Structural rules: Reduce anywhere, any time

$$
\frac{M \rightarrow M^{\prime}}{M N \rightarrow M^{\prime} N}(\mathrm{Nu}) \frac{N \rightarrow N^{\prime}}{M N \rightarrow M N^{\prime}}(\mathrm{Mu}) \frac{M \rightarrow M^{\prime}}{\lambda x \cdot M \rightarrow \lambda x \cdot M^{\prime}}(\mathrm{x})
$$

(Good for both β and η.)

Idea: normal form

A term is a normal form if
It cannot be reduced
What do you suppose it means to say

- A term has no normal form?
-A term has a normal form?

Idea: normal form

A term is a normal form if
It cannot be reduced
A term has a normal form if
There exists a sequence of reductions that terminates (in a normal form)

A term has no normal form if
It always reduces forever
(This term diverges)

Normal forms code for values

Corollary of Church-Rosser: if $\boldsymbol{A} \rightarrow^{*} \boldsymbol{B}, \boldsymbol{B}$ in normal form, and $A \rightarrow^{*} C, C$ in normal form
then B and C are identical
(up to renaming of bound variables)

