
Membership revisited

From duplicates? function, member?

Laws:

(member? m ’()) == #f

(member? m (cons m ks)) == #t

(member? m (cons k ks)) == (member? m ks), m != k

What kind of algorithm is this?



Your turn: Common list algorithms

Algorithms on linked lists (or arrays in sequence):

• Search for an element

• What else?



Predefined list algorithms

Some classics:

• exists? (Example: Is there a number?)

• all? (Example: Is everything a number?)

• filter (Example: Select only the numbers)

• map (Example: Add 1 to every element)

• foldr (Visit every element)

Fold also called reduce, accum, a “catamorphism”



Coding: Generalize linear search

Laws:

(member? m ’()) = #f

(member? m (cons k ks)) = #t, if m == k

(member? m (cons k ks)) = (member? m ks), if m != k

Generalize selection; make predicate a parameter:

(exists? p? ’()) = #f

(exists? p? (cons y ys)) = #t, if (p? y)

(exists? p? (cons y ys)) = (exists? p? ys), otherwise

Predicate p? could come from curry (forthcoming)



Defining exists?

; (exists? p? ’()) = #f

; (exists? p? (cons y ys)) = #t, if (p? y)

; (exists? p? (cons y ys)) = (exists? p? ys),

otherwise

-> (define exists? (p? xs)

(if (null? xs)

#f

(if (p? (car xs))

#t

(exists? p? (cdr xs)))))

-> (exists? symbol? ’(1 2 zoo))

#t

-> (exists? symbol? ’(1 2 (zoo)))

#f



Defining filter

; (filter p? ’()) == ’()

; (filter p? (cons y ys)) ==

; (cons y (filter p? ys)), when (p? y)

; (filter p? (cons y ys)) ==

; (filter p? ys), when (not (p? y))

-> (define filter (p? xs)

(if (null? xs)

’()

(if (p? (car xs))

(cons (car xs) (filter p? (cdr xs)))

(filter p? (cdr xs)))))



Running filter

-> (filter (lambda (n) (> n 0)) ’(1 2 -3 -4 5 6))

(1 2 5 6)

-> (filter (lambda (n) (<= n 0)) ’(1 2 -3 -4 5 6))

(-3 -4)

-> (filter ((curry <) 0) ’(1 2 -3 -4 5 6))

(1 2 5 6)

-> (filter ((curry >=) 0) ’(1 2 -3 -4 5 6))

(-3 -4)



Your turn: map

-> (map add3 ’(1 2 3 4 5))

(4 5 6 7 8)

;; (map f ’()) =

;; (map f (cons y ys)) =



Answers: map

-> (map add3 ’(1 2 3 4 5))

(4 5 6 7 8)

; (map f ’()) == ’()

; (map f (cons y ys)) == (cons (f y) (map f ys))



Defining and running map

; (map f ’()) == ’()

; (map f (cons y ys)) == (cons (f y) (map f ys))

-> (define map (f xs)

(if (null? xs)

’()

(cons (f (car xs)) (map f (cdr xs)))))

-> (map number? ’(3 a b (5 6)))

(#t #f #f #f)

-> (map *100 ’(5 6 7))

(500 600 700)



Foldr



Algebraic laws for foldr

Idea: �+ :�0 :x1+ � � �+ xn+ 0

(foldr (plus zero ’())) = zero

(foldr (plus zero (cons y ys))) =

(plus y (foldr plus zero ys))

Note: Binary operator + associates to the right.

Note: zero might be identity of plus.



Code for foldr

Idea: �+ :�0 :x1+ � � �+ xn+ 0

-> (define foldr (plus zero xs)

(if (null? xs)

zero

(plus (car xs) (foldr plus zero (cdr xs)))))

-> (val sum (lambda (xs) (foldr + 0 xs)))

-> (sum ’(1 2 3 4))

10

-> (val prod (lambda (xs) (foldr * 1 xs)))

-> (prod ’(1 2 3 4))

24



Another view of operator folding

’(1 2 3 4) = (cons 1 (cons 2 (cons 3 (cons 4 ’()))))

(foldr + 0 ’(1 2 3 4))

= (+ 1 (+ 2 (+ 3 (+ 4 0 ))))

(foldr f z ’(1 2 3 4))

= (f 1 (f 2 (f 3 (f 4 z ))))



Your turn

Idea: �+ :�0 :x1+ � � �+ xn+ 0

-> (define combine (x a) (+ 1 a))

-> (foldr combine 0 ’(2 3 4 1))

???



Wait for it



Answer

Idea: �+ :�0 :x1+ � � �+ xn+ 0

-> (define combine (x a) (+ 1 a))

-> (foldr combine 0 ’(2 3 4 1))

4

What function have we written?



Your turn: Explain the design

1. Functions like exists?, map, filter are

subsumed by

2. Function foldr, which is subsumed by

3. Recursive functions

Seems redundant: Why?



Cornucopia of one-argument functions

The “function factory”



The idea of currying

-> (map ((curry +) 3) ’(1 2 3 4 5))

; add 3 to each element

-> (exists? ((curry =) 3) ’(1 2 3 4 5))

; is there an element equal to 3?

-> (filter ((curry >) 3) ’(1 2 3 4 5))

; keep elements that 3 is greater then



To get one-argument functions: Curry

-> (val positive? (lambda (y) (< 0 y)))

-> (positive? 3)

#t

-> (val <-c (lambda (x) (lambda (y) (< x y))))

-> (val positive? (<-c 0)) ; "partial application"

-> (positive? 0)

#f



What’s the algebraic law for curry?

... (curry f) ... = ... f ...

Keep in mind:

All you can do with a function is apply it!

(((curry f) x) y) = (f x y)

Three applications: so implementation will have

three lambdas



No need to Curry by hand!

;; curry : binary function -> value -> function

-> (val curry

(lambda (f)

(lambda (x)

(lambda (y) (f x y)))))

-> (val positive? ((curry <) 0))

-> (positive? -3)

#f

-> (positive? 11)

#t



Your turn!

-> (map ((curry +) 3) ’(1 2 3 4 5))

???

-> (exists? ((curry =) 3) ’(1 2 3 4 5))

???

-> (filter ((curry >) 3) ’(1 2 3 4 5))

??? ; tricky



Answers

-> (map ((curry +) 3) ’(1 2 3 4 5))

(4 5 6 7 8)

-> (exists? ((curry =) 3) ’(1 2 3 4 5))

#t

-> (filter ((curry >) 3) ’(1 2 3 4 5))

(1 2)



One-argument functions compose

-> (define o (f g) (lambda (x) (f (g x))))

-> (define even? (n) (= 0 (mod n 2)))

-> (val odd? (o not even?))

-> (odd? 3)

#t

-> (odd? 4)

#f



Next up: proving facts about functions


