Implementing Bignums in pSmalltalk

Fall 2020

1 Approach

The pair portion of the puSmalltalk assignment is to implement arbitrary-
precision arithmetic (“bignums”). You'll write a lot of methods. To help
you organize them, I suggest which methods to implement in what order,
and I sketch how implementations of some methods may depend on other
methods.

The diagram below shows what the class hierarchy will look like once you
finish. The unboxed classes are predefined pSmalltalk classes. The boxed
classes are new classes you will write for this assignment (or in the case of
SmallInteger, a class whose methods you will modify). Each class that is
followed by a number is from the exercise with that number.

Object

Magnitude

PN
umb3g (37)
| ™~

Fraction Float Integer

— ~—

‘ Smalllnteger (modified) ‘ (39) (38)

— ~
’LargePositiveInteger‘(38) ‘LargeNegativeInteger‘(38)

1.1 Big picture, part I: Natural numbers

Here is the big picture of which parts of the system do what. Here is how
to get started:

e Comparisons are implemented in class Magnitude. Or rather, four of
the six comparisons are implemented in Magnitude. The fundamental



comparisons = and < are subclass responsibilities (see the definition of
class Magnitude around page 665). You have to implement = and < on
class Natural. The other four (!=, >, <=, and >=) are inherited from
Magnitude.

e Addition, subtraction, multiplication, and (short) division are all im-
plemented on class Natural.

— Good news: the protocol guarantees that the argument, not just
the receiver, of each of these methods has class Natural. No dou-
ble dispatch is required.

— Bad news: Smalltalk uses objects to hide information. Just be-
cause you know an object’s class doesn’t mean you have access
to its representation. To get information about the argument,
not just the receiver, you will need private methods. (Just which
private methods depends on your representation.)

1.2 Big picture, part 1I: Large integers

As mentioned on page 732, large integers are implemented using sign-magnitude
representation. The sign is encoded in the integer’s class: a large negative in-
teger has class LargeNegativeInteger, and a large nonnegative integer has
class LargePositiveInteger.! The magnitude, which has class Natural,

is stored in an instance variable, which we’ve called magnitude.

Both LargeNegativeInteger and LargePositiveInteger inherit from
LargeInteger. Class LargeInteger is an abstract class which can define
the instance variable magnitude and which can also define some methods
that are common to both positive and negative large integers:

e Methods = and < can be implemented by subtracting the argument
from self and examining the result to see if it is zero (or negative).

e We recommend defining a private method isZero which delegates to
the integer’s magnitude.? This method will help your code work cor-
rectly with both “positive” and “negative” zero.

'In the perverse jargon of Smalltalk, zero is considered “positive” and positive numbers
are considered “strictly positive.”

Z4Delegation” is a term of art for an implementation technique in which a method
is implemented by sending the same message to another object. In this case, we are
recommending that you implement isZero on a large-integer object by sending the isZero
message to the object that represents that large integer’s magnitude.



Most operations on large integers require double dispatch. Double dis-
patch can be derived by transforming algebraic laws; design lesson 7 (“Pro-
gram Design with Objects”) has a complete example involving multiplication
of signed integers. In short, you have to know the sign of both argument
and receiver, but only a receiver knows its own sign; the sign of an argument
is communicated by double dispatch. To add to the example in the design
lesson, method + on class LargePositiveInteger looks like this:

(method + (anInteger)
(anInteger addLargePositiveIntegerTo: self))

The sign of the argument is encoded in the message name addLargePositiveIntegerTo:,
and the implementation of the method addLargePositiveIntegerTo: de-
pends on the class of the receiver:

e When a positive large integer receives addLargePositiveIntegerTo:,
it knows that the sum of two positive integers is positive, and it sends
withMagnitude: to class LargePositiveInteger with the sum of the
magnitudes.

e When a negative large integer receives addLargePositiveIntegerTo:,
it sends subtract:withDifference:ifNegative: to the argument’s
magnitude, with a success continuation that produces a large posi-
tive integer and a failure continuation that produces a large negative
integer.

All this plumbing is achieved without ever interrogating the class of an ob-
ject, which keeps the system “open”—any object that has the right protocol
will work (that’s “behavioral subtyping”).

Always write as little double dispatch as possible. For example, imple-
ment the negated method without extra dispatch—just create a new number
with the same magnitude as the receiver but the opposite sign. And you can
implement subtraction without writing any new dispatch at alll The default
implementation, which dispatches to class Number, works perfectly well with
large integers.

If you feel yourself not quite certain about double dispatch, you can read
more about it in the book section 10.7, “Inspecting multiple representations
the object-oriented way: magnitudes and numbers,” on page 670, and in the
last section of the lesson “Program Design with Objects.”

Once you have large integers working, you have a system that exempli-
fies the expressive power of Smalltalk: arithmetic and relational operators



are implemented by messages flying around and dispatching on methods
of classes Magnitude, Number, LargeInteger, LargePositivelInteger, and
LargeNegativeInteger. Your final step is “mixed arithmetic” with large
and small integers.

1.3 Big picture, part 11I: Mixed arithmetic

Mixed arithmetic has two goals:

e Seamlessly allow arithmetic and relational operators on a mix of small
and large integers.

e Extend small-integer arithmetic so that when an intermediate result
doesn’t fit in a machine word, it automatically “fails over” to large-
integer arithmetic.

The net result should be a system of arithmetic where your users get as
much numeric precision as they need, without ever having to consider the
number of bits in a machine word. And the costs are “pay as you go”: if you
don’t need the features of large arithmetic, you’re not paying extra for them,
but if you do need them, they are there automatically.

You implement mixed arithmetic by applying one technique you’ve ap-
plied before, plus two new ones.

e The technique you've applied before is double dispatch. For exam-
ple, to add a small integer to a number, you’ll need a new method
addSmallIntegerTo:, and method + on a small integer will dispatch
to addSmallIntegerTo:. New method addSmallIntegerTo: must be
defined on both large and small integers.

e The first new technique is coercion, which you can study in the context
of classes Integer, Fraction, and Float. Whenever you perform an
operation on mixed large and small integers, you coerce the small
integer to a large one and repeat the operation. This form of coercion
is the same regardless of the sign of the large integer, so it can go on
class LargeInteger.

e The second new technique is to use primitives that detect overflow.
For example, when adding small integers, you can no longer use prim-
itive +, because it doesn’t handle overflow. You’ll need a different
primitive that can invoke a failure continuation when addition over-
flows.



2 Natural numbers: Arrays, lists, or subclasses?

A natural number is represented by a sequence of digits. But how will
that sequence be represented? The homework mentions three approaches:
array-based, list-based, and subclass-based. The book assumes that you
will use either the array-based approach or the subclass-based approach.
(Using List is not recommended, and no more is said about that here.)
The subclass-based approach closely resembles what one would write in ML
using an algebraic data type. Whichever representation you choose, there
are still tradeoffs. Here’s how we view them:

e In the subclass-based approach, the algorithms and the individual
methods easy to get right. But there is a lot of dynamic dispatch,
and if you want to understand the system, you're going to have to
learn something about dynamic dispatch and object-oriented design.

e In the array-based approach, there are many traps and pitfalls around
the algorithms and mechanisms, but there’s not nearly as much dy-
namic dispatch—for big stretches of the work, you’ll be able to pretend
that you’re programming in C or C++.

We recommend using the subclass-based approach and learning to love dy-
namic dispatch: the experience is superior. But which experience you want
to have is ultimately up to you.

3 Details of class Natural, subclass-based version

A natural number is well represented as a list of digits because the forms of
data for a natural number can be made isomorphic? to the forms of a data
for a list of digits. A natural number is one of the following;:

e Zero

e The sum m - b+ d, where b is the base, m is a natural number, and
d is a digit

Whereas a list of digits is one of the following;:
e Empty

e The list “d cons ds,” where d is a digit and ds is a list of digits

3Structurally identical.



In ML, we can exploit this isomorphism by simply representing the natural
number as a list of digits: it is easy to define new functions that work on this
existing representation. But in an object-oriented language like Smalltalk,
the operations are attached to the representation, and because we need new
methods, it is easiest to define new classes.

e We need a new class that can represent the natural number zero.
It should be defined as a subclass of class Natural; the book rec-
ommends calling the class NatZero.

e We need another new class that can represent any natural number
that is not zero; The book recommends calling the class NatNonzero.
Every nonzero natural number has the form m - b+ d, where m and d
are not both zero. The m and d will be stored in the instance variables
of class NatNonzero.

The invariant that m and d are not both zero simplifies the implemen-
tations of many methods, including addition, subtraction, multiplica-
tion, division, comparison, and isZero.

To maintain the representation invariant, you’ll use the private class method
first:rest:, which I recommend in Figure 10.25 on page 681. Implement
it carefully. If both its arguments are zero, first:rest: must answer an
instance of class NatZero. If either argument is nonzero, first:rest: must
answer an instance of class NatNonzero. This class method is Smalltalk’s
analog of the “smart constructor” times10plus that you were asked to use
on the first MLL homework.

3.1 Notes on private methods

We recommend the private methods that are shown in the book in Fig-
ure 10.25 on page 681. Here are some notes:

e Private methods modBase, divBase, and timesBase shouldn’t require
any arithmetic, and only timesBase might require allocation.

e Methods = and <, which are required by class Magnitude (Figure 10.17
on page 659), are relatively easy to implement, but the obvious version
of < invokes = recursively, making the whole computation quadratic.
To keep the cost of comparison linear, I instead recommend a trivalent
comparison method compare:withLt:withEq:withGt:. Its interface
is modeled on the ifTrue:ifFalse: method from class Boolean.



To help make the code easy to debug, the course solutions define other
private methods not recommended in the book:

e [t defines a printrep method, which prints the digits of a natural num-
ber in their private representation, separated by slashes. This method
enabled inspection of a natural number without having to first convert
it to decimal.

e It also defines a do: method, which iterates over the digits of a natural
number.

o [t defines a rep method that answers a Smalltalk List of digits, which
is used in unit tests. (Norman did the initial testing on base 16. Once
everything was working, he shifted to a much larger base.)

e To simplify unit testing, the course solutions define a compare: method,
which uses compare:withLt:withEq:withGt: to answer a symbol.

You may not need all these debugging methods—for Norman, the most
useful was printrep.

3.2 What methods to define where

We recommend defining two versions of each private method: one on class

NatZero and one on class NatNonzero. We also suggest implementing public

methods sdivmod:with: and isZero separately on each subclass. By con-

trast, we recommend defining methods for +, -, sdiv:, smod:, subtract:withDifference:ifNegative
=, <, and decimal just once, on class Natural—Ilike the print method that

is already in the book. (Norman found no benefit to defining * on class

Natural; it was easier just to do the two subclasses.)

3.3 Other hints

Start by defining the methods on class NatZero. Most implementations
are simple indeed; for example, zero times anything is zero. Addition and
subtraction require a little care; for example, you can sometimes add a
number to zero by exploiting the equation 0 +n 4+ ¢ = n + 0 + ¢, but this
equation is useful only if n # 0.

Implementing the proper API for subtraction is one of the more annoy-
ing bits, because if the difference would be negative, you have to invoke
an error continuation. You could emulate exception-based error detection



in Smalltalk, but emulating exceptions requires a gnarly tangle of continua-
tions, and we recommend against it. The easy way out is to resign yourself to
making two passes over the digits, and just compare the minuend with the
subtrahend. Don’t try subtracting with minus:borrow: unless you know
the difference is nonnegative.

i!'= If you're trying to emulate the ML versions of the arithmetic oper-
ators, you might think that to do the comparable case analysis, you would
need double dispatch. This much is true: if you wanted to do the same
case analysis, you would have to use double dispatch. But who wants to
do case analysis? Case analysis is the enemy! We never want to do case
analysis. The beauty of the design I have sketched is that we can accomplish
all the case analysis we need simply by dispatching to methods defined on
the two subclasses of class Natural; no double dispatch is required. Try to
understand how it works—this would make a good exam question. —

3.4 What order to tackle the methods in

If you’re using the subclass-based approach, order of implementation is not
super critical. But here’s a recommended order:

1. Start with the class methods, including the private ones, and the
private initialization methods. Don’t overlook public class method
fromSmall:.

2. Next, implement all the methods of class NatZero.

3. Next, implement the methods defined on class Natural, like decimal,+,
and so on. (For detailed advice on decimal, see section 5 on page 12
of this handout.) Write these methods even though you won’t be able
to test them yet: writing these methods will help you understand the
APIs to the private methods.

The methods on class NatNonzero should be broken down a little more
finely.

4. Methods isZero, modBase, divBase, and timesBase are good starting
points.

5. Next printrep.

6. Next plus:carry:. That will get your feet wet with a binary arith-
metic operation.



7. Next sdivmod:with:, so that you can try out decimal and make ev-
erything easier to debug.

8. Next minus:borrow:.
9. Next *, which requires more attention to detail than the others.

10. At the finish, we recommend compare:withLt:withEq:withGt:, which
is mostly about passing and allocating continuations—just like the
Boolean-formula solver.

3.5 A word about unit testing

If you define rep, you can unit-test most of the private methods as you
go along. Once you have the decimal method implemented, you can unit-
test the private methods with a little more confidence. Some of the public
methods can be tested as you go, and some (especially -), will be harder to
test until almost everything—including the decimal method—is working.

To preserve your sanity, you must write your own, fine-grained unit tests,
you must store them in a regression suite, and you must run the regression
suite every time you change your code. Any other plan is foolish.*

4 Detalils of class Natural, array-based version

This section suggests some implementation details suitable for class Natural,
assuming that you are representing a natural number as an array of digits.
But first, if you are reading this, wouldn’t you like your code to work? Would
you like to avoid a marathon of debugging? If so, skip this section entirely,
and use the subclass representation.

OK, if you want to quickly build code that doesn’t work, then spend a
lot of time debugging it, continue with arrays. we recommend the private
methods that are shown in the book in Figure 10.24 on page 680. We suggest
you implement class Natural in three stages, testing extensively at the end
of each stage.

41f you rely solely on the randomly generated tests that are distributed with the as-
signment, you are guaranteed to waste a lot of time.



Stage I — Basics

1.

Start with recommended private methods digit:, digit:put:, and
makeEmpty:, which manipulate the array of digits that represent the
number.

Remember that digit: should work with any nonnegative argument,
no matter how large.

. Next, implement method doDigitIndices:. This method has to do

with indices into the array of digits, not with digits themselves. Indices
can be used for mutation!

Once you have access to the digits, you can define trim, which removes
unneeded leading zeroes. This method is meant to mutate the receiver.

. Once trim is written, you can write digits:, to initialize a newly

allocated bignum.

Now you can define the class method fromSmall:, which is your first
public method—it creates a new object of class Natural.

Stage II — Simple functions

6. At this stage, a temporary print method is probably next—it will

help you debug. For now, just print your representation.

Method isZero should be straightforward at this point. You’ll need a
loop. Like one with doDigitIndices:, for example.

With access to the digits, you can write =. You can probably exploit
private methods digit: and doDigitIndices: to make comparison
relatively easy. You will need to be careful when comparing bignums of
different degree, but there is a simple, elegant way to compare numbers
of different degrees—try to find it.

Stage III — Arithmetic

9. The heart of your arithmetic implementation will be the two methods

+ and sub:withDifference:ifNegative:. They depend on the digit
methods above. A loop driven by doDigitIndices: may be helpful.
So might methods trim and makeEmpty:.

10



10. Subtraction is more complicated because it can fail: the difference of
two natural numbers is not always a natural number. But this problem
can be detected by looking at the final borrow bit: if you are trying
to borrow more than is there, the result is negative. Aside from this
check, the code should otherwise be similar to the addition case.

11. With natural-number subtraction in hand, you can now implement
the public methods - and <. You should be able to get everything you
need from subtract:withDifference:ifNegative:, without having
to use lower-level methods of class Natural.

12. To implement short division, you work down from most-significant
digit to least-significant digit. I recommend defining a private method
setSdiv:remainder which is sent to an object of class Natural, along
with a one-digit divisor of class SmallInteger. The method mutates
the receiver, dividing it by the divisor, and answering the remainder,
also of class SmallInteger. It works by keeping a “current remainder”
at each step. The current remainder is multiplied by base b, added to
the current digit, and the sum divided by the divisor. The quotient
becomes a part of the result, and the remainder goes into the next
step. The final remainder is what is answered from the method.

With setSdiv:remainder working, you can then implement the public
methods of short division:

e Method sdiv: makes a copy of self, sends (setSdiv:remainder
copy divisor), and answers copy.

e Method smod: makes a copy of self, then answers the result of
sending (setSdiv:remainder copy divisor).

13. Multiplication is the most complicated operation of all. You will want
to allocate a new number with makeEmpty: and initialize it to zero.
Then, as suggested in the book, you’ll need a double sum to add
in all the partial products. A doubly nested doDigitIndices: loop
will help. To manipulate the partial products, methods digit: and
digit:put: are essential. Finally, use trim to control the growth of
your bignums.

Stage IV — Decimal conversion and printing The last steps are
decimal and print:

14. As described in section 5 below, implement decimal.

11



15. Use the print method from the book.

4.1 A word about unit testing

To save a great deal of time, you must write your own, fine-grained unit tests,
you must store them in a regression suite, and you must run the regression
suite every time you change your code. Any other plan is foolish.?

5 Decimal conversion and printing (Natural)

Decimal conversion and printing of natural numbers is independent of the
representation. So it works exactly the same way, no matter whether you
use the subclass-based approach or the array-based approach.

Method decimal must answer a standard List. To convert natural
number n to a list of decimal digits, we recommend initializing an empty
list, then following these steps:

e Aslong as n > 0, use addFirst: to add n mod 10 to the front of the
list of digits, and replace n by n div 10.

e If n =0, you're almost finished. Just make sure the list of digits isn’t
empty—if it is, add zero to it.

This algorithm can work with any representation using just sdivmod:with:.
Once you have decimal, print is in the book. Debugging just got
easier—you can use check-print.

6 Details of large integers

The book defines class LargeInteger, but this definition is good enough
only for homogeneous arithmetic on large integers, not for mixed arithmetic
on large and small integers. You will need to add methods that add to,
multiply by, or compare with a small integer. Here’s one example:

(method smallIntegerGreaterThan: (anInteger)
(self > (anInteger asLargelnteger)))

You’ll need similar methods for addition and multiplication.
For testing, include this decimal method in class LargeInteger:

SIf you rely solely on the randomly generated tests that are distributed with the as-
signment, you are guaranteed to waste a lot of time.

12



(method decimal () [locals decimals]
(set decimals (magnitude decimal))
((self isNegative) ifTrue:

{(decimals addFirst: ’-)})
decimals)

You will need to have implemented the decimal method on class Natural.

Once you've gotten this far, LargePositiveInteger and LargeNegativeInteger
will be relatively straightforward. The list of methods and hints given in
the book should get you through. You will lean heavily on your Natural
methods, but only the public methods. These are the methods of class
Magnitude, together with the methods listed in Figure 10.19 on page 662.

Here are a few example methods of class LargePositiveInteger from
my solution:

(method isNegative () false)
(method isStrictlyPositive () ((magnitude isZero) not))
(method + (anInteger) (anInteger addLargePositiveIntegerTo: self))
(method addLargePositivelIntegerTo: (anInteger)
(LargePositivelInteger withMagnitude: (magnitude + (anInteger magnitude))))

You’ll need a complete set of methods negated, print, isNegative, isNonnegative,
isStrictlyPositive, +, ¥, addLargePositiveIntegerTo:, addLargeNegativeIntegerTo:
multiplyByLargePositiveInteger:, and multiplyByLargeNegativeInteger:.

(You'll also need an sdiv: method, but it can send error.) This design

reuses the LargeInteger methods as much as possible.

7 Details of small integers with overflow detection

Getting mixed arithmetic to work requires a major overhaul of the SmallInteger
class. Here are some illustrative methods:

(class NewSmallIntegerMethods
[subclass-of Object]
(method asLargeInteger () (Largelnteger new: self))
(method + (aNumber) (aNumber addSmallIntegerTo: self))
(method addSmallIntegerTo: (anInteger)
((primitive addWithOverflow self anInteger
{((self aslLargelnteger) + anInteger)}) value))

13



You then have to copy those methods into the SmallInteger class:
(SmallInteger addAllMethodsFrom: NewSmallIntegerMethods)

What do these methods do? The coercion method asLargeInteger
enables mixed arithmetic. The three addition methods enable both mixed
arithmetic (via double dispatch) and overflow detection (via primitive method,
when adding two small integers).

1. You will need to replicate the addition structure for multiplication,
using primitive mulWithOverflow.

2. The predefined subtraction method on SmallInteger uses a small-
integer primitive. You will need to replace it with a method that
implements the classic “subtract from me by adding a negated argu-
ment.”

3. You will need to implement negated using the subWithOverflow prim-
itive to subtract self from zero.

4. To support mixed arithmetic, you will have to implement all the
methods that get dispatched when + or * is sent to a large inte-
ger: addLargeNegativeIntegerTo:, addLargePositivelntegerTo:,
multiplyByLargeNegativeInteger:, and multiplyByLargePositiveInteger:.

5. If you are implementing mixed comparisons, you will have to use dou-
ble dispatch to implement <, and you will also have to replace the
primitive >. (In a typical semester, mixed comparisons are extra credit,
not required. Check the homework.)

6. If you are implementing mixed comparisons, you will need to reim-
plement the = method, probably by subtracting and comparing the
difference with zero. You would benefit from implementing private
method isZero as well.

14



