
Recommended Design Process for Functions
COMP 105

Fall 2020

Recommended Process

This lightweight process is based on test-driven develop-
ment methods used in industry. For details, see the hand-
out on programming with proof systems and algebraic laws.

1. Using the descriptions given to you, understand the
forms of the data that will be input to the function.
Forms might be described by proof rules, by list of
cases, or even by a type definition. However they are
described, the forms of data must be distinguishable by
writing code.

2. For each form of data, write an example input which
has that form. Every form of data needs an example.

3. If it’s not already given to you, choose a name for the
function. Use a noun, verb, or property, as described
in the general coding rubric, under “Naming.”

4. If it’s not already given to you, write the function’s
contract: in a simple, clear sentence, what should the
function return, as determined by its argument(s)?

5. Look the example inputs from part 2. On each ex-
ample, what should the function return? Write your
answer as a check-expect or check-assert unit test.

6. Generalize the example unit tests to algebraic laws.
Some values in the examples will turn into variables.
This step may be hard.

7. Looking at only the left-hand sides of the algebraic
laws, start coding the body of the function. The func-
tion should begin by asking the input data, “How were
you formed?,” which tells the code which algebraic law
to follow. Code one case per algebraic law. Distinguish
cases using if-expressions.

8. Finish the function. For each case, ask the input,
“From what parts, if any, were you formed?” Then
complete the case using the right-hand side of the cor-
responding algebraic law.

9. Revisit the unit tests. First, look at them. Do they
test every form of input? If the function’s result is
Boolean, add new tests so that you have both a “true”
and a “false” test for each form of input.

Next, run them. If there are any test failures, look at
the algebraic laws first.

Rationale

Here are reasons for each step.

1. The shape of the data determines the shape of the code.
This idea, popularized by Fred Brooks in The Mythical
Man-Month, applies to many programming languages
and paradigms. It has been known since the 1960s.

2. Examples are the easiest place to start, and they are
what people learn from.

3. A meaningful name is critical to code review. By writ-
ing it early, you clarify what you are aiming for.

4. Contracts aren’t just useful in code review: writing
the contract first is a form of “design first, code later,”
which you may have practiced in COMP 40. And the
contract can help alert you to a design that is too com-
plex; if your contract isn’t simple, your code may be
hard to get right.

If you’ve been taught to think of a contract only as
documentation you write after the fact, you may be
surprised at how much you get out of a “contract first”
approach.

5. Writing down results on example inputs ensures that
we know where we’re going. If something is going to
be wrong, misunderstood, or confusing, we want to
identify it early—for example, before we start coding
the wrong function.

Writing examples as unit tests gives the interpreter the
job of checking that everything works as expected—
every time. If anything goes wrong with your code,
you want the bug to manifest as a failed unit test.

6. Algebraic laws are the single most powerful tool you
will learn in COMP 105. They occupy a middle ground
between vague English and executable code, where
they simplify both coding and review.

7. Case analysis is always the enemy. This step shows
you where you must have it.

8. This step reduces the coding task to a bite-sized piece
involving one case at a time.

9. Adding test cases for both “true” and “false” results
finds many bugs, as does actually running the unit
tests.

https://www.cs.tufts.edu/comp/105/handouts/natproofs.pdf
https://www.cs.tufts.edu/comp/105/handouts/natproofs.pdf
https://www.cs.tufts.edu/comp/105/coding-rubric.html

	Recommended Process
	Rationale

