
Programming with Induction, Recursion, and Algebraic
Laws

CS 105 Assignment

Due Tuesday, September 13, 2022 at 11:59PM

Contents
Reading comprehension 2

Programming in Impcore (90%) 2
Getting set up with the software . 2
Unit testing . 3
Expectations for your software-design process . 3

Help with the process: a solution template . 4
Quick help with Impcore . 5
The problems you must solve . 5

Direct applications of the design method . 5
Generalization of the design method . 6
Recursion that is not structural . 6
A challenge problem . 6

Other expectations for your solutions . 7
Frequently asked questions . 7

A photograph we can use to learn your name (10%) 8

What to submit and how to submit it 8

How your work will be evaluated 9
How your code will be evaluated . 9
How your photograph will be evaluated . 11

1

This homework will help you

• Practice using the 9-step design process (especially naming, contracts, and algebraic laws)

• Think explicitly about induction and recursion

• Get used to fully parenthesized concrete syntax as used throughout the course

• Practice using the course software

Like all homeworks, this one is preceded by comprehension questions that help you focus your reading.
Before starting the homework problems, download the comprehension questions and tackle the reading
as they direct. Answer the comprehension questions on your own.

The homework itself has two parts:

• Programming exercises that reinforce your programming process and that develop skills with
induction and recursion

• A photograph for the private use of the course staff, which will help us learn to recognize you and
call you by name

The programming exercises must be done as individual work.

NOTE: This assignment is due one minute before midnight. You may turn it in up to 24 hours after the
due date, which will cost you one extension token, as described in the syllabus. If you wish not to spend
an extension token, then when midnight arrives submit whatever you have. We give partial credit.

ALERT: This assignment is significantly easier than a typical CS 105 assignment. Its role is to get you
acclimated and to help you start thinking systematically about writing code from scratch, especially using
algebraic laws to write recursive functions. Later assignments get harder and more time-consuming, so
don’t use this one to gauge the difficulty of the course.

Reading comprehension
Before starting the programming problems, answer the reading-comprehension questions for this module.
It is also OK to alternate between reading-comprehension questions and related homework questions.

Programming in Impcore (90%)
You can start these exercises immediately after the first lecture. You may write very efficient
solutions—but do not feel compelled to do so. Just make sure that your recursive functions terminate!

Do not share your solutions with anyone. We encourage you to discuss ideas, but

• No other student may see your code.
• No other student may see your algebraic laws.
• No other student may see the contracts for your helper functions.

Getting set up with the software
The interpreter you need to run Impcore code is provided as part of the course. To add course software
to your execution path, run

2

use -q comp105

You may want to put this command in your .cshrc or your .profile. The -q option is needed to prevent
use from spraying text onto standard output, which may interfere with scp, ssh, git, and rsync.

The impcore interpreter is in /comp/105/bin; if you have run use as suggested above you should be able
to run it just by typing

ledit impcore

The ledit command gives you the ability to retrieve and edit previous lines of input.

If your code and unit tests are in file solution.imp, you can load and run them by typing

impcore -q < solution.imp

Unit testing
The special “extended-definition forms” check-expect, check-assert, and check-error are part of
every language in the book. For example, as described in section~1.2.1 of the book (page~17), they are
part of the Impcore language. These forms serve both as unit tests and as documentation. Every function
you write must be tested and documented using check-expect or check-assert, and possibly also
check-error. The number of unit tests must be appropriate to the function’s contract and to the structure
of its input, as described in the first lesson on program design.

How do you knowwhen to use check-expect and when to use check-assert? Like this: check-expect
tells if two expressions evaluate to the same value, and check-assert checks to see if a single expression
evaluates to truth or falsehood. To be confident you are getting things right,

• If you are writing a check-expect that something is 0 or 1, meant as a Boolean, then probably
you should be writing check-assert. (If checking for 0, use check-assert with not, as shown
below.)

• If you are writing a check-assert of an expressionwritten with =, you should definitelywrite check-
expect instead. It’s more readable, and if it fails, you get a more useful error message.

Expectations for your software-design process
To write code from scratch, we recommend the nine-step design process that is presented in the introduc-
tion to Seven Lessons on Program Design. In this homework, the process is primarily for practice—
many students will be able to do the problems without the help that the process provides. In a couple of
weeks, though, you will need to have a good process, or you will find that the homeworks take too much
time.

Our process has nine numbered steps. On this homework, here’s what we expect for each step:

1. All data are integers, and most are natural numbers. We expect you to be able to break natural
numbers down into the forms described in the first lesson on program design. Those forms will
appear on the left-hand sides of the algebraic laws you write for step 6.

2. We expect you to be able to choose example inputs, which we expect to see in your unit tests.

3. We expect you to choose names only for any helper functions that you choose to write. Most
problems, but not all, can be solved without helper functions. When there are helper functions,

3

they will be scrutinized carefully, and their names will be judged according to the general coding
rubric.

4. We expect each function you submit to be preceded by a short contract that appears in a comment.

• Contracts for the assigned functions don’t require much thought; language from the book (or
this homework) is fine.

• Contracts for helper functions are another story. For each helper function you define, choose
a good name, and write a specific, accurate contract. Use the coding guidelines. Your
contract must meet the expectations laid out in the Documentation section of the general
coding rubric.

The contracts for the helper functions will weigh more heavily toward your grade.

Here’s a model contract:

;; (has-digit? n d) returns 1 if and only if the decimal
;; representation of positive integer `n` includes a decimal
;; digit that is equal to `d`; it returns 0 otherwise.

5. We expect unit tests to be submitted with each function, and we expect them to follow the function
and to be indented eight spaces. We expect only the basics: one or two unit tests for each form of
input.1 Additional unit tests are acceptable, but they must be separated from the basic tests by a
blank line.

Here are two example unit tests:

(check-assert (not (has-digit? 123 7)))
(check-assert (has-digit? 123 2))

6. We expect you to write algebraic laws for any function that contains an if expression or a recursive
call. Algebraic laws should appear between a function’s contract and its definition.

7. We expect the body of each function to have at most one case per algebraic law.

8. We expect the body of each function to be consistent with the function’s algebraic laws.

9. We expect each function’s unit tests to be indented eight spaces, and to pass. When a function is
meant to return only 1 or 0, coding for “true” or “false,” we expect that function’s unit tests to use
check-assert and to test both outcomes.

Help with the process: a solution template

To help you organize and present the results of your work, we provide a solution template. Copy the
template into file solution.imp. The template provides placeholders for contracts (design step 4), unit
tests (step 5), algebraic laws (step 6), and function definitions (steps 7 and 8).

In the template, you will see that most functions are followed by a single unit test that uses check-error.
The test is a placeholder. Remove the check-error and replace it with unit tests that use check-expect
or check-assert, which you must write. (For most functions, you will need multiple unit tests: at least
one per algebraic law.)

1For ordinary results, we expect one test per form of input. For Boolean results, we expect one “true” test and one “false” test
for each form of input, when possible.

4

coding-rubric.html
coding-rubric.html
coding-style.html#contracts
coding-rubric.html
coding-rubric.html
https://www.cs.tufts.edu/cs/105/files/solution-template.imp

Indent all unit tests by 8 spaces.

A placeholder function definition has body (/ 1 0). Evaluating this code divides 1 by 0, which causes
an error. The solution template should pass all unit tests, as reported by

impcore -q < solution.imp

The template does not include placeholders for helper functions. If you write any helper functions, supply
each helper function with a contract, laws, and unit tests.

Quick help with Impcore
The concrete syntax of Impcore can be found on page~18 of Programming Languages: Build, Prove,
and Compare. As a quick summary, the following code uses every possible syntactic form of expression.
But on this assignment, you must not use the while and set forms, and the code you submit must not
print.

(define even? (n) (= (mod n 2) 0))

(define 3n+1-sequence (n) ; from Collatz
(begin

(while (!= n 1) ;; don't use `while` on your homework!
(begin

(println n)
(if (even? n)

(set n (/ n 2)) ;; don't use `set` on your homework!
(set n (+ (* 3 n) 1)))))

n))

The “initial basis” of a programming language is a fancy technical name for the names that are already
defined. In Impcore, the initial basis comprises primitive and predefined functions, which have these
names:

mod or println /
!= and = *
>= printu > -
<= print < +
not

The problems you must solve
You will solve three groups of ordinary problems and one challenge problem. Do the problems in the
order in which they appear below, not in book-numbering order.

Direct applications of the design method

Each problem in the first group can be solved by direct application of the methods sketched in the first
lesson on program design: choose a proof system, write algebraic laws, design the code.

The problems are as follows:

5

• DD. Define a function double-digit. When given a positive integer less than 20,000, double-
digit returns a positive integer whose decimal representation is the same as the decimal repre-
sentation of the input, except each digit appears twice. For example, (double-digit 123) is
112233.

• C. Define a function population-count, which when given a nonnegative integer, returns the
number of 1 bits in the binary representation of that integer. (This function is named for a machine
instruction found on Intel CPUs.)

• 8. Define the function binary described in exercise~8 on page~78 of Build, Prove, and Compare.

Generalization of the design method

Each problem in the second group can be solved by generalizing themethods in the first lesson on program
design.

• 2. Define the function sigma that is specified in exercise~2 on page~76 of Build, Prove, and
Compare. Although 𝑚 and 𝑛 are not guaranteed to be natural numbers, this problem specifies
𝑚 ≤ 𝑛, so the difference 𝑛 − 𝑚 is a natural number. Your algebraic laws should handle cases for
𝑛 − 𝑚 = 0 and 𝑛 − 𝑚 = 𝑘 + 1, where 𝑘 is a natural number. The laws should be written like
this:

;; laws:
;; (sigma m m) == ...
;; (sigma m n) == ..., where n > m

If youmake a recursive call for the case 𝑛−𝑚 = 𝑘+1, the recursive call should satisfy 𝑛−𝑚 = 𝑘.

Recursion that is not structural

A recursive computation that is driven by the structure of the data, as in the first two groups of problems,
is called structural recursion. Not all recursions are structural.

• 5, part one. Define the function prime? that is specified in exercise~5 on page~76 of Build, Prove,
and Compare. I recommend searching for a divisor. This search will require a recursive helper
function, which is not structural.

All helper functions must begin with algebraic laws. When the recursion is not structural, algebraic
laws do not discriminate on the forms of the input. Instead, they discriminate on properties of the
input. For this problem, one interesting property is that one number evenly divides another. There
is also one other interesting property. In each law, write the interesting properties for that law as a
side condition, which should appear after the right-hand side of the law, following a comma and
the word “where.” As a model, look at the side condition for the property 𝑛 > 𝑚 in the laws for
sigma above.

For the function prime? itself, I recommend discriminating using three mutually exclusive prop-
erties: either 𝑛 < 2, 𝑛 = 2, or 𝑛 > 2. (Function prime? expects a nonnegative integer.)

A challenge problem

• 5, part two. Define the function nthprime that is specified in exercise~5 on page~76 of Build,
Prove, and Compare. This one should be implemented using structural recursion, and I recom-

6

mend a structurally recursive helper function. The challenge here is to come up with a good name
and a clear contract for the helper function.

Note that function nthprime expects a positive integer.

In addition to unit tests of individual functions, you may wish to consider unit tests for properties of
combinations of functions, like these:

(check-assert (prime? (nthprime 6)))
(check-assert (not (prime? (+ 1 (nthprime 7)))))

Other expectations for your solutions
For this assignment, we expect you to apply the recommended design process and to deliver working
functions with good names, clear contracts, algebraic laws, and unit tests. We also expect the following:

• Your solutions must be valid Impcore; in particular, they must pass the following test:

/comp/105/bin/impcore -q < solution.imp > /dev/null

with no error messages and no unit-test failures. If your file produces error messages, we won’t
test your solution and you will earn No Credit for functional correctness (you can still earn credit
for readability).

• Your solutions must load and complete within 250 CPU milliseconds. If you write long-running
tests, don’t include them in solution.imp; instead, create a file extra-tests.imp. This file
should include a line (use solution.imp).

• On this assignment, as on several assignments to come, your code must use recursion. Code using
while loops will receive No Credit.

• Code you submit must not call print, println, or printu. Code that prints is likely to fail our
automated tests.

• You may use helper functions where appropriate, but your code must not define or use global
variables.

• Your code must be your own work. Do not share your solutions with anyone. We encourage you
to discuss ideas, but

– No other student may see your code.
– No other student may see your algebraic laws.
– No other student may see the contracts you write for your helper functions.

Frequently asked questions
Here are some questions we are frequently asked about this assignment:

• When a contract gives an edge case condition, do we have to account for that? For example, in
double-digit, do we need a condition for > 20,000?

• Should we return an error for invalid input? For example, introduce a division-by-0 error when
input is invalid?

7

All these questions are really the same question: am I obligated to detect a contract violation, and if
so, how should my code respond? The answer is no, your code is not obligated to detect a contract
violation—and in most cases, it should not.

The contract is one of the premier tools we have to manage complexity in large systems. The beginner’s
mindset is, “every function must handle every possible case.” In a real system, this mindset leads to
complexity and code duplication—high costs. It is time to shift to a mindset that says, “every function
need handle only the cases stated in its contract.” Bugs still occur, and things go wrong, in which case
the question becomes, “who violated their contract? Was it a caller or a callee?”

Every function should be as simple as it can be while satisfying a contract. If it so happens that you can
detect a contract violation “for free,” it is OK to halt the program with a checked run-time error. But this
situation is rare. It is far more common that detecting a contract violation requires extra case analysis.
In CS 105, this is never OK. Part of the purpose of a function’s contract is to simplify that function’s
implementation.

Note: this mindset assumes that whatever is calling the function is trusted code. If a function’s inputs
ultimately come from a user (web form or whatever), then somebody needs to validate those inputs to be
sure they conform to the contract, but that job is a separate concern, to be dealt with in another function.

A photograph we can use to learn your name (10%)
If it is safe to be in the classroom without masks, I hope to learn the name of every student in the class.
The teaching assistants and recitation leaders would also like to learn your name. But we need your help.
Part of the assignment, for 10% of the grade on the assignment, is to submit a photograph that will help
us learn to recognize you. I’ve consulted with a skilled portrait photographer to prepare guidelines for
producing a good, easily recognizable photograph, even if all you have is a cellphone camera. You’ll
submit the photo as photo.jpg.

What to submit and how to submit it
Before submitting the homework problems, you’ll submit the reading-comprehension questions:

• Download file cqs-impcore.txt, edit in your answers, copy it to the server, and submit it using
the script submit105-cqs.

To submit the main questions, choose a directory for your homework, in which you will create or copy
these files:

• solution.impwill contain your code, with its documentation and unit tests. Problems will appear
in the order in which they are listed above, which is also the order of the solution template.

• photo.jpg will contain a recognizable photograph of you.

• README will identify anyone with whom you have collaborated or discussed the assignment and
will include any other information you wish to pass on to us. We provide a README template; please
use it.

As soon as you have the files listed above, run submit105-impcore to submit a preliminary version of
your work. The submit script checks your work and runs provide on your behalf. Do submit early, then
keep submitting until your work is complete; we grade only the last submission.

8

https://www.cs.tufts.edu/cs/105/files/solution-template.imp
https://www.cs.tufts.edu/cs/105/files/README-template.txt

The submit script will ask you some questions:

• Your preferred first and last names

• How we should pronounce your name, as in “kaeth-LEEN FI-shur” or “NORE-muhn RAM-zee.”

• How many hours you worked on the assignment

You may also submit extra-tests.imp, which should contain only test code, unit tests (check-expect
or check-error), and the line (use solution.imp). You can run the tests using the Unix command

impcore -q < extra-tests.imp

How your work will be evaluated

How your code will be evaluated
In this assignment, you learn how we expect your code to be structured and organized. Our expectations
are presented on the coding-style page. When we get your work, we will evaluate it in two ways:

• About 50% of your grade for the assignment will be based on our judgement of the structure and
organization of your code. To judge structure and organization, we will use the following dimen-
sions:

– Documentation assesses whether your code is documented appropriately.

We expect you to document each function such that someone else could use your code and
reason about its result without having to see the code itself. In particular, every function must
be documented with a contract, and the contract must mention each parameter by name.

– Algebraic laws are also documentation, but they serve primarily as a design tool. Your
algebraic laws must demonstrate your understanding of the forms of input: we expect one
law per form of input. If any form of input requires more than one law, we expect the laws
to be disambiguated with mutually exclusive side conditions.

We expect the laws to be the foundation for your code: your code must begin by examining
inputs to determine which algebraic law governs the given input.

Write your algebraic laws before you start coding. In the first half of the course, this “design
first” practice might save you forty or fifty hours.

– Unit testing assesses whether your code is appropriately tested by some combination of
check-expect, check-assert, and/or check-error. Appropriate testing exercises every
form of input and every part of your code. We expect a test for every algebraic law.

– Form assesses whether your code uses indentation, line breaks, and comments in a way that
makes it easy for us to read.

We expect you to use consistent indentation, to obey the offside rule described in the coding-
style guidelines, and to limit the use of inline comments in the body of each function.

We expect you to indent each block of unit tests by eight spaces.

– Naming assesses your choice of names. To people who aspire to be great programmers,
names matter deeply.

9

coding-style.html
coding-style.html#offside

We give you a hand here by providing a template in which the names of top-level functions
and their arguments are already chosen for you. For helper functions, you will choose your
own names. Look at the general coding rubric and choose wisely.

– Structure assesses the underlying structure of your solution, not just how its elements are
documented, formatted, and named.

We expect that your solutions will use recursion and function calls, not loops and assignments.
Additionally, we expect the case structure of each function to follow that function’s algebraic
laws.

• About 30% of your grade for the assignment will be based on our judgement of the correctness
of your code. We often look at code to see if it is correct, but our primary tool for assessing
correctness is by testing. On a typical assignment, the correctness of your code would carry more
weight, but this assignment is all about following the recommended software process and using
algebraic laws effectively, so test results carry less weight.

The detailed criteria we will use to assess your code are found at http://www.cs.tufts.edu/comp/105/
coding-rubric.html. Though things may be worded differently, most of these criteria are also applied in
our introductory courses (CS 11, 15, and 40)—they make explicit what we mean by “good programming
practice.” But as you might imagine, there is a lot of information there—probably more than you can
assimilate in one reading. The highlights are

• Documentation
– Each function is documented with a contract that explains what the function returns, in terms

of the parameters, which are mentioned by name. From documentation, it is easy to deter-
mine how each parameter affects the result.

– The contract makes it possible to use the function without looking at the code in the body.
– If not all inputs are permissible, the contract determines what inputs are and are not OK.
– The contract appears consistent with the laws, code, and unit tests.
– Each parameter is mentioned in its function’s contract.

• Form
– Code fits in 80 columns.
– Code respects the offside rule.
– Code contains no tab characters.
– Indentation is consistent everywhere.
– If a construct spans multiple lines, its closing parenthesis appears at the end of a line, possibly

grouped with one or more other closing parentheses—never on a line by itself.
– No code is commented out.
– Solutions load and run without calling print

• Naming
– Each function is named either with a noun describing the result it returns, or with a verb

describing the action it does to its argument. (Or the function is a predicate and is named as
suggested below.)

– A function that is used as a predicate (for if or while) has a name that is formed by writing a
property followed by a question mark. Examples might include even? or prime?. (Applies
only if the language permits question marks in names.)

– In a function definition, the name of each parameter is a noun saying what, in the world of
ideas, the parameter represents.

– Or the name of a parameter is the name of an entity in the problem statement, or a name from

10

coding-rubric.html
coding-rubric.html
http://www.cs.tufts.edu/comp/105/coding-rubric.html
http://www.cs.tufts.edu/comp/105/coding-rubric.html

the underlying mathematics.
– Or the name of a parameter is short and conventional. For example, a magnitude or count

might be n or m. An index might be i, j, or k. A pointer might be p; a string might be s. A
variable might be x; an expression might be e.

• Laws
– Each left-hand sides applies the defined function to forms of input.
– Laws are distinguished by distinct forms of input, or (only when necessary) by mutually

exclusive side conditions.
– Every permissible input is handled by exactly one law, and no forms of input are omitted.
– Each law specifies a result that is consistent with the function’s contract, and it does not say

anything about inputs that are forbidden by the contract.
– The right-hand side of a law refers only to those variables that appear on the left-hand side

of that law.
– Variables are used consistently between the left-hand side and the right-hand side of each

law.
• Structure

– Solutions are recursive, as requested in the assignment.
– Any case analysis begins by identifying which law applies to the input.
– There’s only as much code as is needed to do the job.
– In the body of a recursive function, the code that handles the base case(s) appears before any

recursive calls.
– The code of each function is so clear that, with the help of the function’s contract, course

staff can easily tell whether the code is correct or incorrect.
– Expressions cannot easily be simplified.

• Unit Testing
– Every test uses inputs whose behavior is constrained by contract.
– There is a unit test for each form of input.
– There is one unit test for each algebraic law (should overlap with input tests).
– If a function returns a Boolean, its tests are written using check-assert and possibly not.
– If a function returns a Boolean, then for each form of input that can return either true or false,

there is both a truth test and a falsehood test.

How your photograph will be evaluated
If your photograph is clear, makes it easy to recognize you, and is not ridiculous in size, it will earn a
grade of Very Good (the top grade). If you’re not sure how to take a photograph that makes you easy to
recognize, consult the table below. Aim for an “Exemplary” photograph (the left column), be willing to
settle for “Satisfactory” (the middle column), and avoid “Must Improve” (the right column).2

2Yes, a student once sent me a photograph of two people.

11

Exemplary Satisfactory Must Improve

Composition• Head and shoulders fill
2/3 to 3/4 of the frame.
• The shot is taken from a
distance of 4 to 6 feet, and
the camera is zoomed as
needed to include just head
and shoulders.
• Or, the shot is taken from
a distance of 4 to 6 feet,
then cropped to include just
head and shoulders.
• The subject is looking at
the camera with a normal
look on the face.
• The background around
the subject’s face is one
color, and there are no
visual features that would
distract a viewer from the
subject.

• Face fills the frame;
shoulders not visible.
• The subject is not looking
at the camera, but there is a
normal look on the face.
• The background around
the subject’s face contains
distracting visual features,
but the distraction is
minimal (or is mitigated by
soft focus).

• Photo down to waist;
full-body photo.
• More than one person
visible in photo.
• Eyes are closed.
• The camera is too close to
the subject. (This will
happen if you compose the
shot by moving the camera
toward the subject until the
subject’s head and
shoulders fill the
“viewfinder”; you’ll get
perspective distortion.)
• The subject is making a
strange face (eye rolls, etc)
• The background around
the subject’s face contains
distracting visual features,
making it difficult for a
viewer to identify the
subject without
concentrating.

Lighting • The subject is illuminated
by two or more light
sources, such that one side
of the subject’s face is
noticeably brighter than the
other (about 2 to 1).
• The main sources of light
are soft and diffuse:
overcast sky, indirect
daylight, daylight reflected
off a wall or building, and
so on.

• The subject’s face is lit
evenly.
• The subject’s face is lit by
ambient light, plus flash
bounced off a ceiling or
wall (possible only with a
real camera)

• The background is
significantly brighter than
the subject.
• There is light behind the
subject aimed at the
camera.
• The sun is shining in the
subject’s face.
• The subject is illuminated
by a camera flash.

Focus • The subject is in sharp
focus, while the
background is a little blurry
(possibly only with a real
camera or with very
sophisticated software).
• The subject’s face is in
sharp focus.

• Some part of the subject
is in sharp focus, or
something near the subject
is in sharp focus. The
subject’s face is not in sharp
focus but is still easy to
recognize.

• The subject’s face is out
of focus.

12

Exemplary Satisfactory Must Improve

File • The uploaded image file
is from 300KB to 1.2MB in
size.
• Resolution of the
uploaded file is high
enough that there’s no
pixelation.
• The uploaded image is at
least as tall as it is wide
(portrait orientation)

• The uploaded image file
is at most 2MB in size.
• When shown at a few
inches high, the uploaded
image file is pixelated or
has compression blur.

• The uploaded image file
is more than 2MB in size.
• At its natural resolution,
the uploaded image file
shows pixels or
compression artifacts.
• The uploaded image is
wider than it is tall
(landscape orientation)

13

	Reading comprehension
	Programming in Impcore (90%)
	Getting set up with the software
	Unit testing
	Expectations for your software-design process
	Help with the process: a solution template

	Quick help with Impcore
	The problems you must solve
	Direct applications of the design method
	Generalization of the design method
	Recursion that is not structural
	A challenge problem

	Other expectations for your solutions
	Frequently asked questions

	A photograph we can use to learn your name (10%)
	What to submit and how to submit it
	How your work will be evaluated
	How your code will be evaluated
	How your photograph will be evaluated

